e

(-}

Analysis of the Effects of Delays on Load Sharing

Ravi Mirchandaney
Electrical and Computer Engineering Department
University of Massachusetts

Don Towsley and John A. Stankovic
Department of Computer and Information Science
University of Massachusetts

COINS Technical Report 87-100
February, 1987

Analysis of the Effects of Delays on Load
Sharing *

Ravi Mirchandaney Don Towsley
ECE Dept., U. Massachusetts COINS Dept., U. Massachusetts
Ambherst MA. 01003 Amherst MA. 01003

John A. Stankovic
COINS Dept., U. Massachusetts
Amherst MA. 01003

February 1987

Abstract

In this paper. we study the performance characteristics of simple load shar-
ing algorithms for distributed systems. In the system under consideration, it is
assumed that non-negligible delays are encountered in transferring tasks from
one node to another and in gathering remote state information. Because of
these delays. the state information gathered by the load sharing algorithms
1s out of date by the time the load sharing decisions are taken. This paper
analyzes the effects of these delays on the performance of three algorithms that
we call Forward, Reverse and Symmetric. We formulate queueing theoretic
models for each of the algorithms operating in a homogeneous system under
the assumption that the task arrival process at each node is Poisson and the
service times and task transfer times are exponentially distributed. Each of
the models is solved using the Matrix-Geometric solution technique and the
important performance metrics are derived and studied.

“This work was supported, in part, by the National Science Foundation under grant ECS-8406402
and by RADC under contract RI-44896X

1 . Introduction

Distributed computer systems possess many potentially attractive features. Some
of these are the capability to share processing of tasks in the event of overloads
and failures. reliability through replication, and modularity. This study focuses on
the issue of sharing computation power between nodes of a distributed system in
response to imbalances in loads.

It will be assumed that tasks arrive at the nodes in a random fashion. Thus, situa-
tions can develop whereby some of the nodes are excessively busy while others are
idle at the same time{LIVN82|. This kind of situation is detrimental to performance
because tasks at the busy nodes experience very high waiting times, while the less
busy nodes have idle cyles at the same time. The function of load-sharing is to
minimize the occurrence of such scenarios by moving tasks from overloaded nodes
to less busy ones.

Distributed load balancing has been an active area of research for sume time. For ex-
ample, StonelSTON78b,STON78a], Bokhari{BOKH79] and Towsley[TOWS86] ex-
amined static algorithms that utilized information only about the average behavior
of tasks in deciding their assignments. Tantawi and Towsley[TANTSS] investigated
an optimal probabilistic assignment scheme. Silva and Gerla[dSeS84| determine an
optimal load sharing strategy under the assumption that the nodes and the com-
munication network can be modelled as product form queueing networks. Recently,
Lee'LEEST! studied the effects of task transfer delays on simple algorithms that do
not utilize any remote state information.

Eager et.al. EAGES6| evaluated three simple load sharing schemes. They assume
that the entire overhead due to load sharing is transferred onto the CPU and is
modelled as an increased load on the same. Further, the nodes are assumed to be
part of a local area network connected by a high bandwidth medium. Thus, there

are no delays in transferring tasks and remote state information is always perfectly
accurate.

impact on load sharing has not been investigated in any great detail. In this paper,
we focus on the effect of communication delays upon the performance of simple
load sharing algorithms. We feel that this problem is interesting in that there exist
a sufficient number of system architectures that will generate significant delays in

task transfers. For instance, Theimer et.al. THEI85!, report their concerns with
task transfer delays. Furthermore, they have acknowledged that if the files used by
a task were to be transferred (as they might have to be if the nodes were disk-based),
the effect of delays would become even more prominent (the V-System is currently
comprised of diskless workstations). Also. the question of how to deal with out
of date state information has been one of the many interesting developments in
designing algorithms for distributed systems as investigated in Stankovic[STANSS5|.

