On Maximizing the Number of Departures
Before a Deadline on Multiple Processors

Randolph Nelson
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

Don Towsley
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 87-99
July 15, 1987

e m————— e

On Maximizing the Number of Departures Before a Deadline on Multiple
Processors

Randolph Nelson

IBM T. J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598

Don Towsley !

Department of Computer and
Information Science
University of Massachusetts

Ambherst, MA 01003

Abstract.

Consider a set of processors Py, Py, ..., Py differing only in speed, a set of M jobs with exponen-
tially distributed execution times, and an exponentially distributed deadline. The problem we
consider is to schedule the jobs non-preemptively so as to maximize the expected number of job
completions before the deadline. We prove that a threshold policy achieves this objective and
provide an algorithm to calculate the values of the thresholds.

In this paper we consider a system of multiple processors, Py, Py, ..., Py, where the servicing
rates of the processors are, in general, not identical, serving a collection of M > 0 identical jobs.
Associated with this system is an exponentially distributed deadline by which time the system shuts
dowﬁ. 'We are concerned with determining a poli?:y by which jobs are non-preemptively scheduled
on available free processors so as to maximize the expected number of job completions prior to
system ;hutdown. Our main result shows that a threshold scheduling policy maximizes this ob-

~ jective. Moreover we provide an efficient algorithm that calculates these thresholds. In a threshold

! This work was performed while I). Towsley was a visiting scientist at the IBM Thomas J. Watson Research Center.

This work was also supported in part by the National Science Foundation under grant ECS-8406402

policy there exist integer valued thresholds Tpywith1=T|<Th<..< Ty < oo such that the pol-
icy schedules an available job to an idle processor P; only if T; is smaller or equal to the threshold

of any other idle processor and if the number of available jobs is greater or equal to T;.

Systems of this type could be models for reliability of computer systems, multiprocessor
scheduling, or other environments where tasks have to be completed by a deadline. The problem
in a multiprocessor environment containing different speed processors is to minimize the expected
delay of jobs. The structure of the optimal policy for two processors has been shown to be a
threshold policy, Lin and Kumar (1984), however determining the optimal policy for three or more
processors appears to be very difficult. A heuristic for minimizing the mean response time is to
maximize the number of job completions between successive arrivals to the system. Within the

context of our model, then, a deadline corresponds to a job arrival.

Agrawala et al. (1984)., determined an optimum policy for minimiiing the expected total flow
time (the sum of finishing times) of a set of jobs on a a multiple processor system. They show that
the optimum policy is a threshold policy and obtain an explicit expression for the thresholds. Our
work differs from theirs in that we seek policies that maximize the expected throughput on a
multiprocessor system prior to some deadline. The thresholds obtained in for this objective are, in
general, different than those found in Agrawala et al. (1984). Other work concerning a fixed number
of jobs is focused on minimizing the total time needed to process all the jobs on multiple processors

where preemptions are allowed Weiss and Pinedo (1980) and Weber (1982).

Models which consider multiple processor systems where arrivals are allowed have also been
studied. In this case the objective is to minimize the expected response time of a job. In Larsen
and Agrawala (1983) a two server system is considered and the value of queue length after which
one should schedule the slower server, assuming a threshold policy, is calculated. In Lin and

Kumar (1984) it is shown that for a two server system a threshold policy minimizes the expected

On Maximizing the Number of Departures Before a Deadline on Multiple Processors 1

response time. A simpler proof was developed by Walrand (1984). Kumar and Walrand
(1985)explored the relationship between individual optimal and socially optimal policies. They
gave conditions under which a socially optimal policy for a system with no arrivals is individually
optimal with or without arrivals and used this result to show that threshold policy of Agrawala et
al. (1984). is individually optimal. This results can be used to show that our policy is individual
optimal in the case of no arrivals. In Chow and Kohler (1979) various scheduling policies are
considered for a multi-queue system where the servers have different speeds. In this work they
study a scheduling discipline that is concerned with maximizing the expected number of departures
between successive arrivals. A number of papers have considered exact or approximate analysis of
the expected response time for heterogeneous multiprocessor systems with threshold scheduling.
In Cooper (1976) exact results are derived for policies that schedule the fastest available server.
Rubinovitch (1985) derived exact expressions for mean response time for two processor systems
and Nelson and Towsley (1984) derived an approximation for the mean response time for a arbi-

trary number of processors.

In Section 1 we formalize our problem and provide the necessary definitions and notation. In
Section 2 we prove that a threshold policy maximizes the number of job completions before the
deadline and provide an algorithm for calculating the thresholds. In Section 3 we compare the
performance of the derived threshold policy used an a heuristic for minimizing the expected re-
sponse time to other threshold policies and finally in Section 4 we suggest directions for future re-

search.

