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ABSTRACT

An outstanding problem in model-based recognition of objects by robot systems is
how the system should proceed when the acquired data are insufficierit to identify
the model instance and model pose that best interpret the object. Such a situation
can arise when there are multiple model instances that could be interpretations of
the object, or when there are ambiguous poses of a given model instance,

This work proposes a generic method for automatically finding a path along which
the robot could move a tactile sensor, so that the robot system can uniquely and
efficiently identify the object. The problem framework is defined, a methodology for
finding paths is proposed, and an evaluation of the costs and benefits of sensing paths
is presented, all of which must be done in the presence of geometric uncertainty about
the possible locations and orientations of the object.

The two-dimensional problem is solved by a projection-space approach, in which
the optimal sensing path is found by effici
passing through each object face. A path is sought which distinguishes as many dis-
tinct interpretations as possible, subject to design constraints, It is shown that
employing realistic assumptions the problem is tractable, and that for the two-

dimensional case the solution time is comparable to the robot motion time.
For the three-dimensional problem, an analysis of the structure of the path pa-
rameter space shows why the problem is inherently difficult. Several alternative

solutions are examined, and a taxonomy of approaches classifies related work into a
more general hierarchy of problem decompositions. .

Originally presented as a Ph.D. dissertation to the Graduate School of the University of Mas-
sachusetts at Amherst, and supported in part by the Office of Naval Research under Contract N00014-
84-K-0564.
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Chapter 1

The Problem and the Approach

“..that palter with us tn a double sense”

Contemporary industrial robots are limited in the tasks they can perform.
One of the more important reasons for their inflexibility is that they are deficient
in their ability to sense the world, and in their ability to process and respond to

sensory data.

This work addresses the question of how a robot, equipped with a tactile
sensor, can recognize and locate an object in its workspace. Specifically, we
consider the situation in which some tactile data about the object are already
available, but the data do not uniquely determine the object and its pose. The
problem is to acquire and process new tactile data in a sequential and efficient

manner, so that the object can be recognized and its location and orientation

identified.

The object recognition method used here is model-based — there is a set of
known object models, and for a given object the goal is to determine which
model instance best describes the object. The data for this system are the three-
dimensional positions of surface points, and the normals to the surface at these
points (all surfaces are modelled as planar patches). An interpretation of a set
of data is an assignment of these data to faces of a particular model. If the in-
terpretation is valid, the assignment of data to faces yields the rotational and

translational parameters that determine the pose of the object in space.

Object recognition in this system is performed as a sequential, data-driven
process. The sensor data are processed by applying local geometric constraints

to pairs of data and possible assignments of model elements (faces, edges, or



vertices) to these data in order to generate feasible interpretations. New data
reduce the number of feasible interpretations; if there are enough data, and they
provide the right information, then the object can be recognized and its pose

uniquely determined in a model-testing step.

Suppose, however, that the data either fail to identify the object model in-
stance, or for a given model instance there are multiple poses which are consistent
with the data. The problem, stated in the large, is how the robot is to acquire
new sensor data so there are fewer interpretations - ideally, so that there is only
one interpretation. More specifically, the problem addressed here is how to de-
termine the path of a tactile sensor so that as it moves along the path, the data
will provide the recognition system with information about model faces that have

not yet been sensed, and how to evaluate the costs and benefits of this path.

The problem of acquiring new tactile data occurs in the context of the more
general problem of object recognition. Our system for the recognition of objects

from tactile data has the following overall structure:
1. Acquire the initial set of tactile data.
2. Interpret these data by sequentially applying local and global geometric

constraints between the data and the object models, i.e., find the possible

translations and rotations of each model that are consistent with the data.
3. Repeatedly:

e Find a path along which to move a sensor.

e Execute the path, stopping when the sensor comes into contact with

an object. -
o Interpret the acquired datum: either it identifies the object, or it re-

duces the set of interpretations to a new, smaller set.

The approach used to solve the problem of intelligently acquiring data will

be a generic one, in that model-specific strategies will be eschewed. The set of



model instances are considered to be a set of model faces scattered in space; those
faces which provide no novel information or which can obstruct execution of the
sensor path are to be avoided, and the remainders are candidates for being sensed.
Solution of this problem, phrased in terms of computational geometry, requires
representing physical properties of tactile sensors in geometric terms and finding
a path with respect to these constraints. For example, all tactile sensors have a
lower limit on their spatial resolution (they cannot provide perfect information),
they occupy a certain volume and thus cannot be moved through arbitrarily
tight obstacle freeways, they skid off surfaces when striking them at too oblique
an angle, and it takes some time to move them and extract the requisite features.
All of these must be accounted for in a system which directs a robot to acquire

new tactile data.

Furthermore, all of the analysis must be conducted in the presence of uncer-
tainty. The data are presumably gathered by real devices, which results in data
error, that is, a difference between the true object position or local surface normal
and the data that are actually sensed. This data error leads to pose uncertainty,
which is the possible deviation of the true position from the nominal calculated
position. Throughout, we attempt to incorporate these uncertainties into our

approach, yielding a system that is robust.

