INTERVAL HYPERGRAPHS
Arnold L. Rosenberg*

COINS Technical Report 87-86

*This reseach was supported in part by NSF Grants DCI-85-04308 and DCI-87-96236

INTERVAL HYPERGRAPHS

Arnold L. Rosenberg®
Department of Computer and Information Science

University of Massachusetts
Ambherst, MA 01003

August 28, 1987

Abstract

An n-vertex interval hypergraph (I-hypergraph, for short) I comprises the set V,, =
{1,2,---,n} of vertices and a multiset E(I) of hyperedges, each of the form {k,k +
L,--,k+r} (k>1,1<r < n-k). One can decide in linear time whether or not
a given hypergraph is isomorphic to an I-hypergraph. The size of an I-hypergraph is
the sum of the cardinalities of its hyperedges. An embedding of the graph G = (V, E)
in the n-vertex I-hypergraph I comprises an injection u, : V — V,,, and an injection
e : E — E(I), satisfying: for all (u,v) € E, {uv(u), v(v)} C ge(u,v). The problem
of finding the smallest I-hypergraph in which a given graph can be embedded is NP-
complete; so also is the problem of whether or not a given graph G is embeddable in a
given I-hypergraph I. Certain problems that are NP-complete for arbitrary hypergraphs
are solvable in polynomial time for I-hypergraphs. Included here are the problem of
hypergraph 2-colorability and the problem of hypergraph hamiltonianicity. Say that
the finite family I' has an a-separator (1/2 < a < 1) of size S(r). Every m-vertex
graph in I’ can be embedded in an I-hypergraph of size

Alm}

m- ZS(a‘m) ,

1=0
where A(M) =41 log,; Ja M. The n-vertex I-hypergraph I is strongly universal for the

finite family of graphs T if: given any W C V,, and any graph G = (V, E) € T with
[V| < |W|, there is an embedding of G in I such that u,(V) C W. There is an

L-hypergraph of size
log m A(2%) ‘
m- Z Z S(e'2F) |,

k=1 i=0

that is strongly universal for I': m is the largest number of vertices in any G € " For
many families I', including binary trees and any family for which S(n) is of the form n®,
these strongly universal I-hypergraphs are within a constant factor of smallest possible.

“This research was supported in part by NSF Grants DCI-85-04308 and DCI-87-96236.

1. INTRODUCTION

This paper combines the research topics of two families of investigations that have appeared
in the literature in recent years.

The first type of investigation expands the object of study in graph-embedding research
from graphs to hypergraphs, motivated by the popularity of “bus-oriented” architectures
in present-day microelectronics. Three examples are:

e In [4], Bhatt and Leiserson construct, for each integer n, what we are calling an
interval-hypergraph in which every n-vertex binary tree can be embedded;

e in [14], Peterson and Ting determine (among other things) the minimum size of an
interval-hypergraph in which the complete graph K, can be embedded;

e in [19], Stout studies mesh-structured processor arrays with busses as well as point-
to-point communication links; he concludes (among other things) that “contiguous”
busses are best from physical considerations.

The second type of investigation seeks, for a given finite family of graphs I, a graph G(T")
that is strongly universal for I' in the sense of containing each graph in I' as a subgraph,
even if some positive fraction of the vertices of G(I') are “killed”.

e In [2], Beck establishes the existence of an O(n)-vertex O(n)-edge graph that remains
universal for (< n)-vertex path graphs!, even after some arbitrary positive fraction of
the graph’s vertices are killed;

e in [1], Alon and Chung present an explicit construction for the graphs advertised in
[2];

e in [3], Beck studies the analogous problem for trees.

e in (7], Friedman and Pippenger show that expanding graphs contain all small trees,
even after one kills a positive fraction of the vertices.

Some of the motivation for these studies is fault tolerance in arrays of processors.

In this paper, we are motivated by two issues concerning bus-oriented parallel architec-
tures. First we wish to compare the properties of bus-oriented communication structures
(as idealized by hypergraphs) as opposed to point-to-point communication structures (as
idealized by graphs). Second, we wish to study the use of busses in designing fault-tolerant
arrays of identical processors in an environment of VLSI (Very Large Scale Integrated)
circuitry. To these ends, we formalize the notion of interval hypergraph studied informally

!The n-vertex path-graph P, has vertices {1,2,---,n} and edges {(f,1 +1) |1 < i < n}.

in [4, 14, 16, 17], we study a number of the basic properties of interval hypergraphs, and
we seek small interval hypergraphs that are strongly universal for given finite families of
graphs, in the sense described above. The main result of our study is an algorithm that
produces these small strongly universal interval hypergraphs. Included among the results
we establish here are the following:

e The recognition problem for interval hypergraphs is solvable in linear time.

¢ The problem of finding the smallest interval hypergraph in which a given graph can
be embedded is NP-complete.

e The problem of deciding whether or not a given graph can be embedded in a given
interval hypergraph is NP-complete.

e Certain problems, such as 2-colorability and hamiltonianicity that are NP-hard for
general hypergraphs can be solved efficiently for interval hypergraphs.

We also make explicit the relationship between interval hypergraphs and the better-known
interval graphs, both being characterized in terms of matrices with the so-called consecutive
ones property.

Our main algorithm takes as input a finite family of graphs I' and an a-separator function
S(n) for I' (1/2 < & < 1). The algorithm produces a strongly universal interval hypergraph
I(T) for T, of size (measured by the sum of the cardinalities of its hyperedges)?

logm A(2)
SIZE(I(T)) = m - (Z Y S(a‘2")) ,

k=1 =0

where m is the number of vertices in the largest graph in ', and A(M) =4 log, Ja M. For
many families T, including binary trees and any family for which S(n) is of the form n?,
the interval hypergraphs I(T') are optimal in SIZE (to within a constant factor). Moreover,
for such S(n), the SIZE of I(T'), which can be viewed as measuring the area required to lay
I(T) out in the plane, is just a small constant factor greater than the area of any “collinear”
layout in the plane of the largest graph in T' (“collinearity” demanding that the graph’s
vertices lie along a line) .