On Maximizing the Number of Departures Before a Deadline on Multiple Processors 2

1. Definitions and Notation

We consider a set of N heterogeneous processors {Py, Py, ...y Pps} that serve a collection of M
jobs. The service time for a job executed on processor P; is an exponentially distributed random
variable with mean 1/u;, i=1, ...,N respectively. We assume that the processors are ordered so that
Ky2pp2..2pupN>0. We are interested in maximizing the number of job completions by a

deadline that is assumed to be an exponentially distributed random variable with mean 1 JA.

We define a threshold policy by associating with each processor, P;, a positive integer valued
threshold, T;. A job from the queue is scheduled to an idle server P; only if T; is smaller than or
equal to the threshold of any other idle server and if the queue length is greater than or equal to
T;. For example, consider N=2 and T} =1 and Ty = 4. Then processor 2 will only be scheduled

if the queue length is greater than or equal to 4.

Let (m,c) denote the state of the system where m represents the number of jobs waiting to be
processed and ¢ =(cy, ¢y, ..., ¢y) where ¢;= 1 if the ith processor P; is busy and c;= 0 otherwise.
We shall refer to c as the configuration of the system. We define ey, to be the configuration in which
only the kth processor is busy and v, to be the configuration in which only the fastest k Processors
are busy. We let v be the configuration in which there are no busy processors. Let the set of busy
processors be given by Bc)={i| ¢c;=1}, the number of busy processors by
fel=cy+ cy+ ... + ¢, and the number of jobs in the system by | (m,c)| = m+ | c| . Last, we de-
fine two operations on system configurations. If ¢ and ¢’ are two configurations, then the busy
processors in either or both of them is given by the sum, d=c+ ¢, where
d;j=min{l, ¢;+ ¢’;}, i=1,...,N. The number o‘f processors that are busy in both configurations is

N
given by the inner product , ¢« ¢, and satisfies ¥ c i
i=1

1. Definitions and Notation 3

Because of the exponential assumptions, scheduling decisions can be limited to system startup
time and to points in time where a processor completes a job. A scheduling policy f maps system
states into system states. We let F denote the set of all scheduling policics. A state (n, ¢) is stable
with respect to policy fif fim, €)= (m, ¢), i.e., no processors arc immediately scheduled when fis
applicd to state (s,) otherwise we say that state (m, ¢) is unstable with respect to f. A scheduling

policy f'e I' satisfies the following properties: if {m, ¢)=(n, d), then
. dp=¢p, k=1,..Nand [(m, c)| = |(n, d),
2. (n, d)is stable with respect (o f.

The policy fim, c)=(n, d) can be interpreted as the assignment of m— n jobs to those m—n

processors Iy such that ¢ = 0 and dj, = 1.

Assume the system starts in state (m,c). We define I:‘f(m, ¢) to be the average number of job
completions before the deadline for an initial state (m, c), when one uses policy / beginning at the
Jirst departure. If we apply policy finitially, then the expected number of job completions beforc
the deadline is I,‘/ (flm,c)). It is clear that l?f(m, ¢) is not necessarily equal to I;‘f(/(m, ¢)). Our objective

is given by

(m, ¢)= r/néal)‘s I?f(ﬂm, o). (n

*
Any policy [for which F,‘f(m, c)= I[{m, c) for all (m, c) is an optimal policy. We let I be the set

of all optimal policics. Using a rencwal argument, we can write

f:‘[(m, c)= /(A +U(c)) Z 1,1 +F,‘f(/(m,c— e))]
rel(c)

wherce we define

U= Y uy

refB(c)

1. Definitions and Notation 4

A policy is a single item (S1) policy if it never schedules more than one processor at any onc
time. We let G be the st of all single item scheduling policies and define S(/n, ¢) = max Eg(m, o).

geG
We say that policy g € (G is an optimal single item policy if /:'g(m,)= S(m, c) for all (i, c).

For a state (m, ¢) where | (m, ¢)| > 0 we dcfine if(m, c) to be the index of the slowest processor
that might be scheduled before the deadline after initially applying fand for all possible departures
using policy / from state (m, ¢). It is clear that processors with an index higher than t‘]im, ¢) will
never be scheduled a job under policy /for an initial state (m, ¢). We let {m, ¢)= min* {t‘[(m, c)}.
and will only consider optimal policies f that satisfy t‘[(m,)= {m,c). &'cr next define
Wm)={m,vy), m>0, and K{0)=0. It is clear that A(m) is the slowest processor that will be
scheduled by an optimal policy given an initial state of (m, vy). Finally we define integer values,
lj given by:

7}-=m if Mm—1)<j<hm), j=12,..,.N, m>1. (2)

Theorem 1 of Section 2 shows that the optimal policy is a threshold policy with these thresholds.