In our research paradigm we suppose that there is a single object in the robot’s
workspace, and that some initial data-acquisition strategy, e.g., regular or random
sensing, has been used to gather tactile data. These tactile data are contact
points on the object’s surface; each datum is a pair of vectors, representing the
approximate location and local surface normal of that part of the object. A
number of object models can fit these initial data, and the problem we seek to
solve is how efficiently to acquire new tactile data to determine uniquely the

mode] type and location that best describe the object.

Briefly, our acquisition methodology is to examine unsensed portions of the

object that is in the workspace. When there are multiple interpretations of the



initial data, e.g., several different models could fit the data, there are a number
of faces from different models that have not yet been sensed. If we imagine the
interpretations to be superposed, then some of the unsensed faces “line up”, i.e.,
if a sensor placed on the tip of a long rod were moved along a special line then it
would pass through (or pierce) these faces. Since only one of these model interpre-
tations can really occur, we can tell which one is the correct one by determining
which face was hit, i.e., which position and local surface normal were actually
detected by the sensor. Figure 1.1 shows a simple two-dimensional object, and
several superposed interpretations of some tactile data; the thick line indicates
an automatically planned linear path that would contact each interpretation. If
executed, this path would uniquely determine which interpretation of the original

data was the correct one.

Identification of an object from ambiguous data can be accomplished if a
line can be found that passes through an unassigned face of each valid model
interpretation (modulo sensor limitations). Our method for finding these lines
involves changing the representation of the problem, and asking what sheaf of lines
can possibly pass through each unassigned face of each model. The intersection
of the sheaves of a set of faces is the sheaf of lines that pass through all of the
faces. We will show below that it is possible to find an element of this intersection
(and thus find a sensing path for the robot) in an efficient and general manner for
two-dimensional objects, and indicate feasible approaches for three-dimensional

objects.

1.1 Paradigmatic Assumptions

The problem — automatically determining how to acquire new tactile data,
when the current data cannot be uniquely interpreted — is somewhat vague and ill-
defined. In order to focus on a manageable subset of the problem, four restricting

assumptions will be made.



Figure 1.1: An object model, four interpretations of data, and a path that
identifies the true interpretation of the original data.

The first assumption is that we wish to be intelligent about data acquisition,
asserting that simply waving a tactile sensor about in the workspace is not a par-
ticularly effective strategy for object recognition. Hence, we will try to employ
what we know about the initial data, the limitations of the sensor and manipu-
lator, and the geometry of the instantiated models to better plan a sensor path.
This assumption has an important side effect: the methodology cannot be selected
independently of the general properties of the sensor.! Qur assumptions about.
the sensor are that it is relatively small and is capable of moderately accurate
parameter estimation; thus, our methodology is to examine faces, which are easi-
est to contact with a small sensor moving in an uncertain environment. Another
effect of intelligent acquisition is elimination of random, or workspace-scanning,

algorithms for acquisition of any but the initial data.

The second restricting assumption is that we are concerned solely with the

acquisition of new data, and not with how best to use the existing data. These

!Nor should a sensor be selected without some idea of how it ix to le used, as a general rule

of engineering robotic systems.



6

are two quite different problems, and one should not automatically expect that
one can solve both problems with the same approach. For example, the problem
of optimizing the motion of a sensor in a robot workspace requires knowledge
of the obstacles, arm configuration, and sensor capabilities; on the other hand,
optimizing use of existing data can be cast as a search, where one is restricted to
a fixed set of data and must choose (or order) to best accomplish the recognition

process.

The third restricting assumption is that the new data are to be acquired,
wherever possible, from faces that are not currently assigned. Unsensed portions
of previously sensed faces can provide crucial distinguishing information at times,
but in general we will suppose that whenever possible we seek to pierce at least
one unknown face for each path execution. This is not a particularly critical

assumption, but is useful in speeding the search for sensing paths.

The final restricting assumption is that sensing will occur only along a linear
path. This assumption is justified by the physical problems that arise when
one attempts to construct a sensor that is arbitrarily small, and that can be
moved along an arbitrary three-dimensional path in a workspace that contains
an unknown object. Thus, any sensing path is restricted to be a straight line,
must begin outside the object, and must not be such that the sensor comes into
contact with a face that has already been assigned in an interpretation, for all

interpretations.

1.2 Related Work

There is relatively little work, old or recent, on ways of intelligently and au-
tomatically acquiring tactile data for the purposes of object identification. One
class of related work is exemplified by [Allen & Bajcsy,1985] and |Luo et al..1984a).
The former work used vision to reduce the number of possible models, and used

surface-following to verify the model instance; this approach, while effective in
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the experiments they describe, is very time-consuming. The latter work also used
vision initially, and then simple tactile features, to search through a decision tree;
the sensing strategy is very simple, consisting of repeated rotation of the sensor
about the object. Although it is effective in simple cases, the authors point out

its shortcomings in dealing with smooth or highly symmetric objects.

There is also some recent work that is closely related to ours. This other class
of related work is within the same research paradigm as the present work, and
is represented by [Grimson,1986] and [Schneiter,1986]. Both authors attack the

same problem presented here, but in different ways.