2. BACKGROUND

2.1. The Formal Framework

We define the various notions that underlie the objects we study and the techniques we
bring to bear on them.

2All logarithms are to the base 2 unless indicated otherwise.

(Hyper)Graphs. A hypergraph H = (V, E) comprises a set V of vertices and a multiset
E of subsets of V', called hyperedges. A graph G = (V, E) is a hypergraph for which each
e € E is a doubleton; each such hyperedge is called an edge. In this paper, we consider only
graphs that are simple in the sense that E is a set. All families of graphs considered here
are finite.

Interval Hypergraphs. An n-vertex interval hypergraph (I-hypergraph, for short) I is a
hypergraph whose vertices comprise the set V,, = {1,2,---,n} and whose hyperedges all
have the form {k,k+1,---,k+r} forsomek>1and 1<r<n - k.

Letting G ambiguously denote a graph or a hypergraph, we denote by |G| the number
of vertices of the (hyper)graph G and by SIZE(G) the sum of the cardinalities of G’s
(hyper)edges.

Embedding. An embedding of the graph G = (V,, E,) in the hypergraph H = (V}, Ej)
comprises one-to-one mappings

uy:Vy—>V, and po: E, — Ep

such that, for each edge (u,v) € E,, the image vertices u,(u) and p,(v) are both elements
of the image hyperedge u.(u,v); symbolically, {u,(u), uv(v)} € pe(u,v). We say that a
hypergraph contains any graph that is embeddable in it.

Strong Universality. Let I' be a finite family of graphs. The hypergraph H = (V}, E},)
is strongly universal for T if, given any set W C Vj: for every graph G = (V,, E;) in T for
which |G| < |W|,3 there is an embedding of G in H with u,(V,) C W.

Graph Separators and Separation Profiles. Let o be a rational number in the range
1/2 £ a < 1, and let S(n) be a nondecreasing integer-valued function. The graph G has
an a-separator of size S(n) either if |G| < 2 or if the following holds: By removing at most
S(|G|) edges from G, one can partition G into subgraphs G; and Gy, each of size

[1-a)IG|] < |G| < [«[G]],

and each having an a-separator of size S(n). A family of graphs I' has an a-separator of
size S(n) iff each graph G € T' does.

It is easy to verify that the family of path-graphs has a (1/2)-separator Spqen(n) =
1; Valiant [20] has shown that the family of binary trees has a (2/3)-separator
of size Sire(n) = 1; it is an immediate consequence of the Planar Separator
Theorem [11] that the family of rectangular meshes has a (2/3)-separator of size
Sgria(n) = V8n. We use a-separators here, rather than the more commonly
used bisectors, since for certain families of graphs (e.g., binary trees), choices
of o other than o = 1/2 lead to strongly universal I-hypergraphs that are more
SIZE-efficient by a logarithmic factor.

$We denote by |S| the cardinality of the set S.

Let G be a graph, and let ! be any integer > log, Ja |G|. The graph G has an a-separation
profile (a-SP, for short)

(Sl, 81-1,"" ',81),

each s; a nonnegative integer, precisely if: by removing at most s; edges from G, one can
partition G into subgraphs G} and G3, each of size < |G|, and each having an o-SP

(S1-1,81-2,°+,51).

Another view of separation profiles is given by the notion of a
(s1,81-1,"*+, 81)-decomposition tree
for G: If one has a graph G with an a-SP

(31;31—1’ o ')sl)s

then one can construct a depth-/ binary tree whose root is G, and whose left and right
subtrees are, respectively, the (s;_;,s;_3, - -, s1)-decomposition trees of the graphs G; and
G2 mentioned above.

The notions “separator” and “separation profile” converge in the fact that every graph
G having an a-separator of size S(n) admits an a-SP

(81y81-1,,81),

where each s; = S(a!~¥|G|). We leave to the reader the task of translating this correspon-
dence into a decomposition tree for G. By dint of this relationship, we may refer freely to
the S(n)-decomposition tree of any graph having an a-separator of size S(n).

2.2. The Intended Interpretation

In our motivating scenario, the graph G represents a logical array: its vertices represent
the processors of the array, and its edges represent communication links interconnecting
the processors. (Thus, in G, interprocessor communication is “point-to-point”). The I-
hypergraph I represents a physical array we shall use to realize G: its vertices represent the
processors of the array, and its hyperedges represent busses that the processors tap into, in
order to realize the edges of the array. (Thus, in I, interprocessor communication is along
busses.) A processor (vertex) can tap into any bus (hyperedge) it belongs to. SIZE([)
approximates the area required to lay I out in the plane (on a chip), using the following
groundrules. The vertices of I get laid out in a row, in natural order; the hyperedges get
run as busses above the row, with vertical wires connecting each processor/vertex to the
hyperedges it belongs to. Busses and wires have unit width; vertices occupy side-s squares,
where s is large enough for the vertex to have its complement of incident edges. Busses

and wires are allowed to cross — at most two crossing at a point — but not to overlap in any
other way.

With the above representation in mind, the mapping p, can be viewed as assigning
logical processors to physical processors, while p. assigns communication links to the busses
that will realize them. The compatibility condition assures that any pair of processors that
are supposed to use a bus can both be connected to it; the one-to-one condition assures
that a hyperedge is used to realize at most one edge, modelling our assumption that each
bus is dedicated to a single link.

When discussing fault tolerance, the set W C V), are the operational processors, while
those in W — V}, have failed; one wants to realize the array G on the good processors of I.

