Mumble-86: Design and Implementation

Marie W. Meteer
David D. McDonald
Scott D. Anderson, David Forster, Linda S. Gay
Alison K. Huettner, Penelope Sibun

COINS Technical Report 87-87

Support for this work was provided in part by the Defense Advanced Research Projects
Agency under contract number N00014-87-K0238 at the University of Massachusetts and
contract number DAAA-15-87-C0006 CDRLAOO2 at BBN Laboratories and in part by the
Rome Air Development Center contract number AF30602-81-C-0169, task number 174398
at the University of Massachusetts.

PREFACE

This document was written for all the people who have used Mumble (or tried
to use it or wanted to use it) only to discover the difficulties inherent in tackling any
large, complex system without a map. We applaud the efforts of those who have
made headway on their own and appologize for taking so long to provide the
necessary directions.

The documentation for a living program can never be considered final. While
we would like to call Mumble-86 "done", we know it will continue to evolve to
some extent as our ideas mature and comments come in from those who use the
program. We have made the documentation as close to the current version of
Mumble-86 as possible.

In exchange for the document (and the program itself) we ask for your
comments and criticisms. You can send them electronically to either or both of us:
MCDONALD@CS.UMASS.EDU, MMETEER@G.BBN.COM. Please send us any
comments or suggestions you have on the usefulness of this documentation. Use
those addresses also for bug reports and questions on the program itself. We will

also be setting up a Mumble users' group. Let us know if you would like to be on
that mailing list.

We would like to thank all of the members of the Mumble Development Group,
past and present, for their contributions over the years. Special thanks to James
Pustejovsky, whose contributions to the theory behind the program have been
immense, and also to Jeff Conklin, who provided the first outside motivations for
Mumble to speak.

Marie Meteer
David McDonald
September 29, 1987

Contents

1. INtrOQUCHION. . ccuuuueiiieirnreneeirieerereeeeeeeeeeenensesssnnceeeransseesransnnsessesnrnnes 1
1.1 Components of the generation process
1.2 What Mumble-86 expects as input
1.3 Our approach to generation
1.4 Historical overview

2.1 Overview

2.2 Mumble's input specification language
2.3 Realization

2.4 Phrases and path notation

2.5 Phrase structure execution

2.6 Attachment

2.7 Morphology and the word stream

3. Implementation

3.1 The Core Virtual machine..........cccoeereeereeeeeernvennnnecrensereeenennenens 38
3.1.1 Objects
3.3.2 Interpreters

3.2 PErIPhErY...ccccutvuieneernireriiiiniiieiiiniieneesieeeeremnsesessssecsesssssnsansnns 73

3.2.1 Type system
3.2.2 Tracker
3.2.3 Browser

4. A Walk Through an Example.........ccccccvveeiiiieiiiireeieniinneneeneeenneeeeeneenes 90
5. Managing MUumble..........ccccuiieiiiiirreeeeeeiniireeeeeeeeenessesesssseeeneeeesens 111
5.1 Directories
5.2 Loader

5.3 Delivery

6. Interfacing to MUmDIE.......cccceeiiiiiiiiiiiiiiieieeeereeeererneeieceeceeeeeeeerenenes 137
6.1 Providing an interface from an underlying program to Mumble-86
6.2 The "stand alone" interface

7. Interactive Demo Facility.......c.ccveeiirniiienirennrienerinieenereereneeesncesneennns 152

8. R O ONICES. o vuitiitieitiieiiiieteeeeeencnesncneresaseesnsesnssssencsnsnsssssssssnsnnsnnes 173

1. INTRODUCTION
Contents:

1.1 Components of the generation process
1.2 What Mumble-86 expects as input

1.3 Our approach to generation

1.4 Historical overview

This document is designed to give the reader an in description of the natural
language generation system Mumble-86. We have attempted to include sufficient
detail that one can not only understand the system, but be able to use it as a
component in a larger system.

In this introduction, we look at Mumble's place in the generation process and the
design principles that have guided our work. We also present a historical overview
of the evolution of Mumble from McDonald's early work in generation at the MIT Al
Lab, its culmination in his thesis in 1980, and the changes that have led us to retitle
the current system Mumble-86. We pay particular attention to why we have removed

much of the responsibility for selection and planning that have been present in earlier
versions.

Section Two is a detailed summary of Mumble's design, including its levels of
representation, major processes, and representation of the grammar. In Section
Three, we take a step closer to the implementation. We look at the object types and
algorithms in the virtual machine and at the supporting sub-systems for defining
types and for tracing and displaying the state of the processes. In Section Four we
present a detailed walk through of Mumble generating a sentence.

Section Five provides information about the actual program: the directory
structure, how it loads, and how to install it on your own host. In Section Six,
Interfacing to Mumble, we look at how you build an interface between an underlying
application program and Mumble. We show examples from some of our current
projects. Section Seven gives a detailed account of how to use our interactive demo
facility, which guides the user in building new input specifications for Mumble.