Grimson’s approach is very similar to the present one, in that he uses pro-
jections of faces onto starting lines (or in three dimensions, starting planes), and
examines overlaps to determine how many could be pierced by a given path;
however, he does not attempt to optimize simultaneously over the direction and
positional parameters. Schneiter uses a very different approach, in which one
seeks regions in which a face from each interpretation is represented; this can be
implemented in a very fast scheme, but occasionally fails to find paths which can
identify the object (where the present scheme can find such paths). Below, in

Section 5.4, we will contrast their work to ours in more detail.

We might also note some research which might appear, at first glance, to be
related but which address different problems. One such group of work is that
of Cole and Yap [Cole & Yap,1983|, where there is an ambiguity in the word
‘identify’ which can lead to some confusion. In their terminology, identification
consists in the determination of the location and orientation of object faces in the
plane; we, by contrast, use the word to mean ‘uniquely distinguish among several

interpretations’, which is a very different sense.

Another group of work to be distinguished from our is that of Stansfield [Stans-
field,1987], in which a tactile sensor is guided by vision and force to probe an ob-
Jject. Stansfield, however, is concerned with the acquisition of surface description

primitives which may then be employed in recognition and manipulation; there
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is no object model present in her system, and thus the path planning strategies
are very different. Our work supposes a set of object models, and reasons about

their relationships to determine sensing paths.

In other domains, such as visual object recognition, model-specific methods
for improved recognition performance have been used with some success. These
methods typically preprocess the database of known models to find features, or
groups of features, that are useful in the recognition process. Examples of this
approach are the Local-Feature-Focus method of [Bolles & Cain,1982], and the
Bayesian signal-detection method of [Turney et al.,1985].

One drawback of feature-based approaches is that the addition of a model to
the database usually requires recomputation of the model-specific strategies, es-
pecially if the feature-based approach uses statistics of model features (Wllich can
change significantly with the addition of a single model). Another drawback is
that it is not clear that such methods degrade gracefully as uncertainty in the ini-
tial data increases, or as the number of known models rises. Our approach, which
is generic, seems to exhibit both generality and graceful degradation. None the
less, feature-based approaches can be a powerful and speedy tool in appropriate

applications.

1.3 Nomenclature

The work described here employs analytic geometry of two-, three-, and four-
dimensional manifolds, and in addition uses abbreviations for various values. The

standard representation for geometric objects will be as follows:

¢ Points and Direction Vectors are simply n-dimensional vectors repre-
senting a displacement from the origin of the Cartesian coordinate system,
and a direction, respectively. All vectors that are accented with a circum-
flex are of unit length; so a is simply a vector, while @ is a vector that must

be of unit length.
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¢ Line Segments are represented as an ordered pair, the first element being a
point on the line and the second being a direction which s not necessarily of
unit length. A line is given parametrically by the equation L(A)=P+A-D
where P is the point on the line, D is the direction, and A is the line
parameter. For convenience in computing distances and intersections, we
restrict the value of the line parameter to lie between 0 and 1 for a line

segment.

o Polygons are represented as a list of points which constitute the vertices
of the polygon. It is always assumed that the list of vertices constitute a
simple polygon, i.e., the points are coplanar, no three consecutive points
are colinear, and the polygonal edges intersect only at vertices. To find
the normal of the plane in which the polygon lies, the right-hand rule is
employed: if the first three (non-colinear) points are V;,V;, and Vs, then

the plane normal lies in the direction of (V; — V;) x (Vs ~ V).

e Planes are represented as a list consisting of a point that lies in the plane,
and the unit normal of the plane. If the point is P and the normal is Z , the
point X lies on the plane if it satisfies the plane equation is Z - (X-r)=o.
Note that because of the procedure used to match sensor data and planar
faces, there is no ambiguity in the direction of the plane normal: the two

equations Z - (X — P) =0 and Z - (X + P) = 0 represent different planes.

» Transformations are expressed as separated rotations and translations.
The transformation of a vector a to a vector a* by the formulae = R-a 4T
is the rotation of the original vector about the origin by the orthonormal

rotation matrix R, followed by a translation of 7.

Table 1.1 summarizes this nomenclature, and gives the standard usage of other

variables which will be described below.
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Table 1.1: Notation

Position vectors; points

The length of the vector a

Distance from a plane to the origin

Vertex of a polygon

Unit normal vector of surface, as sensed

True unit normal of surface

A unit normal vector (of a model face),

in model coordinates

The maximum distance error of point P;

The maximum angular error of normal N;

A mode] face

Distance, difference, or direction vectors

A rotation matrix

An axis of rotation

An angle, in radians

Translation vector, or offset

Scalar parameters

Parametric form of a line in space

Parameter of a point or line in Projection space
Angles in the direction of the X and Y axes,
respectively

Tangents, or slopes; o = tan § and § = tan ¢
The minimum spatial distance resolvable by

a sensor

The cosine of the minimum angle resolvable by
a sensor

The maximum acceptable angle between a sensor
and a surface
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1.4 Tactile Sensors and Tactile Sensing

For the purposes of this research, a tactile sensor is defined as a device
that provides three-dimensional information about a surface by direct physical
contact. A sensor is typically attached to an end-effector of a robot arm, so that

it can be moved through the environment under computer control.