1. Definitions and Notation 5

2. Analysis

In this scction we cstablish that a threshold policy maximizes the number of job completions

before the deadline. We first establish two propertics for optimal policies. These propertics are:

1. (FAP Property) There cxists an optimal policy such that whenever it schedules, it always

schedules jobs to the fastest available processor.

2. (IP Property) After the first instance that a processor is not scheduled after a departure, it re-

mains idle until the deadline.

These properties arc used to cstablish that there exist a optimal policy that is a threshold policy.

We now prove two lemmas that cstablish these propertics.

Lemma 1. (FAP Property)
If two configurations ¢ and ¢’ satisfy the rclation cevp > ¢’ evp fork=1,..,Nand | c|=|c'|, then

for any optimal policy fand any optimal ST policy
a. F(fim,)= IF(fim, ")) m=0,1, ..

b. S(m, ¢)= S(m, ¢’) m=0,1, ...

Proof (Special Casc).
We shall prove Lemma l.a first for a special configuration which can be extended to the general
case. In the special casc we assume that ¢ = 1, ¢j= 0,and ¢’ =c—¢p + e, j> k. We prove the

special case by induction on | (m, ¢)] .

Basis step (Special Case).

For [(m, o)l = 1, FA0, eg)) = 0, e) 2 F(0, &)= FAO, ¢) j = k.

Inductive Step (Special Case).

2. Analysis 6

Assume that [.emma 1.a is true for the special case for |(m, ¢)] = a and consider a state (m, ¢) such
that |(;m, c)f = a+ 1. T.ct / be an optimal policy. We construct a policy / that operates on (m, ¢) in
the following manner: if fsn, ¢) schedules P;, i # k, then f(m, c) schedules P;, if fim, ¢’) schedules
Py, then f(m, ¢) schedules ,.)I" otherwise nothing clse is scheduled. Since [is optimal we have
Efim, o))= F(f(m,c)). We will now show that Ff(m, c))= [{fim, ¢’)) and thus that
E(fim, e)) = F(fim, ¢')). This is certainly true if fm,¢’) schedules P since for this case
S(m, ¢)=fim, ¢’). Assume then that fm, ¢’) does not schedule Pp. Let fim,c')=(n,d— e, + ej)

and thus, by definition of policy /', f(m, ¢)= (n, d) and let D = B(d) — {k}. We write expressions for

I{n, d) and F(n,d — e}, + ej):

u
En, d)= ! D i L+ Bfin,d =)] + g

L+ E(fin, d— ep)],
A+ Ud= e+ S — et U T B d =)]

- 1 . : —ei— ;
En d— e+ e)= T ("(d""k)’*'/{i iEZDu, [+ Efim, d = e;— ey + ¢)))]

Hj
Bftn, d— e))].
T Ud— e+ (14 Blfm, d = ep))]

By induction, f(f{n, d — ¢)) > {(fin,d — e; + ej— 7). Therefore,

[1+ Efin, d— ¢))]
P, d) = Bn, d = ey +)2 Z,:)” A~ 10 T U= e+ mXA + Ud— e+ “))

e

(1j= 1+ Efin, d— DA + U(d - ep))
T (A Ud = eg)+ XA+ U(d—) + m)

(1~ np) 1

> W+ Ud—ep+n) A+ Ud—ep)+up) ie%; it e el

2. Analysis 7

Hj— g
T4 Ud- e+ 1t

[1+ F(fn, d—ep)]

. (=)
(A Uld= o)+)

[Hn, d)— 1 — Kfin, d— ep))]

where the last incquality follows from the fact that F(n, d) < F{fin, d — e+ 1.

This shows that E(/'(m, ¢))= I{f(m, ")) and completes the proof for the special casc.

Proof (General Case).

We now generalize this result to any ¢ and ¢’. For any (m, ¢) and (m, ¢’) satisfying the conditions
of I.emma 1, therc exists a scquence of configurations ¢ = 2(s Z]» - Zp= ¢ such that the pairs
(zj zi41), 0< i< r cach differ in exactly two processor assignments and Zjevp =z | o vy for

I <k < N. Hence the proof for the special case provides

Ffim,) 2 Kfim, z\)) = ... 2 Bfim, z,_) = E(fim, ¢'))

which proves Lemma l.a. The proof for . emma 1.b is similar and is thus omitted.

Lemma 2. (IP Property)
Tet £ be an optimal policy and (n, d) be a stable state with respect to f. If for any j, Pj is idle in

(n, d) then Pi is idle in f{n, d— ¢;) for all i e B(d).