1.1 The components of the generation process

The question of what goes into a natural language generation system or
"generator” or of where one draws the boundaries between its components will be
answered differently depending upon who one talks to. For the purposes of this
document we will adopt the following rough breakdown into three top level
components Or processes:

Underlying program -- Developed independently of the generator per se, this
will be the expert diagnostician, cooperative database, ICAI tutor, etc. that the

human users want to talk with. Some event within this underlying program will
initiate the generation process and the determination of the goals the utterances are
to achieve is its responsibility.

Planning -- This process determines how the goals can be achieved in a given
context. This includes selecting the information to be communicated (or omitted),
determining what perspectives and rhetorical organization the information should
be given, and choosing a mapping for the information onto the linguistic

resources that the language provides (i.e. open-class words and syntactic
constructions).

Realization -- This process carries out the planner's specifications to produce an
actual text. It has the responsibility for insuring that the text is grammatical, and
will handle the bulk if not all of the syntactic and morphological decision making.

In these terms, Mumble-86 is a realization component. We also refer to it as a
“linguistic component”, reflecting the fact that all of the planners and underlying
programs that Mumble has been used with to date have concentrated on conceptual
issues and left all of the linguistic efforts to Mumble; this designation may have to
change in the coming years as the semantic and discourse level contributions of
earlier components become more significant.

1.2 What Mumble-86 expects as input

We expect any system that uses Mumble-86 as its linguistic realization
component to be able to supply the following kinds of information about each

utterance that it wants produced, using the specification language that we supply (see
Section 2.2).

(a) The units from which the utterance is to be composed. The mapping for each
unit to its intended linguistic resource will either have been already made or
will be fully defined for execution after realization has begun.

(b) The functional relationships among the units, e.g. predication, head, modifier,
given, theme, etc., that direct or constrain their organization within the text.

(c) Lexical choice. As the primary means of delimiting what information is or is
not communicated and what perspectives and connotations are presented, all
open class words are choosen by the planner.

Given that information, the following work must be done to then produce a text.
This work is done by Mumble-86:

(a) Assembly of the text from the specified pieces in a way that guarentees it will
be grammatical and express the indicated functional relationships.

(b) Maintaining all needed syntactic context and morphological specializations.

(c) Under the guidance of that structure, defining and applying contextual
constraints on realizations, e.g. the difference between "little" as a modifier
and "is little" as a predication.

We have choosen to draw the line here principally because we think that
realization (as we have construed it) is a well established and clearly delimited
component, possibly the only such component in the generation process today, given
the state of the research. As such, we feel comfortable in distributing it to other
groups in generation and related research areas without believing that we have
unduely burdened them with presumptions about the kind of representations to be
used in their underlying programs or with how planning is to be carried out.

1.3 Our approach to generation

In our approach to generation, we maintain that the way the decisions are
organized, who is in control of the decision making, and the structure of the
reference knowledge used in the decision making have an impact and the efficiency
and effectiveness of the generation system. We can summarize our approach in the
following design principles:

--Modular design with divisions based on the kind of information brought to bear
and the type of representation used.

--Multiple levels of representation with each level adding constraints and
providing context for further decisions.

--Active representations where the mapping from one level to the next is
controlled by the higher level rather than by static reference knowledge.

--Minimal units of choices carefully chosen to reflect a natural granularity.

--Predefined choice sets defining the set of possible choices annotated by the
context each may be used in.

We will not go into detail describing and justifying these principles (see
McDonald, Meteer, and Pustejovsky, 1987), however if you keep them in mind as
you read the details of our design you will see their effect. For example, our concern
form modularity is reflected in the division of the generation process into "planning"
and "realization" described in section 1.2. Multiple levels of representation is
reflected in the three explicit, active levels within Mumble: the realization
specifications, the surface structure, and the word stream. Finally, we have chosen

the phrase as a significant minimal unit and have predefined sets of phrases as the
choice sets.

1.4 Historical background

The name "Mumble" has been used with a series of natural language generation
systems starting in 1972 with McDonald's reworkings of the generator in
Winograd's Shrdlu. This can lead to confusion since the only real constant across
the different versions has been the continuity of the primary author, while the scope,
competence, and internal design have undergone immense change. In retrospect it is
clear that the better thing would have been to follow the usual practice and rename the
system with each significant revision, even though at the time the changes always
seemed incremental and evolutionary. This section will sketch the versions that
Mumble has gone through, associating them with the appropriate references and
pointing out their major characteristics.

There have been two major trends in this research. One is the gradual evolution
from an implementation based purely on "raw" Lisp code, with the discipline only
implicit in the author's mind, to one built on a precisely defined virtual machine and a
set of very high-level, task-specific languages. The first full implementation of
Mumble in 1975 consisted only of functions and global variables; Mumble-86, on

the other hand, is fully schematized and does not permit a user to use any Lisp code
at all.