The object recognition and localization scheme we use here requires relatively
simple, sparse data about the surface of an object. It is assumed that the data
are not perfect, and that there is an explicit model of the kinds of error that may
be present in the data. The scheme requires that the sensor return the three-
dimensional position of a point of contact and the local surface normal at that
point. These two values have error bounds associated with them, and the errors
are presented to the recognition scheme as parameters. A tactile sensor can be

used to acquire data for recognition provided that:

¢ A point on the sensor can be identified as contacting a surface.
¢ An error bound on the location of this point can be calculated.

e The local surface normal at this point can be deduced from the raw sensor

data.

e An error bound on angle of this local surface normal can be calculated.

There are many transduction methods, sensor geometries, and feature extrac-
tion algorithms that can be used in the process of inferring three-dimensional
surface information from direct contact. At the present stage of technological
development, tactile sensors may be grouped into two major classes: those that
provide information about some components of the net force, and those that pro-
vide information about the distribution of strains in the sensing medium as it is
brought into contact with the external surface. Henceforth, these will be referred

to as force sensors and tactile array sensors respectively, the latter because they
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usually report some regular array of strain information. Both classes of sensor

are capable, in principle, of providing the data required by the present system.

1.4.1 Force Sensors

Force sensors provide information about the forces acting between the sup-
porting member of the sensor and the sensing member of the sensor. The ge-
ometries, number of force components, and force resolution of this class of sensor

vary considerably.

Theoretically, in three-dimensional space, there are at most six independent
wrenches — forces or torques — that can be sensed. If a local Cartesian coordinate
system is erected within the sensor, these wrenches can be expressed as the forces

directed along the axes, and the torques about the axes.

The most complex kind of force sensor provides all six wrenches. Typically,
these are relatively large devices, and are mounted between the end of the robot
arm, and the end effector or gripper, acting as wrist sensors to provide feedback
for manipulation. It is possible to miniaturize a six-wrench sensor and fit it to the
tip of a robotic finger; this requires solving some interesting engineering problems,

but results in a sensor capable of use within our paradigm.

Much of the work below will describe recognition and planning sensing paths
in two dimensions. In order to sense in two dimensions, a very simple but ac-
curate construction is to instrument a beam, of square cross-section, with strain
gauges. Equipped with a circular tip, the beam’s bending directly encodes the
net direction of contact. Because of the known geometry, the position of con-
tact can also be deduced (assuming that there is a single point of contact). This
sensor design has been used in our experiments, and is more fully described in

Appendix A.

We may thus conclude that force sensors are capable of providing the posi-

tion and local normal information needed to conduct object recognition in the
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proposed manner. They have the advantage of sensitivity, but may be difficult

to manufacture when the goal is sensing small objects with high accuracy.

1.4.2 Tactile Array Sensors

Tactile array sensors provide information about the distribution of strains in
some sensing medium when it is brought into contact with an external surface. As
noted in [Fearing & Hollerbach,1984], the strained medium is usually a homoge-
neous, isotropic, noncompressible, elastic, layer which either abuts a sensing layer
or has strain transducers as an integral component of the medium. Deducing a
point of contact, and the local surface normal at that point, requires analysis of
an array of low-level data; this is a more involved operation than is required by
a force sensor, which provided the necessary information more directly. A tac-
tile array sensor, however, can provide a great deal more information about the

nature of the contact with the object’s surface than can a simple force sensor.

There is a great variety in the nature of transduction methods that have
been employed in tactile array sensors. The first transducers sensed changes in
electrical resistance as a material is strained; [Hillis, 1984] and [Overton,1984]
employed conductive elastomers and resistive bridges, while [Raibert,1984| used
an elastomer directly contacting a VLSI transducer/processor chip. Electrical
capacitance was sensed in |Boie,1984], (Seigel et al.,1987|, and [Fearing,1987|,
providing greater sensitivity but with increased susceptibility to noise induced
- by external electric fields. Magnetic properties, such as:magnetostriction [Luo et
al.,1984b|, can be used to increase sensitivity and reduce noise susceptibility, but
at a cost of array element density. Electrical charge produced by piezoelectric
polymers [Dario et al.,1984| rates highly as a transduction technique, but can
only be used in an active mode since piezoelectricity is generated only by changes

in strain, i.e., there is no DC response.

Various optical phenomena have also been used in tactile array sensor tech-

nology. Perhaps the simplest is optical beam eclipsing |[Rebman & Morris,1983].
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Optical phase shifting [Jacobsen et al.,1984|, produced by reflecting a light beam
off a birefringent material, is extremely sensitive, but is not as rugged as might be
desired. One technology that produces very compact and sensitive arrays relies
on the frustration of total internal reflection [Begej,1985|, in which lateral internal
reflection in a transparent plate is frustrated by the presence of a microtextured
material; its principal drawback is large hysteresis caused by adherence of the

rubbery asperities to the transparent plate.