Proof
This lemma is trivially true for j > {n, d). et (n, d) be a state having the property that | (n, d)] is
minimal and violates the statcment of the lemma, i.e. there exists a j such that dj= 0 and there

2. Analysis 8

*
cxists an i € X(d) such that l’/- is scheduled in f{n, d - ¢;). Furthermore fet j be the minimal j that
has this property. We first show that P * is scheduled in fn, d — ¢p) for all ke B(d). To do this
J
*
supposc that PI,‘ is not scheduled in fln, d—e.,*), i € B(d). We will show that this leads to a
, i

contradiction. Therc arc two cascs:

Case 1. State (n, d — ei*) is stable with respect to f.

We show that this implics that {r, d — el_*): in, d) which leads to a contradiction since, from the
definition of K), it implics that there exists a set of possible departures from state (n, d — ei*) such
that processor I’j“ is scheduled and contradicts the minimality of | (n, d)| . It is clear, since state
(n, d— ei‘") arises from a departure from state (n, d) that {n, d)= {n, d— el,‘). To show that

in, &)< {n, d— ei*) and thus establish equality, we show that the following equation holds:

p*
; —F ey
Hn,d)y= FEn,d e,)+ '1+Ili"' . 3)

This implics that there cxists a optimal policy which operates by performing identical scheduling
decisions as optimal policy acting on (n, d— e’_*) while ignoring processor Pi". As this optimal
policy might not satisfy the definition of {) this implies that {n, d)< {n, d — e *). To establish the

cquality we first show that

T

2 ; ¥y b
Hn, dy> Kn, d ¢,)+ l+ul.‘ . (4

To establish this we consider a possibly suboptimal policy, /', that simulates the scheduling deci-
sions of / from state (n, d) but ignores processor Pi". It is clear that f from state (n, d — ei*) never
schedules processor Pl,“' since this would violate the minimality of |(n, d)|. Thus f will never
schedule Pi" for all possible departurcs from state (n, d). [quation (4) follows from the fact that
F(n, d) must be at lcast as large as f‘/ (n, d). To show thc reverse incquality we consider a possibly

suboptimal policy that adds a fictitious job to processor Pi‘" and schedules jobs in the same fashion

2. Analysis 9

as the optimal policy from state (n, d). The throughput of the fictitious job is equal to

/ll_"//l + /11,"' and since this policy is possibly suboptimal this implics that

[T

I{n, d—oc* (n, -t
(n, d ei)zf(nd) '1+I‘i*

which provides the oppositc incquality and establishes equation (3).

Case 2. State (n, d — e.*) is not stable with respect to /. There are two subcases:
i
* *
Case2a.i >j .
Since (n, d— e *) is not stablc there cxists a processor P, k < {n, d— e.*) < {n, d), that is sched-
i

*
uled. By assumption and thc FAP property it must be the fact that k <j but this implies that

*
dp=01in (n, d)and that P is scheduled in fn, d— el_ *) which contradicts the minimality of j .

* *
Case2b.i <j .

This implies, by the AP property, that only Pi* is scheduled since scheduling a processor

T *
k<i <j would contradict thc minimality of j . This implics that state (n — 1, d) is stable and that

Hn—1,d)> Fn, d— e',"). (5)

We now show that (n— 1, d) cannot be stable and thus rcach a contradiction that processor Pj"'

is not scheduled. To scc this consider an i€ B(d) such that P * is scheduled in fn, d — ¢;). By as-
J

sumption such an / must cxist. There are two cases for scheduling processors from state

(n, d — e;), namely

~ase i Schedule processor I’j‘ and Processors I’j, jeJ, where
*
J={lj#j . j#i, lfi is scheduled from state (1, d — ¢;)} but do not schedule processor P;.

We let ¢ be defined so that = 1, je.J and zero otherwise.

2. Analysis 10

Case ii. Schedule processors P * and and processors Pi' jeJ', where
J :
*
4 H . . - . .
I={lj#j ., j#i, l’/- 1s scheduled from state (1, d — ¢;)} and also schedule processor ;. We

let ¢ be defined so that c’/-= 1, je ' and 7zcro othenwisce.

*
In casc i it is clear from the FAP property that i>; and from Iemma | that the following

cquation holds:

Hn—1-|c|,d—c;+ ei"'+c)2 Hn—-1,d—c;j+ cj*)z Hn-1,d). (6)

I'rom case ii we have the following cquation:

Hn=2=[c|, d+e*+)z Hn=1, d. (7

Comparing equation (5) with cquations (6) and (7) shows that (n — 1, d) cannot be stable since
there exists a state that can be obtained by scheduling other processors from state (n— 1, d) that

increases the expected number of departures before the deadline.