2.3. Related Work

Aside from the motivating sources cited earlier, the research in this paper builds on the
studies of I-hypergraphs in the following papers. In [4], one finds a construction of an n-
vertex I-hypergraph in which one can embed any n-node binary tree. In [13], one finds lower
bounds of the SIZE of an I-hypergraph that contains the complete graph K,,, even when
the notion of embedding is generalized so that the mapping g, need not be one-to-one (one
uses time-sharing to reconcile contention for the busses). In [19], families of I-hypergraphs
are presented, that are optimal in the sense of being able to simulate all other hypergraphs
efficiently. In [16, 17, 6], our strong universality problem was first enunciated; S1ZE-optimal
strongly universal I-hypergraphs were presented for any finite family of path-graphs or of
binary trees. Indeed, Section 4 of the present paper extends to families of arbitrary graphs
the ideas and techniques of the last three cited papers.

3. BASIC PROPERTIES OF I-HYPERGRAPHS

We present in this section a number of basic properties of I-hypergraphs. Either the prop-
erties or their proofs will establish connections between I-hypergraphs and other structures
that are better known.

3.1. Recognizing I-Hypergraphs

Our first result considers the problem of recognizing when a given hypergraph is an I-
hypergraph. The proof of the result indicates an indirect connection between I-hypergraphs
and interval graphs (i.e., intersection graphs of finite intervals on the real line), since both
can be characterized in terms of an incidence matrix with the consecutive ones property.

Proposition 1 Given a hypergraph H, one can decide in time proportional to
|H|+ SIZE(H)

whether or not H is (isomorphic to) an interval hypergraph.

Proof. Let H have h hyperedges. Consider the |H| x h (0,1)-valued incidence matriz for
H, whose rows represent the vertices of H, whose columns represent the hyperedges of H,
and whose (1, 7)-th entry is 1 just when vertex 1 belongs to hyperedge 7. One verifies easily
that H is isomorphic to an interval hypergraph if, and only if, the rows of its incidence
matrix can be permuted in such a way that all of the 1’s in each column are consecutive.
Booth and Lueker [5] present an algorithm that tests a (0,1)-valued matrix for this so-called
conseculive ones property in time proportional to the sum of the number of rows (which is
|H|) and the number of 1’s (which is SIZE(H)), when the matrix is presented as a list of
columns, with each column presented by a list of its 1-entries. O

3.2. Interval Graphs and Interval Hypergraphs

The proof of Proposition 1 has introduced the basic tool needed to expose the relationship
between interval hypergraphs and their better-known relatives, interval graphs.

An interval graph is a graph G whose vertices can be put in one-to-one correspondence
with intervals of the real line in such a way that vertices u and v are adjacent in G just
when their corresponding intervals intersect.

Fulkerson and Gross [8] present a characterization of interval graphs in terms of a class
of (0,1)-valued matrices. A clique in a graph G is a maximal set of mutually adjacent
vertices. Given a graph G with ¢ cliques, define the clique vs. vertez incidence matriz of G
to be the ¢ x |G| (0,1)-valued matrix whose rows represent the cliques of G, whose columns
represent the vertices of G, and whose (i, 7)-th entry is 1 just when vertex j belongs to
clique ¢. Fulkerson and Gross establish the following.

Lemma 1 (8] A graph is an interval graph if, and only if, its clique vs. vertez incidence
matriz has the consecutive ones property.

Thus, in some sense, the vertices of interval hypergraphs correspond to the cliques of
interval graphs, while the hyperedges of interval hypergraphs correspond to the vertices of
interval graphs. This correspondence can be made tight in one direction. Given a graph G,
construct the hypergraph H(G) as follows.

o For each clique « of G, add a unique vertex v(k) to H(G); every vertex of H(G) arises
in this way.

e For each vertex v of G, add a unique hyperedge to H(G) containing every vertex v(k)
of H(G) for which the clique x of G contains vertex v of G.

Proposition 2 For any graph G, the clique vs. vertez incidence matriz of G s identical to
the incidence matriz of the hypergraph H (G). Hence, in particular, G is an interval graph
if, and only if, H(G) is an interval hypergraph.

Thus, every interval hypergraph can be viewed as coming from an interval graph, and
every interval graph spawns an interval hypergraph.

One can prove a weak converse of Proposition 2, showing how certain interval hyper-
graphs spawn interval graphs.

Given a hypergraph H, construct the graph G(H) as follows.

o For each hyperedge n of H, there is a unique vertex v(n) of G(H); every vertex of
G(H) arises in this way.

¢ Two vertices v(n;) and v(n2) of G(H) are adjacent just when the hyperedges 5; and
n2 of H have nonempty intersection.

Say that the hypergraph H has the vertez isolation property if every vertex of H is the
unique common element of some subset of the hyperedges of H.

Proposition 3 For any hypergraph H having the vertez isolation property, the incidence
matriz of H s identical to the clique vs. vertez incidence matriz of G(H). Hence, in
particular, G(H) is an interval graph if, and only if, H is an interval hypergraph.

The straightforward proofs of Propositions 2 and 3 are left to the reader.

3.3. Finding Small I-Hypergraphs

If the hypergraph H is not (isomorphic to) an I-hypergraph, one might wish to find the
smallest I-hypergraph that contains H. Our next result indicates that finding this small
I-hypergraph is likely to be computationally intractable, even when H is a graph. This
demonstration exposes a connection between I-hypergraphs and the Optimal Linear Ar-
rangement Problem for graphs.

Proposition 4 The following problem is NP-complete: Given a graph G and an integer
S, to decide whether or not there exists an I-hypergraph of SIZE S that contains G. The
problem s solvable in polynomial time when G 1is a tree.