The second trend is an ever increasing differentiation of representation and
mechanism within the total generation process. Mumble in 1974 was responsible for
the entire generation process including the initiating urge to speak; Mumble-86 is
intended as a narrow "realization" component only, with all of the planning and
specification of goals already established by other components acting in
coordination. The motivation here is in part just conventional design wisdom:
decreasing the number of implementation options for handling new phenomena will
simplify the programmer's effort. Its other aspect is metatheoretical, namely to
increase the viability of the design as a candidate psychological model by reducing
the power and scope of the individual processes and representations.

The original concept paper on Mumble, McDonald 1974, viewed generation as
divided into two interleaved processes of "composing" (comparable to today's "text
planning") and "realization". It included the notions of an explicit message distinct
from any data structures already formed in the underlying "reasoning” program, of
surface structure as an intermediate representation, and of incremental, left-to-right
production.

The first implementation took place in 1975, using ad-hoc single examples drawn
from various reasoning systems that were being developed in the MIT A.L Lab at the
same time. Over sucessive years it underwent piecewise improvements as parts of
the process became sufficiently well understood to be replaced with specifically
designed schematic languages and their interpreters. Interesting papers from this
period include McDonald 1975, 1978a, and 1978b.

This period of Mumble's development culminated a paragraph-length,
linguistically sophisticated example of a fluently expressed natural deduction proof
(the "barber" paradox) represented in the predicate calculus. (This is the example
written up in McDonald 1983, though the work was done in 1977 and in part
appears in 1978a.) At this stage in the design an already existing data structure (e.g.
the proof) would be passed directly to Mumble as its input, and a custom set of
"dictionary entries" would recursively work their way through the structure deciding
what phrasings to use in realizing its elements.

After this milestone, a major part of the work was the clarification of the interface
between the representational system of the underlying program and the dictionary
entries that had been developed for it. This led to interfaces to the representations
KL-ONE, OWL, FRL, the predicate calculus, and simple semantic networks. The
first consideration of how Mumble might be applied as a psycholinguistic model of
language production also occurred in this period; many of the ideas were ultimately
published in McDonald 1984.

McDonald's Ph.D. thesis (1980, unpublished) was the formalization of this
"1979" version of Mumble as a set of abstract data types (the present "type" system,
see section 3.2.1), along with a presentation of the syntactic analyses used and the
rationales behind their formulation. The 1983 paper is a good summary of the
philosophy of generator design that was espoused in that period. The key element is
the centrality of the surface structure of the utterance being produced: it is
simultaneously the output representation of the realization process and the control
structure directing that process' overall operation.

After 1980 the program was completely rewritten to reflect the new, schematic
design. The next significant event was Jeff Conklin's Ph.D. work (Conklin, 1983),
in which he developed the text planner "Genaro" for the task of describing picture of
houses as analyzed by the UMass Visions system. Conklin used a simple threshold-
based algorithm to select objects and relations for inclusion in the text, reacting to the
relative salience of the items in the picture (Conklin et al., 1983, McDonald &
Conklin 1982). Genaro was the first independent text planning system to be
combined with Mumble, and it occasioned a general re-thinking of the proper place
of a "linguistic component” like Mumble within the generation process.

During this period the idea of powerful, customized "dictionary entries" was
abandoned as unable to capture the generalizations that were becoming apparent (cf.
McDonald 1981). The entries had amounted to a piecemeal text planning system
embedded as part of Mumble, and it became clear that such efforts were better
organized in terms of their own level(s) and representation(s), rather than forced into
the surface structure directed control regime of Mumble. Their niche in the design
was taken over in 1983 by "realization classes" (section 2.3.1), which are a much
more restricted and linguistically oriented device.

This change started the present move towards a far more restricted and
differentiated design. Narrowing the kind of information that could influence a
decision within Mumble has had the beneficial effect of making the system easier to
understand and to use; at the same time, it has ment that Mumble per se -- the code
that we distribute under that name -- has much less competence within its scope than
it once had: We could not, for example, replicate the production of the "barber
proof” (McDonald, 1978a) by just passing lines of predicate calculus directly as
input to Mumble; instead, today there would have to be a text planner developed to
do much of the work that had formerly been Mumble's responsibility (e.g. choice of
wording, organization as a discourse, judgements of what information to include or
leave out).

Building on the new view of how a grammar was organized that the realization
classes provided, McDonald and Pustejovsky developed an initial theory of the
"attachment” process during the course of 1984. (See section 2.6.) The notion of
attachment arose from very early work with Mumble on viewing some raising verbs
as functionally equivalent to hedging adverbs (e.g. "seems", "almost"), and from our
exposure to Tree Adjoining Grammar (Joshi 1983, 1987). The issues and our
treatment are discussed in McDonald & Pustejovsky 1985b and 1985c.