We thus conclude that processor I’j"' must be scheduled in fin, d —) for all i e B(d). We con-
tinue the proof by defining a new policy /' which schedules Pj‘ at the beginning, i.e.
f'(nd)y=(n—1, d+ ej'), and then continues as in policy f, ie. f'(n— 1, d+ e},* —e), ie B(d)is
the same as fn, d — ¢;) except that l’/_* is alrcady scheduled. There are two cases to consider de-
pending upon if processor I’I_" in state (n—1,d + ej‘) is the first processor to complete or not.
In the first case we assumc Ivhal I’i* is the first processor to complete. For this case the expected
number of completions before lhc; deadline is given by /{n— 1, d) + 1 which is greater than or equal
to I(n, d). In the second case we assume that processor I’j* is not the first processor to complete.
In this case the expected number of completions before the deadline is /(n, d). Thus the expected
number of completions before the deadline cannot be decrcased by scheduling Pj"‘, and may even

increase. Therefore we reach a contradiction and the lemma is proved.

2. Analysis 1

We make several remarks that follow directly from the previous lemmas. These will be used in

proving the thcorems stated later in the paper. As their proofs arc easy we omit the details.

Remarks.

1. There cxists a unique optimal policy n such that in(n, d)= {n, d). Hencelorth we restrict our
attention to policy m, and when we say a state is stable (unstable) we mcan with respect to this
policy.

2. A state (n, d) is stable if and only if Pj is busy for all j < {n, d).

3. The following cquality holds: #(m)= i(m, "lz(m))'

We next establish a lemma that characterizes the function A(m).

Lemma 3.

The function A{/n) is a non-decreasing function of m.

Proof.

We prove this by contradiction. Assume that A(n)> hn+ 1), n>0. Consider state
(n+ 1, Vi n+ I))' A departure from processor P| from this state, from thc FAP property, leads to
state (n, Yi(n+ l)) which, since we are assuming A(n) > A(n + 1), implies, from remark 2 and FAP,
that the optimal policy will schedule processor Ph(n D410 This implies that

Hn+ 1)>&n+ 1, e l)) and contradicts remark 3.

We are now in a position to show that the optimal policy 7 is a threshold policy.

2. Analysis 12

Theorem 1.

The optimal policy 7 is a threshold policy in which the threshold for processor P;is given by 7;

defined in cquation (2).

Proof (Stablc State).

Our proof consists in showing that z and the threshold policy having thresholds given by equation
(2) perform identical scheduling operations. We first show that the policics are identical for stable
states and then show that this is also truc for unstable statcs. Assume that (m, ¢) is stable with re-
spect to m. This implics that ¢ = | for k < A{m). We apply the threshold policy to state (m, c). Let
If,- be the idle processor with the lowest threshold. Since, from I.emma 3, A(m) is a non-decreasing
function of m, it follows from equation (2) that 'I} is a non-decreasing function of j, j> A(m).
Processor Pj will only be scheduled if ’l, < m. According to equation (2) this implies that j < A(m)
which is a contradiction. Thercfore no processor will be scheduled and the threshold policy and =
make identical decisions.

Proof (Unstable States).

Assume (m, ¢) is unstable. The policy n schedules » processors P; I P,-z, ey P,-r, i|<i<..<i
resulting in the stable state (m—r, ¢’) where ¢’ = 1if g =1orif k= ij, j=1,2,..,r. It must be
the case that Am—j+ 1)> ij, j=1,2,..,r. Consider thc application of the threshold policy on
statc (m, ¢). We claim that it will be applied r times and result in the scheduling of the same r
processors in the order of increasing index values. We consider the jth application of the threshold
policy. This application will bc on thc state (m—j+ 1,d) where dp=1 if ¢=1 or
k=i iy, ..., ij_ 1. The idle processor with the lowest threshold is I‘lj As we know that
m—j+ 1)> f'/" it must be the case from equation (2) that ’I'ijs m—j+ 1. Consequently P,-j will
be scheduled at this time. The rth application results in the state (m — 7, ¢) which is stable. Con-
scquently the threshold policy will not schedule another processor and thus both the threshold

policy and n make identical scheduling decisions.

2. Analysis 13

We are interested now in providing an algorithm with which to calculate the thresholds. First

we establish how the optimal policy and the function A(n) is related to the optimal SI policy.

Lemma 4.

The optimal policy m starting from a stable statc (m, c) is a SI policy.

Proof.

Assumc that Ifl-,je B(c) is the first processor to complete. If j > A(m) then no processor will be
scheduled. If j < A(m) then I.)I' will be rescheduled resulting in a statc (i — 1, ¢). Since, from Lemma
3, i{im — 1) < A(m) there cannot be any other processor scheduled and thus at most one processor

is scheduled.