Proof. The result will follow from a demonstration that our Smallest Containing I-Hypergraph
Problem (SCIH) is equivalent to the Optimal Linear Arrangement Problem for graphs [10]

(OLA), in the sense that each problem is reducible to the other in polynomial time?. The
reducibility of OLA to SCIH establishes the result for arbitrary graphs [10]; the reducibil-
ity of SCIH to OLA establishes the result for trees [18]. OLA is defined as follows.

OLA: Given a graph G = (V, E) and an integer B, to decide whether or not there exists
an injection A : V' — {1,2,--- |G|} for which

> IA(8) - A(v)| < B.

(u,v)EE

The bases for our claimed reducibilities are the following correspondences. For any graph
G = (V, E) and injection A : V — {1,2,--+,|G|}, G is embeddable, via the vertex-injection
By = A, in the I-hypergraph I, that has vertex-set {1,2,---,|G|} and that has a hyperedge

{’\(u)) A(u) +1,.-, ’\(v)}

for each edge (u,v) € E; in the embedding, p. maps the edge (u,v) to this hyperedge. The
hypergraph I, is easily seen to have SIZE

1B+ > [Au) = A(v)|.
(uv)EE

Conversely, let the graph G = (V, E) be embedded in the I-hypergraph I = (V}, E}) via the
injections uy and pe. Then the injection A = p, has

Y IMu) - A(v)| € SIZE(I) - |E|,
(u,v)EE

since for each edge (u,v), [A(v) — A(v)| < |pe(u,v)| — 1. The constructions outlined here
can obviously be effected in polynomial time.

These correspondences demonstrate that the graph G = (V, E) admits a linearization
with OLA-cost B if, and only if, G is embeddable in an I-hypergraph of size B + |E|. It
follows that the problems OLA and SCIH can each be efficiently reduced one to the other.
a

3.4. Deciding Embeddability

Lacking the ability to determine efficiently how small an I-hypergraph the graph G can
be embedded in, one might want at least to determine if G can be embedded in a given
I-hypergraph I. We now show that this problem, too, is likely to be computationally
intractable. This result illustrates a connection between I-hypergraphs and the Bandwidth
Minimzization Problem for graphs.

4Since all of the reductions we present in this section are “in polynomial time”, we shall henceforth leave
the phrase to be understood implicitly.

Proposition 5 The following problem is NP-complete: Given a graph G and an I-hypergraph
I, to decide whether or not there exists an embedding of G in I. The problem remains NP-
complete even when G 1s a binary tree.

Proof. The result will follow from a demonstration that the Bandwidth Minimization Prob-
lem for graphs (BMP) is reducible to our I-Hypergraph Embeddability Problem (IHEP).
This reducibility establishes the result for arbitrary graphs because of [13], and for trees
because of [9]. BMP is defined as follows.

BMP: Given a graph G = (V, E) and an integer B < |G|,% to decide whether or not there
exists an injection A : V — {1,2,---,|G|} for which

(ﬂgEI/\(u) - A(v)| < B.

The base for our claimed reducibility is the following correspondence. For any graph
G = (V, E) and integer B, construct the I-hypergraph I p that has vertex-set {1,2, -, |G|}

and that has, for each 1 <{ < |G| - B + 1, min ((g) ,|E|) copies of the hyperedge

(i,§+1,--,i+ B—1}.

One verifies easily that the hypergraph I¢ p can be constructed in time polynomial in the
size of the description of G and B, since

SIZE(Ig) < |G|* - min ((123) ,|E|) <|G|L

To establish the reduction, assume first that the graph G admits a layout A for which

(JOBX |A(w) — A(v)] < B.

Then G is embeddable in Ig p: The vertex-injection is py = A; the edge-injection is defined
by: pe(u,v) is an arbitrary one of the hyperedges of the form

{A(u),M(u)+1,--,A(u) + B-1}.

(We have endowed Ig g with ample copies of the hyperedge to guarantee that we can
construct the injection u,.) Conversely, say that G is embeddable in Ig p via the injections
4y and p.. Then the layout A = u, has

|A(#) = A(¥)] < |pe(u,v)| = B
for each edge (u,v) of G, so G has bandwidth no greater than B. The result follows. O

®The inequality “B < |G|” is not usually included in the definition of BMP, but when it does not hold,
the decision problem trivializes.

10

3.5. Deciding 2-Colorability

A hypergraph H is 2-colorable if there is a way to assign one of two distinct colors to each
vertex in H in such a way that no hyperedge of H remains monochromatic. Lovasz [12] has
shown that the problem of deciding, given an arbitrary hypergraph H, whether or not H is
2-colorable is NP-complete. When H is a graph, the same question is easily decided in time
O(lV| + | E|), for a graph is 2-colorable if and only if it is bipartite. Deciding 2-colorability
of I-hypergraphs is even easier, as the following observation verifies.

Proposition 6 Every I-hypergraph is 2-colorable.

Proof. Since every hyperedge of an I-hypergraph contains at least two vertices, and since the
vertices of each hyperedge are “contiguous”, one can 2-color an I-hypergraph by assigning
one color to its odd-numbered vertices and another color to its even-numbered vertices. O

3.6. Deciding Connectivity and Path-Connectivity

An n-vertex hypergraph H is connected (resp., path-connected) if H contains an n-vertex
tree (resp., the n-vertex path-graph P,). The problem of deciding Whether or not a given
general hypergraph is path-connected is NP-complete, since it subsumes the problem of
testing a graph for the existence of a hamiltonian path. In contrast, one can test a given
L-hypergraph for path-connectivity via a straightforward efficient algorithm, because an I-
hypergraph contains a spanning path-graph if, and only if, the path-graph is embeddable
in the “natural” way. Moreover, again in contrast to arbitrary hypergraphs (or graphs,
for that matter), an I-hypergraph is connected if, and only if, it is path-connected. We
approach our decision algorithm via the following chain of lemmas.