[n this connection, we have developed analytical models that help us better un-
derstand the 1bove issues. Various relevant performance metrics are derived from
these models and the load sharing algorithms are compared on the basis of these
metrics. By studying the results obtained from the model solution, we are able
to determine the exact effects of delays and out of date state information on load
sharing in general. Furthermore, we are able to determine the range of delays and
traffic intensities over which state information is worth gathering and useful load
sharing can be performed.

The remainder of this paper is organized as follows: In Section 2, we provide a brief
description of the system architecture and the load sharing algorithms. Section 3
comprises the description of the Markov process corresponding to the Symmetric
algorithm and its Matrix Geometric solution. The analysis corresponding to the
Forward and Reverse probing algorithms will only be described in brief. This is
because the analysis of Symmetric subsumes that of Forward and Reverse. In
Section 1. we describe the important results of this research and we summarize
our work in Section 5. Finally, Appendices A and B describe the internals of the
matrices involved with the solution of the Markov processes.

2 System Architecture and Load Sharing Algo-
rithms

2.1 System Architecture and Motivation

Processing and transmission of communication messages for state updates (probes)
and for tasks can potentially generate considerable overhead at the nodes. Different
system architectures can impose very different costs for these overheads. At one
end of the spectrum, nodes can have dedicated processors to handle communication

overheads, supported by a very high bandwidth fiber-optic bus communication. On
the other end of the spectrum. nodes can be multiplexed between application tasks
and communication packet processing.

We have made the following assumptions about the system that we will be consid-
ering. The architecture of the individual nodes includes a powerful Bus Interface
Unit(BIU). which is used to Process most of the overhead generated by task and
probe movement. For instance, the BIU will have a DMA capability to access main
memory without much interference to the CPU.

While the bulk of the overhead processing for task transfer is transferred to the BIU,
delays will nevertheless occur during this processing. There will also be network
delays in the transmission of probes and tasks. We are interested in studying the
combined effects of these delays. Furthermore, we believe that it is reasonable
to assume that the relative sizes of tasks and probes will be quite different. The
physical transfer of a task may require tens of communication packets, while a
probe or a response to one would in all likelihood need at most one packet. Thus,
it is reasonable to imagine a ratio of 50:]1 or more in the relative sizes of tasks vs.
probes. Consequently, it appears that the delays incurred by tasks in the BIU’s
and the network will be significantly larger than those incurred by the probes. In
our analysis, the delays incurred by probes will be assumed to be negligible when
compared with those incurred by task transfers.

2.2 Load Sharing Algorithms

The three algorithms that we have studied in the context of this research are called
Forward, Reverse and Symmetric. Each algorithm is provided with a threshold T.
The algorithms are described in the following few paragraphs.

e Forward: The algorithm is activated each time a local task arrives at the
node. If the number of tasks at this node (including the task currently being
executed) is greater than T + |, an attempt is made to transfer the newly
arrived task to another node. A finite number, L,, of nodes (usually L,=2
or 3 is adequate) is probed at random to determine a placement for the task.
A probed node responds positively if the number of tasks it possesses is less
than T + 1 and it is not already waiting for some other remote task. If more
than one node responds positively, the sender node transfers the task to one
of these respondents, picked at random. If none of the probed nodes responds

4

positively, i.e.. this probe was unsuccessful. the node waits for another local
arrival before it can probe again.

* Reverse: This algorithm is activated every time a task completes at a node
and the total number of tasks at the node is less than T + 1 and the node is
not already waiting for a remote task to arrive. If so, the node probes a subset
of size L, remote nodes at random to try and acquire a remote task. Only
nodes that possess more than T + | tasks, (including the currently executing
one) can respond positively. If more than one node can transfer a task, the
probing node chooses one of these at random from which it requests a task.

* Symmetric: This algorithm combines the two schemes of Forward and Re-
verse. Thus, if a node goes above T + 1 upon the arrival of a local task, it
attempts to transfer a task and if it drops below T +1 upon a task completion,
it attempts to acquire a remote task.