Theorem 2.
The function A(m) has the following relationship with S(m, c),

Hm)=min{k| S(m— 1, Vg DS Simyvp)},m= 1.2, .. (8)

Proof.
We prove this theorem by contradiction. Assume that m = n is the smallest value of m that violates

cquation (8). There are two cases:

Case 1. S(n -1, l'h(")_*_]) > S(n, vh(n)) (9)

I'rom remark 3 we know that (», "h(rl)) is a stable state. Consequently, from l.emma 4, n is an SI
policy when applicd to (n, vy ”)) and F(n(n, "h(n)))= S(n, "h(n))' However cquation (9) shows that
the throughput is improved by scheduling P/t(A1 This contradicts the fact that (n, vh(n)) is stable

and therefore S(n— 1, Yi(n)+ P < Sn, Yi(n))‘

2. Analysis 14

Casc 2. S(n—1, rh(”)Jr])s S(n, vb(”)) and there exists a k< /Mn) such that
S(n—1, "k+l)3 S(n, vp).

Iet k& be the minimal processor index value so that Case 2 is true. Wec first suppose that
k < h(n—1). We will show that this leads to a contradiction. We have the following expressions

for S(n—1,vg) and S(n, vp).

Kt 1
Stn— "”"+"=<TJ?1171{IT> Zl,z, [1+max{S(n— 2,05), Stn— 1, vy | — N1, (10)
r=

k
Sin, wy) = (—“‘(—]k) ’Zl,t,. [1+ max{S(n— 1, v), S(n, v, — e}]. (11)

By our choice of k& we know that S(n— 1, v)= S(n, v;_|) and, by lLemma Lb, that
S(n, vi_1)= S(n,vp—e,) for | <r<k— 1. Hence S(n— 1, V)= Sn, v —e) for 1<r<k-1.

Using this we can rewrite equation (11) as

Uy
S(n, vg) = m [1+ S(n=1, v)]. (12)
By our choice of n and because k < A{n— 1), we have S(n— 1, vp) < S(n— 2, Vi+1)- Using this in

equation (12) leads to

Uy

S(n, Vk) < m

[T+ S(n—2, vy 11 (13)
The following relationship is casily shown. Upy ([(A+ Upy)= Upl(A+ Up) Hence, since

S(n— 2, vy)< max{S(n—2,vg4 1), S(n— 1, vy 4 | — ¢)}, cquations (13) and (10) yield

Ui

S(n,v) < ————
(k) 1+ Uk+l)

[l + S(n"' 2, Vk_*_l):] S S(n“ l, Vk_'_l)

which is a contradiction that k < A{(n — 1). Thereforc it must be the case that k> A(n— 1). Since
k < I(n) it must be the casc that (n,v;) is unstable. If we apply n as a threshold policy to state
(n, vg) we will schedule Ppyy first. The resulting state is (n—1,vg,) which, because

2. Analysis 15

k- 1> hn— 1, is stable. This implics that S(n, Vi) < S(n—1, vg, 1) which contradicts the as-

sumption of Casc 2. Therefore it must be the case that cquation (8) is truc.

As a result of Theorem 2, the following algorithm can be used to obtain the thresholds

1

Gi=1,2, N,

Algorithm

I. Initialize.

7']:=l
k:=1
m:=0

2. Main Loop.
while k# N do

m=m+ 1

while S(m, vi) < S(m— 1, Viy-1) do
ki=k+ 1

7'k: =m

3. Stop.

k
The function S(m, v;) is given by the recursive expression, S(0, vi)= ¥ ud(u,+ 4),

r—
S(m, vg)=0, and for m> 1,k > 1,

S L__ &0 Sim— 1,), S § i

Sm, v = 4= 0o ’E,lu,(+ max{S(m— 1,v), S(m, v _])+j=§_I i+ 7 1)

Define my, to be the smallest integer such that A(my) > k and A{m) < k for m < my,. The fol-
lowing theorem shows that my, < oo, fork=1,2, ..., N. As a consequence, the preceding algorithm
is guarantced to halt in a finitc number of steps. last, although not described here, we have im-

2. Analysis 16

plemented the above algorithm in such a way that the number of states (m, vy) that we must con-

sider is proportional to mpy and independent of N,

Theorem 3.

For cach processor Pp, k=1,.,N therc exists an integer my < oo such that Almy)>k and

h(m) < k, m< my,.

Proof.

We prove the theorem by contradiction. Assume that Pk, k < N, is the slowest processor satisfying
h(my) = k, my, < oo and that processor P/, +1 is never scheduled, Am)=k, m> my,. From the FAP
property this implics that the optimal policy, =n, never schedules processors
Pk-i—j' j=1,2, ., N—k let j/(+[be a threshold policy with thresholds T;=1,i<k+1, and
Ti=o00,i>k+ 1. Our proof consists in showing that

+1
lim (F (m, vg)—E(m, v)) > 0 (14)

m-—on

which contradicts the optimality of = and shows that processor P +1 must be scheduled in the

optimal policy.