The addition of attachment to Mumble removed an earlier requirement that the
structure of the final text precisely mirror the compositional structure of the input
message. Given this flexibility, we proceeded to explore the possibilities of
capturing some of the surface conventions of prose style by controlling what
attachment alternatives were choosen as a text was assembled (McDonald &
Pustejovsky 1985a). It was possible to define sets of a priori preferences (e.g.
prefering to add a relative clause rather than start a new sentence) that were sensitive
to a surface description of the utterance's form so far. Ultimately, however, we
were dissatisfied with the complexity of the design and its lack of any deeper criteria
for text form, and we eliminated the "style" facility from Mumble when we made the
revisions that led to Mumble-86 and removed the "history-keeping" facilities that
were at that point not being put to any other purpose.

The version of Mumble of 1984/85 was distributed to several sites, notably the
University of Pennsylvana and Stuttgart University. At Penn it was integrated into a
number of ongoing knowledge-based system projects, and was used as an alternative
to the original realization component in McKeown's TEXT system (Rubinoff 1986).

By the fall of 1985 it had become apparent that we knew enough about what
kinds of actions linguistic realization really needed to consider dropping from
Mumble any ability to use arbitrary Lisp code directly in the rules -- a capacity that
had been central to the earlier, "1980", design as a natural part of its data-directed
control structure. Our new design of course kept the data-directed control structure
(a central tenant of our whole approach), but now we were prepared to provide an
exhaustive list of the operations that the grammar writer could have available, in

effect the instruction set of a virtual machine. This new design became the "Mumble-
86" that this paper documents.

Between the fall of 1985 and the summer of 1987 the code for Mumble was
entirely rewritten from the ground up by Marie Meteer, David McDonald, and Scott
Anderson. In the course of this work a careful examination was made of all of the
computational devices within the system and of how they were intended to be used.
A great many simplifications were made, and the formalization "pushed back" one
step from the surface structure to give a strick definition to what we now call the
"message level" (McDonald & Meteer 1987). The new representational device that
typifies this level is the "bundle specification” (section 2.2.2). Its original purpose
was to impose functional and structural constraints on the attachment process; it has
become a versatile facility for recording the intentions of a text planner.

As a virtual machine for linguistic realization, we consider Mumble-86 to be
essentially completed as a research project. Certainly there are many extensions yet
to be made to its grammar, and no doubt minor changes will be made from time to
time to facilitate its use as a programming system. We do not expect, however, that
these will necessitate any serious changes to the virtual machine proper. At this
point, any factors that might influence us to make any serious changes would have to
come from a deeper understanding of the nature of the internal representations that
support the cognitive states that supply the information content that texts convey, and
of the nature of intentions and goals and of how they are translated into actions
within the generation process. This is where much of our new work is directed.

2. DESIGN

Contents:

2.1 Overview
2.1.1 Mumble's input
2.1.2 Mumble's internal representations and control structure
2.2 Mumble's input specification language
2.2.1 Kernel specifications
2.2.2 Bundles and their accessories
2.3 Realization
2.3.1 Realization classes
2.3.2 Realizing kernel specifications
2.3.3 Realizing bundle specifications
2.4 Path notation and phrases
2.4.1 Position path notation
2.4.2 Phrases
2.5 Phrase structure execution
2.5.1 The traversal algorithm
2.6 Attachment
2.6.1 Attachment points
2.6.2 Attachment classes
2.6.3 The attachment process
2.7 Morphology and the word stream
2.7.1 Morphology

2.1 OVERVIEW

MUMBLE is a linguistic realization component for natural language generation.
It assumes that earlier components have determined the compositional structure of the
utterance, the functional relations between the units, and choice of lexical heads.
MUMBLE handles the constraints on realization (e.g. choosing between "the forces
are attacking", "which are attacking”, and "attacking" depending on whether a full
clause, postmodifier, or premodifier is required), the assembly of all syntactic and
morphological structures, and the maintenance of linguistic context.

2.1.1 Mumble's input

The input to Mumble is an explicit level of representation called the message
level . It specifies what is to be said and constrains how it is to be said. The
message level is made up of realization specifications written in Mumble's input
specification language. Its minimal units are kernel specifications. Kernels are
expressible as simple phrases in English (roughly equivalent to elementary trees in a
Tree Adjoining Grammar). They have two main parts:

1) arealization function, which defines the possible surface forms of the phrase;
2) alist of arguments, which are themselves realization specifications;

Kernels compose into larger units, called bundle specifications. Bundles allow
a planner to group information which can then be treated as a single unit and to

express explicitly the relations among the units grouped. Bundles have three main
parts:

1) the head is either a kernel or a bundle; it is realized first, as an "initial tree"
into which other specifications are attached;

2) further-specifications have two parts, a specification (either a kernel or a
bundle), which builds an "auxiliary tree", and an attachment function, which

constrains where the new tree may be attached to the surface structure already
built;

3) accessories contain information about syntactic details that are specific to
natural language, such as tense, number, etc.