Lemma 2 Let the n-vertez tree T be embedded in the plane, with its vertices in a row, in
the order
V1,02, *, Upn.

Then: for each 1 < k < n, at least k edges of T have one vertex in the set {vy, vz, -+, v};
at least one of these edges must also have a vertex in the set {vit1, Vkt2, -+, Un}. Perforce,
the same 1s true for the path-graph P,, since it is an n-vertez tree.

Proof. Let us count the edges of T' that contain® a vertex in the set Vi =g¢r {v1,v2,++, v2}.
Say that Vi contains [connected components Cy,Cs,...,C; of T, of sizes s, s3,...,s,
respectively. By dint of its being connected, each component C; must contain both vertices
of at least s; — 1 edges of T'. Since T is connected, each of these components must also
contain at least one vertex belonging to an edge whose other vertex resides in the set
{Vk+1,Vk+2,*+,vn}. The result now follows by counting. O

SThis terminology is justified by our defining an edge as a two-element set.

11

Lemma 3 Let the n-vertex I-hypergraph I contain an n-vertez tree T. Then, for each 1 <
k < n, at least k hyperedges of I have their smallest numbered vertez in the set {1,2,.--,k};
at least one hyperedge has its highest numbered vertez in the set {k+1,k+2,---,n}. Perforce,
the same 1s true if I contains the path-graph P, stnce it is an n-vertez tree.

Proof. Any embedding of T in I induces a layout of T in the plane with the vertices lying
in a row; just let each v; = u;!(¢). Since each hyperedge of I realizes just one edge of T,
the result is immediate from Lemma 2. O

Lemma 4 If the n-vertez I-hypergraph I contains an n-vertez tree (perforce, if it contains
the path-graph P,), then I contains the path-graph P, embedded via the vertez-injection
kv : Vp, =V} defined by

pe(t) =1
for1<i<n.

Proof. 1t follows by an induction based on Lemma 3 that the following greedy algorithm
specifies a valid edge-injection u. : Edges(P,) — Hyperedges(I) to complement the injec-
tion py defined in the statement of the Lemma.

Proceed along the row of vertices from left to right. For each vertex ¢, assign edge (f,f+1)
to any hyperedge of I that

e contains vertices { and ¢ + 1
¢ has not yet been used

¢ has minimal largest element among hyperedges that have not yet been used

Details are left to the reader. O

Proposition 7 Given an I-hypergraph I of SIZE s = SIZE(I), one can determine in time
O(s - log s) whether or not I is connected or, equivalently, path-connected.

Proof. Let I have h hyperedges. Say that I is presented via the A x 2 matrix M; that
associates with each hyperedge of I its minimum and its maximum element: this matrix
is clearly obtained from the incidence matrix of I in time linear in SIZE(I). Reorder the
columns of M so that the hyperedges of I are ordered by increasing minimum element and,
among hyperedges with the same minimum element, by increasing maximum element. This
reordering requires at most time O(H (h)), which is obviously O(H(SIZE(I))). Once M; is
so rearranged, it is a simple matter to implement the algorithm of Lemma 4 in time linear
in SIZE(I). O

12

3.7. Finding a “Good” I-Hypergraph

Finally, we indicate how to construct a small I-hypergraph that contains a given graph G,
based on a separator for G. This construction yields one more connection between the

problem of embedding graphs in I-hypergraphs and the general problem of finding collinear
layouts of graphs.

Proposition 8 Let the graph G have an a-separator of size S(n) for some 1/2 < a < 1.
Then G is embeddable in an I-hypergraph I(G) of SIZE at most

e
" (> S(a'lcn) |

=0

where A(|G|) = logy/4(IG1).

Proof. We employ a strategy derived from [15]. Given a graph G, we construct I (G) and
the embedding-injections u, and p. as follows.

The I-hypergraph I(G) has vertex-set {1,2,---,|G|}. To specify the injection gy, con-
struct an S(n)-decomposition tree for G, as described in Section 2. Place the vertices of G
in a row in the order they occur as leaves of the decomposition tree. This ordering implic-
itly specifies uy; it also implicitly lays out, in contiguous blocks, the vertices of all of the
subgraphs of G that occur in the decomposition tree.

We now specify the hyperedges of I(G) and the injection p.. For each of the (at most
S(|G])) edges that interconnect the two subgraphs G; and G; of G, at level-1 of the decom-
position tree, give H(G) a hyperedge {1,2,:-+,|G|}; let ue associate each connecting edge
with a unique one of these hyperedges. Next: For each of the (at most S(a|G|)) edges that
interconnect the subgraphs G1; and Gz of G, at level-2 of the decomposition tree, give I(G)
the hyperedge {1,2,---,|G,|}, and let u. associate each connecting edge with a unique one
of these hyperedges; similarly, for each of the (at most S(a|G|)) edges that interconnect the
subgraphs G3; and G3; of G, at level-2 of the decomposition tree, give I(G) the hyperedge
{IG1] + 1,|G4| + 2,--+,|G|}, and let pe associate each connecting edge with a unique one
of these hyperedges. We continue in the indicated fashion to add hyperedges to H(G) for
“routing” the interconnections among the subgraphs of G in the decomposition tree, using
at most S(a*|G|) copies of each hyperedge for the 25~! pairs of subgraphs at level-k of
the tree. Once having completed this construction, we shall have constructed I(G) and
embedded G in it. It is clear from the construction that SIZE(I(G)) is bounded as claimed
in the statement of the Proposition. O

4. STRONGLY UNIVERSAL I-HYPERGRAPHS

We turn now to the main result of this paper. Throughout this section, assume that we
have been given the desired family of graphs T', where the largest graph in T has m vertices.

13

For convenience, say that m = 2 is a power of 2. Let I have an a-separator of size S (n)
for some 1/2< a < 1.

