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i. Abstract

Razborov [Ra86] has recently proved that a constant depth unbounded fan-in circuit
with AND and PARITY gates requires exponential size to compute the majority
function, affirming a five year old conjecture [FSS581]. Here we extend his technique
to show the same result for circuits with AND gates and MOD-p gates for prime
p, where a MOD-p gate outputs one if the sum mod p of its (boolean) inputs is
nonzero and zero otherwise.

2. Introduction

The first major results in the study of constant depth unbounded fan-in circnits
were obtained by Furst, Saxe, and Sipser [FSS81]. They proved that such a circuit
of ANDs and ORs of polynomial size (an “AC®” circuit) could not czlculate the
parity function. (This result was also obtained independently by Ajtai [Aj83].)
They then defined the notion of AC® reductions among furnctions (calling it “cp-
reducibility”) to prove that the majority and binary multiplication functions were
also not in AC®. (A function f is AC® reducible to g if it can be calculated by a
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constant depth polynomial size unbounded fan-in circuit of AND gates, OR gates,
and oracle gates for g.) They conjectured that majority was not reducible to parity
and suggested further study of the structure of the reducibility.

Further progress in this effort was made by Fagin et al. [FKPS83] who found
many reducibilities between symmetric functions. With the demonstration of ex-
ponential lower bounds for constant depth parity circuits of ANDs and ORs [Ya85,
H386] their results completely classify the symmetric functions in AC°.

Barrington [Ba86] defined the class ACC (the closure under AC® reductions of
the class of mod q functions) and showed that the word problem for any fixed group
is either inside ACC (if the group is solvable) or complete under such reductions
for the class NC!. He conjectured that ACC # NC!, strengthening the conjecture
of [FSS81]. Barrington and Thérien [BT86] showed that the word problem for any
solvable monoid is in ACC, and gave an algebraic characterization of the classes
AC? and ACC.

Finally, Razborov [Ra86] proved the conjecture of [FSS81] by showing an ex-
ponential lower bound for a constant depth circuit of AND and PARITY gates
calculating the majority function. His proof essentially appears below (with several
simplifications due to Ravi Boppana) as the case p = 2 of our main result. We
show here that circuits of AND and MOD-p gates also require exponential size to
do the majority function, and conclude with some comments on the possibility of
extending these results.

3. Approximating Circuits by Polynomials

Throughout what follows q will be an arbitrary integer greater than one and p will be
an arbitrary prime. Define R, ; as the ring of polynomials over Z, in indeterminates
Ty,..., T, satisfying 22 = z;. An element of R, defines a function from {0, 1}" to
Z, by plugging in boolean values for the variables and evaluating in Z,.

Lemnia 1: Such functions are in 1-1 correspondence with the polynomials.

Proof: The mapping from polynomials to functions is a linear transformation
over Z, and is easily seen to be an isomorphism.

A circuit of depth zero is defined to be an input variable or a constant zero
or one. A circuit of depth d is a nonempty collection of circuits of depth d — 1
connected by an AND gate or a MOD-g gate. The output of an AND gate is one
if all its inputs are one and zero otherwise. The output of a MOD-q gate is one if
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the sum mod g of its inputs is nonzero and zero otherwise. The size of a circuit is
its number of gates. Note that OR gates and NOT gates can be simulated by these
gates at small cost, so that they could be included without changing the class of
functions calculated in constant depth and polynomial size.

Theorem 2: Let p be a prime and ¢ a positive integer. A depth & circuit of
ANDs and MOD-ps of size 8 can be approximated by a polynomial f of degree
at most (p — 1)k€*, such that f gives the same value as the output of the circuit
except on at most 32“(L;'-)‘ inputs. Furthermore, the value of f is zero or one on
all inputs.

Proof: We can obtain the result of one of our MOD-p gates on a set of polyno-
mials by adding them together over Z, and taking the (p — 1)st power of the sum.
Thus the MOD-p of an arbitrary number of polynomials of degree d is a polynomial
of degree d(p — 1).

The AND of an arbitrary number of 0-1 valued polynomials can be approximated
as follows. We will make ¢ different approximations randomly and independently.
For a single approximation, we throw a p-sided coin for each polynomial to be
ANDed and include that polynomial 0, 1, .. ., or p— 1 times accordingly in a grand
sum. We also add in a constant so that if each of the polynomials to be ANDed has
value 1, the grand sum will have value 1.

For a given input setting, the value of each grand sum is 1 if all the polynomials
to be ANDed are 1, and a uniform random variable over Z, otherwise. Thus, if the
AND should be zero, a given grand sum is zero with probability ;';. The (p — 1)st
power of the product of the ¢ different grand sums is a 0-1 polynomial which gives
the desired AND with probability 1 — (’;—')‘. Since this probability represents an
average error over all possible choices of the p-sided coin flips, there must be some
choice which does at least this well. If the polynomials to be ANDed had degree d,
the approximation to the AND has degree (p—1)dd.