Different bundle types (e.g. GENERAL-CLAUSE, GENERAL-NP, DISCOURSE-
UNIT, CONJUNCTION) have different drivers (the procedure used to process the
bundle) and different accessories associated with them. For example GENERAL-
CLAUSE has associated accessories TENSE-MODAL and QUESTION, whereas
GENERAL-NP has accessories NUMBER and GENDER.

Figure 2.1 shows an example of the message level representation in the notation
of our stand-alone interface for "Fluffy is chasing little mice in the basement"!:

I This example has been altered to make some points clearer: for a complete running example, see Figure 2.4 in
Section 2.2 and Figure 7.1 in Section 7.

(general-clause
:head (:realization-function CHASE/S-V-O-two-explicit-args
rarguments (#<fluffy> #<little-mouses>))
:accessories (:tense-modal present :progressive)
:further-specifications

((:attachment-function clausal-adjunct
:specifiation (location *self* #<basement>)

FIGURE 2.1

(Note: #<...> are abbreviations for objects in the underlying model of the
applications program. In an actual input specification, they would be embedded
message specifications. *self* stands for the entire bundle in which it appears.)

2.1.2 Mumble's internal representations and control structure

An underlying principle in Mumble's design is the use of multiple levels of
explicit, executable representations and narrowly defined processes to map from one
level to the other. There are two levels within Mumble in addition to the input
specification and the output text: the surface structure and the word stream. These
levels and the processes mapping between them are shown in figure 2.

MESSAGE

Realization
Attachment

SURFACE STRUCTURE

Phrase structure
execution

WORD STREAM
Morphology L

TEXT

FIGURE 2.2

The processes realization and attachment transform the message level input to the
intermediate representation, the surface structure. As a kernel specification is

10

realized, a particular phrase is chosen and built and the kernel's arguments are placed
in the new structure. The choice of which phrase depends on the realization function
of the kernel and the linguistic context. As a bundle is processed, the head is realized
and the further specifications are spliced into the surface structure by the attachment
process. Figure 3 shows the surface structure of the example after the bundle has
been fully realized, but before any of its embedded arguments have been realized.

[SENTENCE]
clause

[SUBJECT] —#-[TNS-MODAL] —#-[PREDICATE] — [PP-ADJUNCT]

#<Fluffy> "be" ‘P #<location
/ \ #<basement>>

[VERB] ——» [OBJECT]
"chase" fi<little-mouse>
FIGURE 2.3

While surface structure is conventially represented as a tree, we use a more
specialized representation as shown in Figure 2.3, which we call position path
notation. It is distinguished from a tree in three ways:

1) The structure is a linked list of positions (the non-terminals) which amounts to
a preorder traversal of a tree. Thus while sister nodes are linked, the tree

structure itself (the direct association of daughter and parent nodes) is not
represented.

2) Positions are annotated by one or more labels which carry grammatical
constraints, specify actions to be carried out, and define where other phrases
may be attached in with respect to that position.

3) Positions have "contents"; that is, a position directly dominates either a word,
an unrealized specification (the leaves), or a rooted phrase.

Once the surface structure has been built by realization and attachment, it is then
traversed depth first by the process phrase structure execution. This process guides
the realization of embedded specifications and produces the word stream. The word
stream representation goes through the morphological specialization process, which
produces the final text.

11

2.2 MUMBLE'S INPUT SPECIFICATION LANGUAGE

Mumble's input is in the form of specifications in a particular input specification
language. These realization specifications provide a set of instructions that direct the
processes of realization and attachment. The minimal units are called kernel
specifications and their composition into larger units are called bundle specifications.
Figure 2.4 is an example of an input specification in the notation used by Mumble's
“stand alone" interface (which allows the user to type explicit input specification for

experimentation with Mumble).

bundle-types realization-function

¥
(general-clause /

:head (CHASE/S¥-O_two-explicit-args

(general-np
thead (np-proper-name } kernel-
)

specification

"Fluffy"

:accessories (:number singular
:gender masculine
:person third
:determiner-policy no-determiner))

arguments

(general-np
:head (np-common-noun "mouse")
:accessories (:number plural
:gender neuter
:person third
:determiner-policy initially-indefinite)
:further-specifications
((:attachment-function restrictive-modifier
:specification (predication-to-be *self*
(adjective "little)))
D)

:accessories (:tense-modal present
:progressive
:unmarked)

)

FIGURE 2.4

12

>

bundle-
specification

2.2.1 Kernel Specifications

Kernels represent the choice of a lexical head (e.g. "chase" or "mouse") and the
specification of its arguments. This reflects our belief that one almost never chooses
just to use a certain word in isolation, but rather to describe an action with a verb and
simultaneous fixing of the arguments, or to describe an object by naming the natural
kind it belongs to or by giving its name. (see also Kegl, 1987). The arguments of a
kernel are to be applied to its realization function.