In all the algorithms described above, it is assumed that probing takes zero time.
This is based on the initial assumption that probes are much smaller entities than
are tasks. Thus, the overhead for processing a probe at the BIU is much smaller
than for tasks. Further, probes occupy much less of the communication bandwidth
than tasks. Thus, the entire delay is assumed to occur during actual task transfer.
Furthermore. we have seen in separate studies (not described in this paper) that as
long as the ratio of task transfer times to probe transfer times is sufficiently large
(2 30), the system essentially behaves as if the probes actually take zero time. We
are currently investigating this phenomenon in greater detail.

'3 Mathematical Analysis

It is assumed that the task arrival process at each node is Poisson, with parameter
A. Also, the service times and task transfer times are assumed to be exponentially
distributed, with means 1/u and 1/4, respectively. The task transfer time includes
the time between the initiation of a transfer from a node and the successful reception
of the task at the destination node. The nodes are assumed to be homogeneous, i.e.,
the nodes have identical processing power and the arrival process at each node is
the same. Tasks are assumed to be executed on a First-Come-First-Served (FCFS)
basis at each ncde.

Let .\',[" be the number of tasks at node : at time ¢ and J,[') be the probe state of
node 1, at time t. The probe state indicates whether the node is probing or being
probed. etc. For example, in a system of M nodes, the instantareous state of the
network can be represented by the 2M-tuple

. . M
(‘\«,(”,‘\‘,‘2’,......-V,‘M’:J,‘”,J,‘”,....J,‘))

If the probe state J* is defined appropriately then, due to the Poisson arrival
assumption and the exponential service and task transfer times, the process corre-
sponding to the above state description is Markovian.

It is clear that the model has a very large state space and is difficult to solve, even
for moderately sized systems. Consequently, we decompose the model such that
the model for each node can be solved independently of the others (EAGES6|. The
interactions between the nodes which result in task transfers for the purpose of load

tems are of relatively small size (= 10 nodes). Thus, the approximation is likely to
be even better for larger systems.

The analysis of the algorithms is performed using the Matrix-geometric solution
technique NEUTS1| which yields an exact solution of the mode] for each node. The
model for the Symmetric probing algorithm will be described in detail. However,
the analysis of the Forward and Reverse algorithms will only be described in brief,
with a presentation of the main performance metrics.

The material in this Paper involves several Jacobi matrices, whose detailed defini-
tions will be provided as in Latouche[LATO81|. A matrix such as

F br) Cy 0 0
a, bl Cy 0
0 Qg bg Ca
a"It°2 bm—2 cm,—z 0
0 Am -1 bm—l Cm-1
0 0) bm |
will be displayed as
f €y € €m-3 Cm-2 Cm-)
! bo bl b2 bm-—? bm-l bm
1 e ay a3 Gm-1 Gm

Figure 1 represents the state diagram for the Symmetric algorithm operating at a
single node using an arbitrary threshold T. The state of the node is represented by
a tuple (N, J;), where NV, is the number of tasks at a node and J; is the probe state
that indicates if the node is either probing, being probed, neither of the above, or
both. The probe states have the following codes:

¢ 0: if not probing and not being probed,

o 1: if reverse probing,
o 2: if being forward probed,
e 3 : if reverse probing and being forward probed.

The actual representation of this process takes the form of an infinite cylinder.
"owever, for ease of description, we have chosen to open out this cylinder and
consequently, the row corresponding to probe state 3 is duplicated, once as the top
row and again as the bottom row in Figure 1. In 3-Space, the top and the bottom
rows would be merged together.

We define

y(n,j) = lim P(N,=n, Jy=j),0<1n,0<5 <3,

Pn = (¥(n,0).y(n.1),y(n.2),y(n.3)), 0 < n,

P = (Po.P1, P2y P .-o).