To show this we first establish an upper bound on /{(m, v;). Clearly, since by assumption 7 does
not schedule processors j, j> k, this system cannot process as many jobs before the deadline as a
k
single processor system with a processing rate ¥, pt;. Thercfore,

=

I(m, vp) < Uvp)] 4 (15)

2. Analysis 17

We next show that

Jk-l-l
lim 2 (m, vz Uy)i (16)

m=—oo

which establishes equation (14) since Uvg) < Uvgy 1) To show cquation (16) let
g = Ulvgy PIA + U(vg4q)) and define p(m) to be the probability that there arc i departures before
the deadline when using policy jk + on an inilial statc (m, vg). It is clear that

] . . 1
pm)= ql(l —¢), i< m. The number of departures before the deadline for policy /k + from state

(mm, vy) satisfics the following

Jk+| mt-k m—1
r (m, vp)= Z ip{m) > Z in{fm) m>0 17
i=0 i=0

Equation (16) follows by taking the limit as 1 — oo in equation (17).

2. Analysis I8

3. Comparison of Threshold Policies

In this section we compare three different threshold policics to determine their performance
characteristics. We use these policies as heuristics for minimizing the expected job response time

with Poisson arrivals. The three policics we consider are

I. Tastest Available Scrver (FAS) Policy - In this policy, cach threshold has valuc one,
Ti=1,i=1,...N. In the casc where there are two or more available processors, jobs arc

scheduled to the fastest processor. The performance of this policy was studied in Cooper

(1976).

2. Minimum Flow Time (MFT) Policy - This policy was shown to minimize the expected flow
time for a collection of jobs on N servers Agrawala ct al. (1984). We shall usc this as a heuristic

. . vy sth e . .
for the N server system with arrivals. The i threshold, T';, 1s given by the lcast integer that is

i—1
greater than or cqual to 7;=(& pMu;—(i—1), i=1,..,N.
r=0

3. Greedy Throughput (GT) Policy - This is the policy derived in Scction 2 and thus maximizes
the mean number of job completions from the system prior to an exponcntial deadline where,
for this casc, the deadline is considered to be the time until the next job arrival. The thresholds

are given by the algorithm given in Section 2.

For a given sct of processors, we compare the performance of these policics by plotting the
mean delay (queucing plus service) of cach policy as a function of the arrival rate of the system,
denoted by A. We also plot an unachicvable lower bound on the expected response time which is
obtained by solving a queue length dependent M/M/ | system where the service rate when there are

min(n, N))
n jobs is given by ¥ n; We use the exact analysis found in Cooper (1976) for the FAS policy
i=1

and usc simulation for each of the other policics. For each simulation point we also show ninety

percent confidence intervals.

3. Comparison of Threshold Policies 19

3.1 Performance Results

In this section we compare the delay performance of the three policies described in the previous

section. We concentrate on systems where the relative rates of the servers have a wide spread.

Figure 1
_ Comparison of Policies for
Relative Rates of 8, 4, and 2
al !
s /)
I 1/
—+— GREEDY THROUGHPUT 17
ol e.. MINIMUM FLOW TIME /3
sl --»- SCHEDULE FASTEST EERVER
P
]
— O
2 sl NINETY PERCENT
CONFIDENCE INTERVALS
gt .
=, + NON-ACHIEVABLE LOWER BOUND
2
N
o
o I] | I]] |
0 4 8 12

In Figure | we have shown the delays that are obtained when there are three servers with geomet-
rically deccreasing rates of 8, 4, and 2. Shown in the Figurc arc thc mean delays for cach of the
policies obtained from simulation with nincty percent confidence intervals. In looking at the graph
one sees that for these relative rates there is not a substantial difference between any of the three
policics. ‘This results from the fact that the thresholds for the threshold policies are not large. In
particular for MFT the thresholds are arc 1,2 and S for all input rates and are all equal to | for

FAS. The threshold valucs for various input rates for GT are given in Table 1.

3.1 Performance Results 20

A Thresholds

TN NN w9 -

Table |
Thresholds for Relative Rates of 8, 4, 2

Figure 2
_ Comparison of Policies for e
Relative Rates of 12.6, 1.26, and .126 i
3t
i
[—— GREEDY THROUGHPUT /Y
© we: MINIMUM FLOW TIME /
sl ~-v-- SCHEDULE FASTEST SERVER /
m [£
o
a° NINETY PERCENT : 1Y/
. CONFIDENCE INTERVALS l--"
@ B Y
= + NON-ACHIEVABLE LOWER BOUND P +
>
Wt
o
o 1 1 I 1 1 1]
0 4 8 12

In Figure 2 the spread of the service speeds are again geometric but this time by a factor of 10 in-
stead of 4. The sum of the scrvice rates of the three servers remains 14. Threshold values for the

MFT policy are 1, 10 and 108.