A kernel specification is to be interpreted (as are all devices at this level) as a
function from what we would loosely call an "information unit" to a word or phrase
at the surface linguistic level. By information unit we refer to the model level
structured object or partial situation that the generator has chosen to realize by pairing
it with this specification.

The realization function constrains the possible phrasal realizations of the head
and arguments. Arguments are themselves realization specifications (bundles or
kernels) or simply lexical items. (See examples in Figure 2.4.)

Realization functions

There are two types of realization functions: A REALIZATION CLASS specifies a
set of possible phrases annoted by the characteristics that differentiate them. A
SINGLE CHOICE specifies a particular phrase. (These will be discussed in detail in
section 2.3) In general, the realization function is a class when there are multiple
arguments which have alternative linearizations (order the arguments appear in the
surface sentence); single choices are used when there is only a single argument (as in
a noun phrase with only a head) or when there is only a single linearization (as in a
prepositional phrase where the preposition always precedes the head). In the
example in Figure 2.4 "chase” is the name of a realization class and "proper name" is
the name of a single choice. As you can see, in the notation of the stand alone
interface, they are indistinguishable; the difference is appreciated when the input
specifications are processed by Mumble. The result when a realization function is
run is always a simple phrase, comparable in size to an elementary tree in a Tree
Adjoining Grammar. (We will elaborate more on this comparison and the details of
TAGs which are relevant to our work in section 2.4).

2.2.1 BUNDLES AND THEIR ACCESSORIES

Bundles are compositional expressions which explicitly represent the functional
relations between specifications and provide a structural context for specifying
linguistically marked information such as tense, WH-extraction, or NP number.
There are three major parts in a bundle:

13

1) the HEAD, which may be a kernel, bundle, or list of specifications; the head
builds an "initial tree" (see discussion of TAGs xx) into which related
specifications are attached;

2) alist of FURTHER SPECIFICATIONS, each of which is a kernel or a bundle
specification marked with its role in the bundle; The specification results in an
"auxiliary tree" (see discussion of TAGs xx) and the relation defines where it
may be attached to the initial tree built by the head;

3) a list of ACCESSORIES, which carry the relevant syntactic details that are
specific to natural language, such as tense, number, etc..

Bundles come in various types, each of which has its own driver and set of
associated accessories. The driver is the procedure for processing the bundle parts.
Accessories may be active or passive. Active accessories have associated processing
procedures which run as part of the bundle's realization; for example, the accessory
TENSE-MODAL splices a new slot in a tree and places its value (a tense or particular
modal verb) in the slot's contents. Passive accessories are looked at when the
bundle's head is realized as part of determining which phrase to choose. For
example, if the accessory COMMAND is present, the command form (with the subject
implicit, e.g. "Go home") will be chosen.

Bundle types. In this section, we describe each bundle type (particularly its driver
and accessories) in detail. Since it is necessary to use a rather technical terminology
that has not yet been defined, the reader may find it more helpful to skim this section
at first, and then return to it for a closer perusal later.

general-clause

The driver for general-clause is very straight forward: it first realizes the head of
the bundle, then processes the accessories (in a particular order so that
interactions between, for example, tense-modal, which adds an auxiliary slot,
and question, which inverts the auxiliary, are handled effectively) and then
processes the further specifications in the order they appear. General clause
has the following associated accessories:

TENSE-MODAL is an active accessory which takes a value: the tense marker past
or present, or a modal verb (can, could, should, will, etc). When it runs, it
splices in a new position after or before the subject (depending on whether the
question accessory is present in the bundle) and puts the value in that position.

PERFECT and PROGRESSIVE are active accessories which splice in a new position
marked appropriately as have+en or be+ing and place "have" or "be" in the

14

position respectively.2 The actual morphological form of the verbs depends
on the final combination and is handled later (see section 2.7).

QUESTION alters the position where the TENSE-MODAL slot will be spliced in.
NEGATION splices in a new slot directly after the tense carrier.

COMMAND, WH-QUESTION, and UNMARKED are passive accessories and are
noticed by realization when choosing a phrase. WH-QUESTION takes a value,

which is the argument to be questioned. They will be discussed in more detail
in section 2.3.