The data required by our object recognition system is provided in a direct
manner by a force sensor, but requires considerable inference from the raw data
of a tactile array sensor. Some difficulties with using the inferred contacts are
that rapid processing of the data is required to achieve servo control of the robot,
and it is difficult to deduce the error bounds on the inferred position and local

surface normal.

The amount of information provided by a tactile array sensor can, however,
be used to considerable advantage. Aside from being able to infer multi-point
contact, an array sensor can be used to infer the presence and location of many
kinds of tactile features. Some features that can be deduced are: the deformation
of an object; its local texture; whether the contact is best described as point, line,
arc, or surface; and the radius of curvature of an edge or surface (cf. [Ellis,1984],

|Ellis,1986] for examples of tactile feature extraction).?

Texture and local contact geometry can be used in our system with a simple
modification of the recognition scheme. However, all that we require here is a
point of contact with the surface of an object, and the local surface normal at
this point. We will now examine how such simple data may be used to recognize

objects for which polyhedral models are available.

2These are all local features, and suppose that the tactile is much smaller than the object that
is being sensed. See [Overton,1984] or [Togai et al.,1984] for approaches that can be used when

the sensor and object are of comparable size.
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Chapter 2

Model-Based Recognition and Localization

“Is this a dagger which I see before me?”

Model-based recognition may be defined as the recognition of an object as
an instance of a known model. The task that such a recognition system must
perform, then, is to accept sensor data and determine from which object the data
have been derived. The response of the recognition system is the model class, if

the object is one of those already known.

The above description considerably simplifies the issues. A recognition system
must often deal with data that are erroneous, that come from more than one
object, or that do not adequately determine of which model the object is an
instance. Furthermore, the recognition system should also indicate the location

and orientation — the pose - of the object.

In this research the data are assumed to be derived from some sort of tactile
sensor, which senses the surface of an object by physical contact. The method
used here requires relatively simple data, and assumes that these data are imper-
fect; thus, there is an explicit model of error incorporated into the recognition
and localization procedures. A tactile sensing system is assumed to provide the

following information about a contact:

¢ A point on the sensor can be identified as contacting a surface.
¢ An error bound on the location of this point can be calculated.
o The local surface normal can be deduced from the low-level sensor data.

e An error bound on this local surface normal can be calculated.
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Since the goal of the present research is to examine sensing strategies, some
simplifications of the general object recognition problem may be made in order
to focus on the issues of interest. It will be assumed that all of the data come
from the surface of a single object, and that the error associated with the position
and surface normal of the data completely describe the errors’, i.e., there are no

spurious data.

The remainder of this chapter is devoted to a discussion of the object represen-
tation, recognition, and localization methods, and an approach to the estimation
and management of pose uncertainty. The basic methods used in the present
work build upon the foundation laid in |Grimson & Lozano-Pérez,1984), which
describes a method for model-based recognition and localization from sparse range
or tactile data; that work is in turn an extension of the approach used in [Gaston
and Lozano-Pérez,1984|. To this, we will add an analysis of how sense data error
leads to uncertainty in determining the location and orientation of an object, be-
cause tight bounds on the pose uncertainty are critical to the subsequent problem

of planning distinguishing paths.

2.1 Object Representation

Objects in the present system are represented as polygons in two-dimensional
space, and as polyhedra in three-dimensional space. Because the data are of
points on the surface of an object, the most natural representation is to model
the object as a set of polygonal faces (for 3-D objects), edges (called faces in

2-D), and vertices.

Each model has associated with it a local coordinate system. A vertex is

represented as a vector point, offset from the origin; an edge is a pair of points,

! Among the sources of error are physical inaccuracies of the sensor, problems in inference of the
position or local normal, passive compliance of the manipulator/sensor system, and approximation

of a curved surface as a linear model face.
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and a polygonal face is a list of points. The right-hand rule is employed to deduce
the normal of the plane in which a polygon lies, i.e., the cross product of the first
polygonal boundary (the difference between the second point and the first) and
the second polygonal boundary (the difference between the third point and the
second) points outward. Another way to think of this convention is that if the first
vertex point of the polygon is the origin, then the cross product of the vectors

given by the next two vertices must point outward.

The object representation is not complete, in that the set of faces, edges, and
vertices need not form a proper closed volume. This is partly a matter of con-
venience, and partly a matter of parsimony. It is often convenient to represent
a complicated polygonal face as the union of simpler faces, in which case the
abutting edges are artifactual, and could not actually be sensed. Regarding par-
simony: if a surface can not physically be sensed, e.g., it is an interior face of a
convoluted bottle, then there is no need to represent it; indeed, representing a face

that can never be matched to a datum increases computation time unnecessarily.

The representation used in |[Grimson & Lozano-Pérez,1984| contains only
faces. Our representation adds edges and vertices which, although they are less
likely to be sensed, provide very powerful constraints on possible matches. Faces,
however, remain the most important part. of the object representation, and most
of the discussion will concentrate upon them (for brevity, as well as for their

importance).