Theorem 1 Let the family of graphs T, as described above, be given. There is a strongly
universal I-hypergraph I(T') for T of size

r —kfloga
SIZE(I(T)) =m - (Z zg s(a‘z")) : (1)
=1 =0

The remainder of the section is devoted to proving Theorem 1, i.e., describing I(I') and
verifying that it is indeed strongly universal for T'.

Remark. In order to reconcile Equation (1) with the expression in the Abstract,
recall that —k/loga = log) /q 2k,

4.1. The Construction of I(I') and the Embedding Procedure

Let the vertices of I(T') be the set V,,, = {1,2,:--,m}. We give I(T') the following hyper-
edges: fork=1,2,---,rand a =0,1,2,---,2""% — 1, we create Z::o/l"” S(a'2¥) copies of
the hyperedge

{a2* +1,a2% +2,.-- (a +1)2%}.

It is clear that the I(I') just constructed has size

SIZE((T)) =m- (i -%"S(a‘z")) :

k=1 =0
as claimed in the Theorem.

Although formal validation of I(T') will wait for the next subsection, we indicate infor-
mally how the graphs in ' are embedded in arbitrary vertex-subsets of I(I'). Say that we
are told that the p vertices

V1,02, Yp

(each v; € {1,2,---,m}) of I(T') are the available ones and that we are to realize the (< p)-
vertex graph G € T' on these vertices. We begin the embedding process by constructing a
S (n)-decomposition tree for G. We then lay out the vertices of G on the available vertices
of I(T), in the order in which the vertices occur as leaves of the S(n)-decomposition tree.
(If G has fewer than p vertices, we arbitrarily choose |G| of the available vertices for G’s
vertices.) Thus we have the vertex-injection u,. In order to specify the edge-injection u., we
associate with edge (u,v) of G any as-yet unused smallest hyperedge of I(I') that contains

both py(u) and py(v).

14

4.2. The Construction Validated

We now validate the construction and embedding process of the previous subsection. Our

validation uses a new graph-theoretic notion motivated by the stringent demands of strong
universality.

Strong Separation Profiles. Our interval hypergraphs I(I') decompose naturally by bisec-
tion. Removing the largest hyperedges decomposes I(I') into two copies of the I-hypergraph
that we would construct if all graphs of size > m/2 were removed from T, and so on. When
a graph G is embedded in I(T'), it is not clear how this bisection will dissect G, for that
depends on which vertices of I(T') are declared available for the embedding. Our guarantee
that G can be embedded no matter which vertices of I(T') are available thus leads naturally
to the following notion.

Assume throughout that n (the number of vertices in I(T')) is a power of 2. Let G be a
graph with n or fewer vertices, and let { be any integer > logn. The I/-tuple of nonnegative
integers

(Cl, €l-1,"*", 81)

is a strong separation profile (an SSP, for short) for G, if the following property holds.

The SSP Property: Given any integer n; such that both n; and |G| — n; are
< n/2: By removing at most ¢; edges from G, one can partition G into sub-
graphs Gy having n; vertices and G, having |G| — n; vertices, each of which has
(e1—1,€1-2, -, €1) as an SSP. This recursive decomposition of G continues until
we get down to subgraphs of G having at most one vertex.

Note that one can view each candidate decomposition of G (corresponding to the different
choices for n;) in terms of an (e, €;_1, +, e1)-decomposition tree for G: the tree’s root is
G, with sons G; and G3, and so on, just as with the S(n)-decomposition trees of the earlier
sections.

The “strong” in the term SSP is intended to contrast with the notion of a-SP, wherein
one seeks a “small cut” partition for just the case |(1 — a)|G|] < ny < [a|G|], rather than
for all values of n;, 1 < n; < n/2.

The relevance of the notion of SSP resides in the following result.

Lemma 5 Given any l-tuple of nonnegative integers
7= (er,€1-1, ", €1)

one can construct an (m = 2')-vertex I-hypergraph I(m) of size

SIZE(I(m))=m- i e
i=1

15

that is strongly universal for the family I(r), where T(r) comprises all graphs having the
tuple T as an SSP.

Proof.
The I-Hypergraph I(m)

To construct I(m), we create the following hyperedges from the vertex-set V,,, = {1,2,---,m}.
For k=1,---,land a =0,1,2,--+,2"~% _ 1, we create ¢, copies of the hyperedge

{a2% + 1,025+ 2,-.. (a +1)2%}).

It is clear that I(m), so constructed, has the claimed SIZE.
The Embedding Procedure

Say that we are told that the p vertices
V1,2, ", Y

(each v; € {1,2,--+,m}) of I(m) are available and that we are to embed the (< p)-vertex
graph G € I'(7) on these vertices. The essence of the embedding process is the construction
of an (e;, €1, -+, e1)-decomposition tree for G. We begin by choosing some |G| of the
available vertices of I(m) upon which to place the vertices of G; these vertices can be
chosen in any way whatsoever. This choice then determines the parameter n, which is the
size of one of the two graphs we shall partition G into: Specifically,

n1 =gt |{v; : v; < 271}

i.e., n; is the number of selected available vertices that reside to the left of the midpoint
m/2 of I(m). By definition of SSP, G can be partitioned into a subgraph of size n; and
one of size |G| — n; by removing no more than ¢; edges from G. These edges can thus
be embedded in the ¢; size-m hyperedges of I(m), no matter which vertices of I(m) their
endpoints are placed on. By definition of SSP, we may assume that each of the two resulting
subgraphs has an SSP
(e1-1,€1-2," ", €1).