We are experimenting with other accessories to mark arguments with such
discourse features as GIVEN and EMPHASIZED, or to mark syntactically relevant
arguments such as the central object in a purpose clause (see Huettner, Meteer
(Vaughan), and McDonald, 1987).

general-np

The driver for general clause first checks to see if there is a reason the bundle
should be realized as a pronoun rather than as a full np. (Reasons include C-
command and obligatory reflexives: "Roscoe gave Floyd his fishing rod";
"Roscoe bought himself a new one".) If there is a reason, it uses the
accessories on the bundle (NUMBER, GENDER, and PERSON) to choose a
pronoun and place it as the contents of the current position. No noun phrase is
built. If there isn't a reason to pronominalize, the actions taken are analogous
to those above in general clause: first the head is realized, then the active
accessories are processed, then the further specifications are attached in. Only
NUMBER and DETERMINER-POLICY are processed actively and the processing
of both involves setting a value in the state vector (see section x.x). Two
examples of general-np bundles appear in the example shown in Figure 2.4.

conjunction

In a conjunction bundle, the head is a list of specifications, each of which will be
a conjunct in the phrase. The bundle is agnostic as to the size or type of the
elements (they may be kemels or bundles representing single words, noun
phrases, or whole clauses). The driver builds a node and constituent slots,
giving the slots the same grammatical constraints and other features as the slot
dominating the whole conjoined phrase. It also puts comma labels on

ZThis analysis of the English auxiliary system follows the general outline of Chomsky's "aux-hopping" rule (1957).

15

appropriate slots and a conjunction label on the final slot. The particuar
conjunction (and, but, or) is kept in the value of the CONJUNCTION accessory
of the bundle. The example in Figure 2.5 shows an example of a conjunction
bundle and the resulting phrase.

(conjunction-bundle

:head ((general-np
:head (proper-name "Floyd")
:accessories (...))

(general-np

‘head (proper-name "Helga")
:accessories (...)))

:accessories (:conjunction AND))

[subject]
conj
[slotl] » [slot2 AND]
(general-np (general-np
thead (proper-name "Floyd") :head (proper-name "Helga")
:accessories (...)) :accessories (...)))
FIGURE 2.5

discourse unit

This bundle type is a means of grouping specifications together above the
sentence level. It is currently very general, reflecting the need for more work
on structure at this level. The driver builds a phrase with root DISCOURSE
UNIT dominating a single slot SENTENCE. The head is placed as the contents
of that slot and the further specifications are placed on a list of pending
specifications to be realized later. The structure itself is agnostic as to whether
these pending specifications are attached into the current sentence or attached
as new sentences. While there currently are no accessories associated with
this bundle type, a possible candidate would be initial interjections such as

"well" or "now", which play a role in discourse structure but carry little or no
content.

2.3 REALIZATION

The realization process transforms a realization specification into surface
structure. As discussed earlier, a kernel specification is realized as a single phrase.

16

There are two parts to this process: choosing a phrase and instantiating that phrase.
In section 2.3.1, we focus on the choice process. Realizing kernels and realizing
bundle specifications are then addressed in section 2.3.2 and 2.3.3 respectively.

2.3.1 Realization Classes

The main choice mechanism in Mumble is the realization class, which is a
predefined set of choices annotated by the characteristics that distinguish them.
Choices in a class represent the possible surface realizations of a kernel specification
in different linguistic contexts. The realization class for transitive verbs with two
explicit arguments is shown in Figure 2.6. Each choice (numbered in this example)3
consists of the name of a phrase and the parameters which map to the arguments of
that phrase (see discussion of phrases in section 2.4) followed by its characteristics.
For example the first choice is for SVO word order (AGENT VERB PATIENT are
mapped to SUBJECT VERB OBJECT in the phrase) in the context of a main, unmarked
clause. The second choice is for a subject relative clause. The order of the
parameters for a relative clause puts AGENT in the COMP (wh) position and a trace of
the AGENT in the SUBJECT position. Compare that with choice 3, which puts
PATIENT in COMP and a trace in the OBJECT position.

3 The numbers are only used here for reference; they are not part of the actual object.

17

(define-realization-class TRANSITIVE~VERB_TWO-EXPLICIT-ARGS (verb agent
patient)

1 ((SVO agent verb patient)
:grammatical-characteristics (clause)
:required-accessories (:unmarked))

2 ((sVO-subj-rel agent (agent :trace) verb patient)
:grammatical-characteristics (relative-clause)
:argument-characteristics (identical-with-root agent))

3 ((Svo-obj-rel patient agent verb (patient :trace))
:grammatical-characteristics (relative-clause)
rargument-characteristics (identical-with-root patient))

4 ((SVO-for-inf agent verb patient)
:grammatical-characteristics (for-infinitive))

5 ((sVO-for-inf (agent :trace) verb patient)
:grammatical-characteristics (for-infinitive)
:required-accessories (:purpose-clause-object agent))

6 ((SVO-for-inf (agent :trace) verb patient)
:grammatical-characteristics (for-infinitive)
:argument-characteristics (available agent))