There are, of course, many other object representations that might have been
used. Aside from representations used in computer graphics, c.g., many of those
cited in [Requicha,1980], there are a number which have heen emploved in model-
based recognition. Extended Gaussian images |llorn, 1983| (sometimes called
needle maps) have been described in |lkeuchi,1981| and [Horn & Tkeuchi, 1983;
their principal drawback is that a given necedle map can represent a la rge class of

polyhedra and curved objects that are geometrically distinet.

Some approaches have used direct volumetric representations of objects. Gen-
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eralized cylinders, used in [Brooks,1981]) and |Kuan & Drazovitch,1983], can repre-
sent a large variety of objects and can be used in a very general image understand-
ing framework; such models, however, tend to be computationally expensive to
process and manipulate. Another representation, employed in [Bolles et al.,1983],
is an extension to constructive solid geometry that includes direct representation

of features that are useful for recognizing the object.

Other approaches in two or three dimensions combine simple linear surfaces
with low-order curves, e.g., [Bolles & Cain,1982|, [Perkins, 1978|, and [Turney et
al.,1985]. These can represent objects with more precision and more concisely
than a purely planar model, with a slight increase in computational cost. Recog-
nition strategies with such models tend to be feature-based, rather than being

general geometric strategies.

Most three-dimensional recognition systems, though, use some sort of planar
approximation to the object surface: [Bhanu, 1984], [Boisonnat,1984|, [Faugeras
& Hebert,1983|, [Faugeras et al.,1984], [Grimson & Lozano-Pérez,1985|, and [Os-
hima & Shirai, 1983] are among the many systems that have been described.
Rather than using feature-based recognition strategies, most of these systems
match small planar patches extracted from the data to the planar (or sometimes
higher-order) patches of the model by either geometric or statistical decision pro-

cedures.

The present approach concentrates upon a simple representation of objects as
a set of bounding polygons. These can be rapidly manipulated and can be used

in an object recognition strategy that is powerful, general, and fast.

2.2 Interpretation of Sensor Data

Grimson and Lozano-Pérez have, in several works, developed and expounded
a framework for the model-based recognition of sparse, local data. This section

provides a detailed description of our implementation of their approach, includ-
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ing explicit descriptions of our techniques for calculation (especially for those
calculations which may become ill-behaved). The interpretation process begins
with searching all possible interpretations by pruning the interpretation tree with
powerful local geometric constraints, and then finding the valid interpretations
by calculating the nominal rotation and translation, then globally verifying the
consistency of the solution. We will use vector algebra to express the relation-
ships and constraints, keeping in mind that although intended for recognition of

three-dimensional objects it can readily be simplified for two-dimensional objects.

Recognition proceeds by attempting to find an interpretation of the data,
which is defined as an assignment of a model face, edge, or vertex to each data
point. For a given model, if there are k faces and n points, then there are
potentially k" interpretations of the data. This is clearly impractical for complex
objects or large amounts of data; some other approach is needed. Figure 2.1

shows an interpretation tree for two data and an object model with four structural

elements.
Model ¢
Level 1 \
AN
i f2 /3 S, fa
Level 2

\
N N
hbr fsfs hfe B W ffi L T2

Figure 2.1: Two levels of an interpretation tree for a four-sided object..

The present system interprets the tactile data by applying simple geometric



20

constraints between pairs of assignments, thus generating interpretations which
are feasible (they are tested for consistency at a later stagé). The interpretations
are built in a tree; if a set of assignments is unfeasible, then so are all super-
sets, and the interpretation tree may be pruned at the node where an assignment
failed to meet the local geometric constraints. This is an elegant, and surpris-
ingly powerful, method of reducing the set of possible interpretations of the data;

[Grimson,1984] gives an analysis of the combinatorial power of these constraints.

The geometric constraints are relatively simple. Since a single point can be
assigned to any face, it is necessary to examine at least a pair of points and a
pair of model faces. Disregarding error for now, a pair of data points presents
four pieces of information: two positions, and two normals. If the positions are
represented as C; and Cp (with the diflerence vector being D2 ef C) — Ca),

and the associated sensed normals be N; and N,, then there are four scalar
values which are independent of the global coordinate system, representing local

information only:

e The (squared) distance between the points: |D12l|> = D12 - Dya.

e The cosine of the angle between the normals: ]V, . Nz .

o The direction component, in the direction of the first normal, of the vector

going from the first point to the second: Ny- D, .

o The direction component from the second point to the first: ]Vg - =Dy, .

These last two are a bit unusual, in that they combine distance and angular
information; but all four of these scalars are independent, and form a basis in
which the original data may be expressed in a purely local manner. See Figure 2.2

for a diagram of the construction.

Each model is processed offline to find the minimum and maximum values

of each of these constraints between all possible pairs of faces. Because these

1.
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C,
D,

C

Figure 2.2: Local geometric construction for two data points.

constraint bounds are between pairs of faces, they can be represented as two-
dimensional tables, which are indexed by the faces. One [symmetric] table is built
indicating the range of distances between two faces; one [symmetric| for the angles
(which is just a single value); and one [non-symmetric| for the directions. This pre-
processing is done only once, and is reasonably efficient in that the distance and
direction tables can be built using only perimeter information (interior points, in
general, need not be examined). These tables now form part of the representation

of the object.