The result follows by induction on k. Each gate causes an error on at most
2”(%‘)‘ inputs, so all s gates cause at most s times this many errors. The degree
of a polynomial exactly representing a degree O circuit is 1, so the degree of the
apporoximation to a depth k circuit is at most (p — 1)*¢*.

4. A Hard Symmetric Function

We show that for each g, a certain symmetric function from {0,1} to Z, cannot be
closely approximated by a low-degree polynomial — this will prove that it cannot



be computed by a small constant depth circuit. From this we will show below that
the majority function is also hard. This part of the proof does not require ¢ to be
a prime.

For any d and d' less than n, we define a linear mapping ®44 (denoted ® when
the value of the subscripts is clear) on the set of functions from {0, 1} to Z, into

the set of (Z) X (ratopd') matrices as follows. The rows and columns of a matrix
will be indexed by subsets of {1,...,n} of size d and d' respectively. Then for f
from {0,1}" to Z,, ®(f);s is the sum mod q over all e € C(J U J) of (—1)lI f(e),
where C(K) is the set of all € € {0, 1}" such that ¢(¢f) = 0 for all 1 € K and |¢| is
the number of ones in .

This construction has two key properties:

Lemma 3: If d+d'+d" < n, any polynomial f of degree at most d" has ®, «( f)
a matrix of all zeroes.

Proof: By linearity it suffices to prove this for a monomial of degree at most d".
Fix any I of size d and J of size d’. Let K be the subset of {1,...,n} corresponding
to the variables in the monomial. There must be some element ¢ of the complement
of TUJ U K. Note that the sum defining ®(f);; divides into terms for € with
€(?) = 1 and ¢(¢) = 0, and that these terms cancel in pairs.

Lemma 4: If f; is defined by fo(e) = 1 for ¢ = ¢¢ and fo(€) = O otherwise, then
the rank of the matrix ®(fo) is at most one.

Proof: ®(fo)rs = (—1)kol if ¢, € C(I U J) and zero otherwise.
Now, by the subadditivity of the rank function, we get:

Proposition 5: If d + d' + d" < n and [ is approximated by a polynomial of
degree at most d” with r errors, the rank of ®44(f) is at most r.

We will now exhibit a specific matrix of large rank and show that it is the
image under @ of a symmetric function. Define a matrix Py« of zeroes and ones

by (Pia)rs = 1iff INJ = 0. Define Py to be the (2) X (<"4) matrix obtained by
concatenating all Py for d' < d. -

Lemma 6: P; has full rank (3) over Z;, and thus there exists a d’' such that
Py 4 has rank at least f;(:)

Proof: Define a (S“d) X (3) matrix Qg by (Q4)sr = (—1)V! for J C I and
(Q4)s1 = 0 otherwise. Note that P;Qy is the identity matrix of size (2)



Proposition 7: Let d' < d < n/2. If f is the sum mod q of all monomials of
degree n—d- d', then Qd,d'(f) = :th.d'-

Proof: Consider any I of size d and J of size d’. f INJ # O, for any set K
of size n — d — d' there is an element § not in U J U K and the monomial in S
corresponding to K maps to zero as in Lemma 3 above. By linearity &(f )15 =0.

On the other hand, if I NJ = @, each monomial is mapped to zero except for
that corresponding to the complement of JuJ. This monomial, however, is mapped
to (—1)n—d-¢, '

5. The Main Result

Setting d = 2 — \/n and € = d"/*/(p — 1) will give us an exponential lower bound.
Slight improvements are possible. The normal approximation to the binomial gives

,2,_" \/n) = ©(2"/\/n). Now the symmetric function of Proposition 7 maps to a

matrix of rank 2(2"/n/2). By Theorem 2, any circuit of depth k computing this
function must have size Q(20(v'/?*) /y;3/2),

The result for majority comes from the well-known completeness of majority for
symmetric functions with respect to AC® reductions (e.g., [FKPS83]). A depth k,
size 8(n) family of majority circuits leads to a depth k + 1, size ns(2n) family for
any symmetric function. Thus we can conclude:

Theorem 8: Any depth k family of circuits of AND and MOD-p gates com-
puting the majority function has size 20:1/2%),

6. Open Problems and Prospects

Can you show that AND and MOD-p gates cannot do the MOD-p’ function?

Is there any hope of extending this to the MOD-q case for composite q? Un-
fortunately Theorem 2 may not be true. A polynomial over Z,, say, is simply a
polynomial over Z; and another over Zs which are totally independent. There seems
no reason to think that in a circuit of MOD-2 and MOD-3 gates the mod-2 and
mod-3 behavior cannot interact.

Razborov [Ra86] mentions the possibility of extending his result (which can be
viewed as about arithmetic circuits for the field Z;) to arithmetic circuits for Z,



or Z,. Because multiplication in Z, requires counting modulo p — 1, this would
amount to our problem for ¢ = p(p — 1). Razborov remarks that his Lemma 1 (our
Theorem 2) does not appear to extend to the case p = 3.
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