We thus find ourselves with two half-size versions of our original problem: By removing the
e large hyperedges from I(m), we are left with two copies of I(m/2) in which to embed the
two subgraphs of G, each by definition having no more than 2!~1 vertices. We leave to the
reader the easy details of inductively validating this recursive embedding process (which
can be viewed as building an (e;,¢;_y, -, 1)-decomposition tree for G). O

Determining SSPs for arbitrary graphs is not a trivial pursuit. However, one can, with
little difficulty, discover profiles for certain familiar graphs. For instance, every (< n)-vertex
binary tree has an SSP of the form

(lOg n, log(n/2)7) 1)

16

80 €x—1 = € — 1; similarly, every (< n)-vertex rectangular mesh has an SSP of the form
(\/E)\/'_l/\/i:\/;i/za'”rl)

80 ep_1 = e/ V2.7 The following Lemma helps one discover SSPs; and it combines with
Lemma 5 to complete the proof of Theorem 1.

Lemma 6 Let T be a family of graphs having an a-separator of size S (n). For every integer
r, every graph G € T' with |G| < 2" has an SSP

(en €r—1,""", el)y
where each
—k/loga
e = Z S(a’2k).
1=0

Proof. The proof builds on the technique used in the proof of Proposition 8 for laying out
(within the groundrules of Section 2.2) any given G € T'; therefore, we shall be very sketchy
here. Note that the layout here (in contrast to that in Proposition 8) is purely a technical
device and should not be construed as an embedding of G in an I-hypergraph, despite the
formal similarity.

Construct an S(n)-decomposition tree for G, and place the vertices of G in a row in the
order they occur as leaves of the decomposition tree. Run S(|G|) routing tracks above the
vertices, in which to route the edges that interconnect the two subgraphs G; and G of G at
level-1 of the decomposition tree. These routing tracks can be viewed as rows in the plane
that are reserved for “drawing” the edges of G; thus every edge of G ends up being drawn
as two vertical line segments from its terminal vertices to the associated routing track, plus
a horizontal line segment (in the routing track) joining the two vertical segments. Then run
S(a|G|) routing tracks over the vertices of Gy and the same number of routing tracks over
the vertices of G3. Continue in the indicated fashion to run routing tracks for routing the
edges among the subgraphs of G in the decomposition tree, using S(a*|G|) routing tracks
for the 2¥~1 pairs of subgraphs at level-k of the tree. The reader will note that we have
constructed here a layout of G that uniformly has

IOEI/QIGI)
W= Z S('|G|)

i=0

routing tracks above every vertex. It follows that, given any integer n < |G|, G can be
partitioned into a subgraph of size n and one of size |G| — n by removing (or “cutting”) at
most W edges. In particular, such a partition is possible for any n such that both n and
|G| —nare <271 O

Lemmas 5 and 6 combine to establish Theorem 1.

"The cited SSPs for trees and meshes can be derived by considering the sizes of “perimeters” of regions
within the graphs.

17

4.3. The Issue of Optimality

There are many families of graphs for which our strongly universal I-hypergraphs are within
a constant factor of optimal in SIZE. We cite two major examples.

Let us restrict attention to honest separation functions for families T, i.e., separator
functions S(n) that truly reflect the difficulty of cutting the member graphs into pieces, in
the sense that ©(S(n)) edges are necessary, as well as sufficient, to partition an n-vertex
graph in T into two subgraphs of appropriate sizes.

Binary Trees. It is shown in [6] that any I-hypergraph that is strongly universal for
the family of binary trees (which admits the honest (2/3)-separator function S(n) = 1)
has SIZE Q(n - log? n), which is within a constant factor of the SIZE of the I-hypergraph
produced by the construction in the proof of Theorem 1.

Algebraic Separators. Let the family I' have an honest a-separator of size S(n) = n® for
some constant §. The double summation (1) in Theorem 1 becomes a double geometric sum,
8o the construction in the proof of the Theorem yields an I-hypergraph of SIZE O(n'*%).
On the other hand, invoking the honesty of S(n), we can invoke the bounding techniques of
[15] to show that any I-hypergraph that is strongly universal for I' must have SIZE Q(nl*d);
indeed any collinear layout of the graphs in I' must occupy this much area, so in this case,
there is at most constant factor overhead for the fault tolerance afforded by the strong
universality of the I-hypergraphs we produce.

4.4. A Remaining Challenge

In [17], we studied the strong universality problem for the family II,, of path-graphs con-
taining at most n vertices. We were able to show there that one could sometimes produce
“strongly universal” I-hypergraphs of smaller SIZE, if one moderated one’s demands on
strong universality so that one was guaranteed to be able to embed a given G from the
target graph family I' (I, in that paper) only with very high probability. Specifically, the
following results appear in that paper.

Proposition 9 [17]

(a) For all n, there exists an n-vertez I-hypergraph I, of SIZE O(n - logn) that is strongly
untversal for the family I1,,.

(b) Any n-vertez I-hypergraph that is strongly universal for the family Il,, must have SIZE
(n - logn).

Now, let us change the game somewhat by assuming that when we “kill” vertices of
the I-hypergraphs in question (i.e., make them unavailable), we do so independently, with
probability 1/2. We can now consider the situation where an I-hypergraph is strongly
universal with some given probability (which depends on the probabilities of certain patterns
of “kills”). The following result concerns such a scenario.

18

Proposition 10 [17]

(a).For all n, there exists an n-vertez I-hypergraph J, of SIZE O(n-log log n) that is strongly
universal for the family I, with probability

_ 1
2n-logn’

(b) For n > 4, any n-vertez I-hypergraph that is strongly universal for the family I1,, with
probability at least
1
 2n- logn

must have SIZE Q(n - loglogn).

In order to lend intuition to the reader, we sketch the proofs of these results very briefly.

The nonprobabilistic upper bound of Proposition 9(a) proceeds much as in the proof of
Theorem 1 in Section 4.1: Assume for simplicity that n is a power of 2. For k = 1,---,1
and a =0,1,2,---,2""% — 1, we endow I,, with one copy of the hyperedge

{a2F +1,a2% + 2, (a+1)2F}.