Each step of generating a feasible interpretation involves taking a new datum,
and finding the local constraints between it and each of the previously interpreted
points. The new datum is then tentatively assigned to each face of the model. For
each tentative assignment, the local constraints can be compared to the range of
constraints already computed for the faces to which each point has been assigned.
If the local constraints on distance, normal angle, and direction all fall within the
ranges for the faces, then the new assignment is consistent. with the previous one.
This test is conducted between the new point and all previously assigned points

in the current interpretation tree,

If the point—face assignment is consistent with all previous assignments, then
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this assignment creates a new feasible interpretation. If it is inconsistent with eny
of the previous assignments, then the interpretation trce may be pruned at this
point, and all subtrees deriving f[rom the new assignment may be ignored. When
all of the data have been processed, the leaves of the tree represent all feasible

interpretations of the sensor data.

The method used in this research is an extension of the above method. In
addition to applying constraints between faces, constraints including edges and
vertices are added. Edges add angular and distance constraints; vertices add
only distance constraints. However, the distance constraints provided by vertices
are much more powerful than those provided by edges, which in turn are more

powerful than those provided by faces.

The above descriptidn is slightly more complicated in implementation because
error must be accounted for. Each sensed position is known only within a small
sphere, and the sensed normals within a small cone. The constraints must be
applied with these error bounds in mind; when the appropriate mathematical
formalism is employed, the addition of error amounts principally to extending

the constraint tables of the models by the indicated error radii.

2.2.1 Calculating Local Constraints from a Model

The present implementation of model-based recognition derives from the de-
scription given in [Grimson & Lozano-Pérez,1984], where details of proofs, etc.
may be found. The model constraints are those of distance, angle, and direction;

each of these is now described in more detail.

2.2.1.1 Distance Constraints

The distance constraints are the lower and upper bounds on the distance
between two model elements, e.g., faces. The bounds may be found by examin-

ing all edge-edge pairs, vertex-vertex pairs, and edge-vertex pairs of the model

"
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elements. The distance between two points is straightforward; but to find the
distance between a point and a line, or between two lines, some extra checking is

necessary.

The distance between a point X and a line L(A\) = P + A - D is derived by
finding the parameter of the location on the line nearest to the given point. If

the given point is X, then the line parameter of the nearest point is

D
t=(X~-P) —
D]
where P is a point on the line and D the line’s (possibly non-unit) direction. If
the parameter value ¢t is between 0 and 1 then the nearest point lies within the
segment, and the distance may be found directly; otherwise, the nearest distance

is given by the endpoint of the segment that is closest to the point determined

by the calculated parameter.
The derivation of the distance between two lines is somewhat more involved.

Let the two lines be
Li(t) =a+t-

“

and
Lg(S) =b +s-

3>

where ¢ and 7} are of unit length. If the abbreviation ¢ = (e — b) is used, the

length of the shortest segment between the two lines is
lldll = I La(€) = La(s)ll = fle + ¢+ — s -

under the conditions that the shortest line is perpendicular to hoth I, and L,,
i.e.,

d-¢{=d-§=0

From these conditions, the two line parameters can he derived as

(S-M)e-1) ~(c-§)

t = o
1-(¢-n)?
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and
s=c-i+t(-7)

Once again, these parameters are tested to ensure that the determined points lie
on the segment. If the two lines are parallel, then { -4 = 1 and the equation
specifying ¢ is indeterminate, so for parallel lines an endpoint is used to find the
point on the other line nearest to the endpoint. (It is necessary to check only
the endpoints of one segment to ensure that the two parallel segments have a
perpendicular joining line that satisfies the constraint of passing within both line

segments).

For efficiency, it may be noted that full processing is needed only to find
the minimum distance. The maximum distance between two polygons is always
between a pair of vertices from the convex hulls of the respective faces, and thus

we can restrict our computation of maximum distance to the vertices of the faces.

2.2.1.2 Angle Constraint

The angle constraint between two faces is very simple. The unit normal of
each polygon is calculated from the cross product of the first two bounding edges;

the constraint used is simply the dot product of the unit normals.

As noted above, the direction is unambiguous. During construction of the
model, care must be taken that the polygons are specified with the vertices in the

correct order.

2.2.1.3 Direction Constraints

The direction constraint is the dot product of a difference vector and a direc-
tion vector. For a pair of faces, it can be shown that the direction bounds can be

found by examining only differences between verfices of the [aces.®

2Proof of this can be found in [Grimson & Lozano-Pérez,1984|.

"~
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For two faces ¢ and j, let V; be a vertex from face t, V; be from face 7, and

the unit normal of face ¢ be Z:-. Then the direction constraints are the bounds on

the value

Zi-(V; = V)
as V; and V; range over the set of vertices of the respective faces.

The constraints on distance, angle, and direction may be pre-calculated for
each model and saved in tables. For the purposes of recognition, these tables
are a very important part of the model, as they represent the local geometric

information that is used to find feasible interpretations of sensor data.