3.1 Performance Results 21

A Thresholds

1,7,30
1,515
1,4,11
1,49
1,3,8
1,37
1,1,2

—_— O g N -

[

Table 2
Thresholds for Relative Rates of 12.6, 1.26, .126
In this case we find a startling difference in FAS from that of the other policics. Initially one might
think that the very large delay value for the arrival rate of 3.5 was in error but this rather anomalous
behavior can be readily explained by the fact that FAS schedules even the very slow server (the one
with a rate of .126) in conditions where thc mean dclay of the system would be decreased if cus-

tomers waited until the fastest scrver became available.

Figure 3
Comparison of Policies for

. Relative Rates of 5.18, 4.14, 2.07, 1.55, and 1.03 i
<[i
—+— GREEDY THROUGHPUT i
- .- MINIMUM FLOW TIME i
-+~ SCHEDULE FASTEST SERVER I
mf
2 NINETY PERCENT H
CONFIDENCE INTERVALS &
g i { +
= + NON-ACHIEVABLE LOWER BOUND
L
[~}
o | 1 ! 1 1 |]
0 4 8 12

3.1 Performance Results 22

In Figurc 3 we have increased the number of scrvers to five and have chosen relative rates of
100, 80, 40, 30 and 20 normalized to sum to 14 so as to be comparable to the previous Ifigures.

We show the thresholds for the GT policy in Table 3. The thresholds for the MFT policy arc

1,2,4,6 and 10 respectively.

A - Thresholds

Table 3
Thresholds for Relative Rates of 5.18, 4.14, 2.07, 1.55, 1.03

The GT policy cxhibits better performance than MIFT. ‘This is due to the fact MFT is not greedy

enough.

3.1 Performance Resultls 23

4. Future Research

There are extensions of the model presented in this work that are of interest. One extension
would concern the scheduling policy that maximized the number of job completions before a
deadline for a system in which the scrvers differed not only in speed but also in their capacitics.
This would more realistically model a disaster evacuation in which the transport vchicles had dif-
ferent loading capacitics. Other extensions concern the relaxation of the exponential distribution
assumptions for both servicing rates and for the deadline. As the memoryless property of the ex-
ponential distribution was nccessary in our derivation of the optimal policy, this extension appears
to be mathematically difficult. In a computer system it is often possible to preempt jobs from
service. Associated with preemption, however, is a non-zero cost (the time necessary to move
preempted jobs) that results from the overhcads of process switching. Extending our model to in-

clude precmptions with this cost is an interesting problem.

4. Future Rescarch . 24

References

Agrawala, A., Ii. Coffman, M. Garcey and S. Tripathi. 1984. A Stochastic Optimization Al-
gorithm Minimizing Fixpected Flow Times on Uniform Processors. 1EEE Transactions on

Computers, Vol. C-33, No. 4, pp. 351-356.
Chow, Y. and W. Kohler. 1979. Models for Dynamic 1.oad Balancing in a Ileterogeneous

Multiple Processor System. IEEE Transactions on Computers, Vol. C-28, No. S, pp. 354-361.

Cooper, R. 1976. Qucues with Ordered Servers that Work at Different Ratcs. Opsearch, Vol.

13, No. 2, pp. 69-77.

Kumar, P. R. and Walrand, J. 1985. Individually Optimal Routing in Parallel Systems. .J.

Appl. Prob., Vol 22, pp. 989-995.
Larsen, R. and A. Agrawala. 1983. Control of a Ileterogencous Two-Server Exponential

Queucing System. [EEE Transactions on Software Engineering, Vol. SE-9, No. 4, pp. 521-527.

Lin, W. and P. Kumar. 1984. Optimal Control of a Queueing System with Two Ileteroge-

neous Servers. | EEE Transactions on Automatic Control , Vol. AC-29, No. 8, pp. 696-703.

Nelson, R. and Towsley, D. 1984. Approximating the Mcan Delay of a Multiple Server Qucue
using Threshold Scheduling. IBM Research Report RC 10912, To be published in Oper-

ations Rescarch.

Rubinovitch, M. 1985. The Slow Scrver Problem: A Queue with Stalling. /. Appl. Prob. Vol

22, pp. 879-892.

Walrand, J. 1984. A Note on Optimal Control of a Qucucing System with two Iletcrogeneous

scrvers. Systems and Control Letters Vol 4, pp. 131-134.

Weber, R. 1982. Scheduling Jobs with Stochastic Processing Requirements on Parallel Ma-

chines to Minimize Makespan or Flow Time. /. Appl. Prob., Vol. 19, pp. 167-182.

Weiss, G. and M. Pinedo. 1980. Scheduling ‘Tasks with Iixponential Service Times on Non-

identical Processors to Minimize Various Cost FFunctions. J. Appl. Prob., Vol. 17, pp. 187-202.

References 25