The proof that I, is strongly universal for I1,, consists of showing that one can always embed
any sufficiently small path-graph by associating vertices of the path-graph with available
vertices of I, in any order-preserving way, and realizing each edge of the path-graph via
the smallest hyperedge that contains the images under u, of the edge’s endpoints.

The nonprobabilistic lower bound of Proposition 9(b) proceeds by noting that, given
any n-vertex I-hypergraph I that is strongly universal for the family II,;, we must be able
to embed the 2¥*+!-vertex path-graph in I, using vertices

1L,n/2% n/2k+1,-. . n—n/2kn—n/2F+1,n

of I, for each k € {0,1,---,logn}. Each value of k thus contributes roughly n to SIZE(I),
for a total of 2(n - logn). (One must take some care in counting these contributions to
SIZE(I), since hyperedges added to satisfy the requirements of a small value of k can be
reused in satisfying the requirements of larger values of k.)

The probabilistic upper bound of Proposition 10(a) follows from a composite construc-
tion of J,. Assume as before that n is a power of 2. Partition the set {1,2,.--,n} into
contiguous blocks of length m = 2logn each. Assign hyperedges to each block to make
it a copy of I, as described above. Additionally, for each pair of adjacent blocks, add a
hyperedge that is the union of the vertices in the two blocks. One now verifies that given
any selection of available vertices of J,, one can embed a path-graph using all of those
vertices unless there are two available vertices separated by a block containing no available
vertex. However, the probability of such an occurrence is no greater than 1/(2n - logn).

19

Finally, to see the probabilistic lower bound of Proposition 10(b), partition the vertices
of any given n-vertex I-hypergraph I into contiguous blocks of m = logn + loglogn + 1
vertices each. Assume that for each block B, there is some pattern of “killed” vertices that
mabkes it impossible to embed a path-graph on all of the available vertices. The probability
that I can embed any sufficiently small path-graph cannot exceed the probability that one of
these bad patterns occurs, which the reader can easily show to be greater than 1 /(2n-logn).
As a consequence, one can show that if I successfully embeds path graphs with probability
exceeding 1 — 1/(2n - logn), then it must always work on every one of the blocks B, hence
must have SIZE at least as great as I, (by Proposition 9(b)).

Details on all four proofs are found in [17].

The Challenge: We are certain that savings analogous to those exposed in Propositions
9 and 10 are attainable with strongly universal I-hypergraphs for a large variety of graph
families other than II,,, but we have as yet been unable to generalize this phenomenon even
to binary trees. Such generalization is an inviting challenge.

ACKNOWLEDGMENT. It is a pleasure to thank Lenny Heath and Bruce Leban for a
careful reading of the manuscript.

5. REFERENCES

1. N. Alon and F.R.K. Chung (1985): Explicit constructions of linear-sized fault-tolerant
networks. Typescript, MIT.

2. J. Beck (1983): On size Ramsey number of paths, trees, and circuits, I. J. Graph Th.
7, 115-129.

3. J. Beck (1983): On size Ramsey number of paths, trees, and circuits, II. Manuscript.

4. S.N. Bhatt and C.E. Leiserson (1984): How to assemble tree machines. In Advances in
Computing Research 2, (F.P. Preparata, ed.) JAI Press, Greenwich, CT, pp.95-114.

5. K.S. Booth and G.S. Lueker (1976): Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. and Syst. Sci.
18, 335-379.

6. F.R.K. Chung and A.L. Rosenberg (1986): Minced trees, with applications to fault-
tolerant VLSI processor arrays. Math. Syst. Th. 19, 1-12.

7. J. Friedman and N. Pippenger (1986): Expanding graphs contain all small trees.
Typescript, IBM Almaden Research Center.

8. D.R. Fulkerson and O.A. Gross (1965): Incidence matrices and interval graphs. Pa-
cific J. Math. 15, 835-855.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

- M.R. Garey, R.L. Graham, D.S. Johnson, D.E. Knuth (1978): Complexity results for

bandwidth minimization. SIAM J. Appl. Math. 34, 477-495.

M.R. Garey, D.S. Johnson, L.J. Stockmeyer (1976): Some simplified NP-complete
graph problems. Theoret. Comput. Sci. 1, 237-267.

R.J. Lipton and R.E. Tarjan (1979): A separator theorem for planar graphs. SIAM
J. Appl. Math. 36, 171-189.

L. Lovasz (1973): Coverings and colorings of hypergraphs. 4th Southeast Conf. on
Combinatorics, Graph Theory, and Computing. Utilitas Mathematica Publ., Win-
nipeg, 3-12.

C.H. Papadimitriou (1976): The NP-completeness of the bandwidth minimization
problem. Computing 16, 263-270.

G.L. Peterson and Y.-H. Ting (1982): Trade-offs in VLSI for bus communication
networks. Tech. Rpt. 111, Univ. Rochester. :

A.L. Rosenberg (1981): Routing with permuters: Toward reconfigurable and fault-
tolerant networks. Tech. Rpt. CS-1981-13, Duke Univ.

A.L. Rosenberg (1984): On designing fault-tolerant VLSI processor arrays. In Ad-
vances in Computing Research 2, (F.P. Preparata, ed.) JAI Press, Greenwich, CT,
pp.181-204.

A.L. Rosenberg (1985): A hypergraph model for fault-tolerant VLSI processor arrays.
IEEE Trans. Comp., C-84, 578-584.

Y. Shiloach (1979): A minimum linear arrangement algorithm for undirected trees.
SIAM J. Comput. 8, 15-32.

Q. Stout (1986): Meshes with multiple busses. 27th IEEE Symp. on Foundations of
Computer Science, 264-273.

L.G. Valiant (1981): Universality considerations in VLSI circuits. IEEE Trans.
Comp., C-30, 135-140.

21