2.2.2 Model Constraints and Feasible Interpretations

Feasible interpretations can be found by examining local geometric properties
of pairs of sensor data, with constraints provided by a given model. The current
system calculates the minimum and maximum values of the properties for all
pairs of data, and uses these to prune the interpretation tree in a depth-first
search. The properties tested, in order, are distance, angle, and direction; a new
assignment of a datum to a face must be consistent with all predecessors in the

interpretation tree.

For the following discussion, the sensor data will be referred to and subscripted
with ¢ and j, while the faces to which they are tentatively assigned will be m and
n.

2.2.2.1 Distance Pruning

For a pair of sensor position data C; and C, with positional error radii ¢; and

€; respectively, the minimum and maximum distances between (he points are

max(0, [|C; - Cj|| - & — ¢;)
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and
ICi = Cjll + € +¢;

The data may be assigned to a pair of faces F,, and F, if the range of distances
overlap. Formally, this means that the maximum data distance must be no less
than the minimum face-face distance and the minimum d\ata distance must be no
greater than the maximum face-face distance. If this condition is true, then the

assignment is consistent with the distance constraint.

2.2.2.2 Angle Pruning

For a pair of sensed normals N; and N i, the angle errors are §; and §;. Defining

U; as the true surface normal, the angle error provides a bound on the dot product
between the sensed normal and the true normal:

~ ~

Ni Ui 2 6
Letting cos ¢; def 0;, cos ¢; def 6;,-and cos7;; df N; -]\7,-, then the minimum dot
product achievable with sensor error is
cos|min(m,v;; + ¢ + ¢;)]
and the maximum is
cos[max(0,7v; — ¢ — ¢

The points satisfy the angle constraint if the dot product of the normals of the

faces to which they are assigned falls within these ranges.?

2.2.2.3 Direction Pruning

The final constraints are those on direction, which is the dot product of a

unit normal and a difference vector. Let D;; be the difference vector between

positions C; and C;. N;, &, and ¢ will be as defined above.

3See [Grimson & Lozano-Pérez,1984| for a derivation of these bounds.

e
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The value of the direction from point ¢ to point 7, disregarding sensor error,
is

N;'(C;—Cj)=1\7,"D,’j

Where || D;;| is length of D;;, and D;; is the unit vector in the same direction as

D; ;, then the value can be expressed as
1D:511(N; - Di ;)

When expressed this way, the error in sensing positions and local surface normals
can be inserted into the formulation. As with the angle constraints, what is sought
are bounds on the product of the local normal and the unit direction. Once these
are found, they can be multiplied by the length of the difference vector and the
bounds on the value of the direction property have been found. It is expected
that the positional error provides much less uncertainty than the angular error,

so its contribution is neglected.
The formulation of error in the dot product of the sensed normal and the
unit direction is analogous to the formulation used in the angle constraint. Let

CoOsw;; = JV,- - d; ;. The minimum direction value is thus
| Di | - cos(g: + wi;)

and the maximum is

1 D; 5l - cos(; — wy )

These ranges are compared with the face-face direction constraints in a manner
similar to the comparison for distance constraints, since a non-null intersection of
the ranges is being sought. Unlike the distance constraint, the direction constraint
is not symmetric, so the order of the data must be reversed and the test performed
again.

The direction constraint is a reasonably powerful one, bul hecanse it requires

much more calculation it is usually performed after distance and angle testing. If
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all pairs of assignments satisfy the direction constraint, then the interpretation is

said to be feasible.

2.2.3 Finding Valid Interpretations

An interpretation of the data that is feasible is not necessarily valid: a feasible
interpretation is based upon pairwise constraints, whereas a valid interpretation
must take into account global n-ary constraints, where n is the number of faces
that have data points assigned to them. Thus, the model must be tested, to
ensure that all of the sensed normals are consistent with the model normals, and
that all of the sensed points lie within the model faces. This involves finding the
three translational parameters and three rotational parameters that transform

the model to the data, and then checking the match between data and model.

The first step in testing an interpretation is to find the rotational compo-
nent. This can be done with two independent assignments in the interpretation,
finding first the direction of the rotation and then then the angle of rotation
about this direction vector. Once the rotational component is found, the trans-
lational component can be computed from three positions. These computations
are for perfect data; there are a number of techniques, varying in reliability and
cost, which might be used to increase reliability given potentially erroneous data

[Grimson & Lozano-Pérez,1984], [Faugeras & Hebert,1983).

Once the transformation from model instance to data is found, the final inodel
test can be done. This involves checking each sensed normal to ensure that it
matches, within its error cone, to the transformed normal of the face to which it
has been assigned. Similarly, each point must not only lie on or near the plane of
the face to which it is assigned; it must also lie within or near the polygon that

constitutes the boundary of the face.
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2.2.3.1 Calculating The Model Pose

The pose of the model is the rotation and translation that brings it from its
local defining coordinate system (which is rather arbitrary) to the coordinate
system of the sensor data and robot system. There are six parameters of the
pose — three for the rotation, and three for the translation. The present sys-
tem finds them by first determining the rotational component, an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>