7 ((SVO-for-inf agent verb (patient :trace))
:grammatical-characteristics (for-infinitive)
:required-accessories (:purpose-clause-object patient))

8 ((svO-for-inf (agent :trace) verb (patient :trace))
:grammatical-characteristics (for-infinitive)
:required-accessories (:purpose-clause-object patient)
:argument-characteristics (available agent))

9 ((sVO-subj-whq agent (agent :trace) verb patient)
:grammatical-characteristics (clause)
:required-accessories (:wh agent))

10 ((SVO-obj-whq patient agent verb (patient :trace))
:grammatical-characteristics (clause)
:required-accessories (:wh patient))

11 ((svO (agent :trace) verb patient)
:grammatical-characteristics (clause)
:required-accessories (:command))

)
FIGURE 2.6

There are three types of characteristics which annotate the choices:

Grammatical characteristics are compared with the grammatical constraints
on the current position in the linguistic context. (The grammatical
characteristics must be a subset of the constraints on the position for the choice

18

to be taken.) All choices have grammatical characteristics. Examples: NP,
CLAUSE, RELATIVE CLAUSE.

Required accessories are compared with the accessories on the bundle being
realized. Some, such as COMMAND, only look for the presence of the
accessory in the bundle. Others, such as GIVEN, take an argument both with
the characteristic and in the bundle. The accessory must be present in the

bundle and its argument must be equal to the value of the parameter specified
by the characteristic.

Argument characteristics have an associated function which takes as an
argument the value of a parameter (which is an argument of the kernel being
realized). For example IDENTICAL-WITH-ROOT(agent) checks to see if the
value of agent is identical with the root of the phrase being attached to (e.g.
when determining whether a relative clause should be [the book] "which Peter
bought" or [Peter] "who bought the book".

Note that all choices do not necessarily have all types of characteristics. Almost all
have grammatical characteristics (we will discuss an exception in a moment); choices
that are dependent on some element already realized are more likely to have argument
characteristics (such as a relative clause being attached to a noun phrase); choices
dependent on information specified by the planner are more likely to have required
accessories (such as a statement marked as a command or a particular argument
marked as given or emphasized).

While choices are in general phrases (as in the above example), this is not the
only type of allowable choice. As in choice 2 in the partial realization class shown in
Figure 2.7, a choice might be simply one of the parameters in the class, or rather the
value of that parameter when the class is called. This realization class would be used
for constructions of the form "The dog is little", where the specification for "the dog"
is mapped to 0 and the specification for "little" is mapped to parameter p ("be" is
added at the level of the phrase). Choice 2 would be chosen when the specification
is being attached to an np ("the dog") as a premodifier (checked by the argument
characteristic), so the adjective alone would be contributed by this specification.

19

(define-realization-class PREDICATION_TO-BE (o p)

1 ((S-be-COMP o p)
:grammatical-characteristics (clause)
trequired-accessories (:unmarked))

2 ((p)
:argument-characteristics (identical-with-root o))

3 ((S-be-COMP-subj-rel o (o :trace) p)
:grammatical-characteristics (relative-clause)
:argument-characteristics (identical-with-root o))

<)
FIGURE 2.7

Note that in that case, there are no grammatical characteristics. Instead, the
grammatical characteristics on the possible realizations of the value of the parameter
are checked. This allows a more flexible system where the value of the parameter p
need not be constrained to only be an adjective. For example, "The dog is little" and
"The dog is in the parlor” can be handled by the same class.

2.3.2 Realizing Kernel Specifications

In this section we look at how realization classes and single choices are used in
realizing kernel specifications. As discussed in section 2.2.1, a kernel specification
consists of a realization function and a list of arguments. This realization function is
in general a realization class (section 2.3.1) and the arguments of the kernel are
mapped to the parameters of the class, becoming their values when the class is run.

There are two other types of realization functions: curried realization classes and
single choices.

Single choices. It is not always the case that there are multiple choices for
the realization of a kernel. For example, a prepositional phrase is always realized the
same way regardless of its linguistic context. In those cases, a SINGLE CHOICE is
used instead of a realization class. A single choice (shown in Figure 2.8) consists of
a phrase and the grammatical characteristics that indicate its correct use.

(define-single-choice NP-COMMON-NOUN
:phrase common-noun

:grammatical-characteristics (np))

FIGURE 2.8

20

The arguments of the kernel are mapped directly to the parameters of the phrase
when the phrase is realized. The grammatical characteristics are included to prevent

Mumble from producing an ungrammatical utterance if the single choice is incorrectly
applied by the planner.

Curried realization classes are an experiment in exploring the nature of
"words" in generation. Strictly speaking, they are not necessarily for MUMBLE-86's
operation, though they are heavily used in our example "demos". Technically a
curried realization class is a specification of a normal realization class by taking one
of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>