If the Markov process (Ve, Jt) is ergodic then P is its steady state probability vector
satisfying pQ = 0. where @ is the infinitesimal generator of this Markov process.
@s. the infinitesimal generator for the Symmetric algorithm, has the structure of a
block-tridiagonal matrix of the form

(' BO[BOl' Bo] Ao AQ ...'
Qs = Boo Bu Bu 321 Al Al
1 Bio B ... Bio Ay A; A,

where we define the matrices By, Boy, Bio, B11, Bay, A, A, and Ao in Appendix A.

In the subsequent discusssion, 4 is the probability of failure in finding an assignment
for a spare task in response to a set of forward probes. Thus, A = 1 - h, is the
probability that at least one of the probed nodes will accept a remote task. Also, ¢
is the probability of failure in finding a remote task for a set of reverse probes, and
§g=1-gq

The effect of a node sending a forward probe when it goes above T +1 is represented
by the transition Ah. When the node makes a transition anywhere below T + 1 on
the completion of a task, it sends out reverse probes in order to get a remote task. A

successful transition is represented by ug and an unsuccessful set of reverse probes
is represented by the transition ugq.

Thus, on the completion of a task when the node goes below T + 1, it sends out
reverse probes, if it is not already waiting for a remote task to arrive in response
to an earlier reverse probe. A transition of this type is represented from (n,0) to
(n - 1,1) or (n,2) to (n — 1,3), where 0 < n < T + 1. When a remote node sends a
forward probe into this node, it makes the transition from (n,0) to (n,2) or (n,1)
to (n.3), where 0 < n < T. This means that the remote node is going to transfer a
task to this node, on the basis of a successful probe. The rate of receiving forward
probes is denoted by a. The rate at which this node sends out tasks in response

8

to nodes that asked it for tasks is u'. Thus, the rate at which a node makes the
transition (n,j) to (n - 1.j), for n » T ~ 2 equals u ~ u'

As can be seen from the generator Qg, the Markov process has a regular structure
comprised of the 49, 4, and A; matrices, preceded however by the irregular bound-
ary conditions. The size of the irregular portion of the matrix depends upon the

threshold at which the process is operating. There will be exactly T — 1 columns of
the matrices (By, By, Byo).

NeutsiNEUTS81| examined Markov processes with such generators and determined
the conditions for positive recurrence when the infinitesimal generator A = Ay +
A1 = Aa, corresponding to the geometric part of the Markov Process, is irreducible.
However. for our problem, A is lower triangular and reducible. In such cases, the
stability criterion has to be determined explicitly.

Consider the non-linear matrix equation
Ao+ RA + R*A; =0

such that R is its minimal non-negative solution. It can be shown that R is lower
triangular. given the structure of 4, 4; and A, [NEUT81|. Furthermore, R = [r,;],
where

rn, = 0.71<y
6 — (6% — 4(u + p')AR)V/?
rha = '
2(u +u')
§+—((6+7) - 4(u+u')An)/?
r = T ITNW\ T TR TREIA
22 2(u +)
rzz = T2
. b+ 2y ((6+ 29)% — 4(u + u'),\h)‘/z
“oo 2(p + u')
N 2
1 6 — (riy+r22)(p+4u)
r3a = 2
r3'2 = O
= (rearza +rearsa)(ps + #‘)
b 6 — (rig +raa)(p +u)
vy
T A= (raztres)s + ©')
T43 = T42

where 6 = (Mh = 4 +).

Thus. the diagonal elements of R can be written explicitly in terms of the pa-
rameters of the Markov process. Once the diagonal elements are determined, the
elements below the diagonal are computed recursively from the solution of the dj-
agonal elements.

By adapting Theorem 1.3.1 from NeutsiNEUTS81|, the Markov process Qs is posi-
tive recurrent if and only if sp(R) < 1 and the matrix M (defined below) possesses
a positive left invariant probability vector. Because R is lower triangular, its eigen-
values are its diagonal elements. One can show that sp(R) < 1if

Ah < p+ u'
The matrix M, given by

| By, ... By Boy
1 Boo Bu ... By By + RA,
b Blo Blo aee BIO

is an irreducible, aperiodic matrix. The second condition holds because of the
irreducibility of M. The vector (PosP1y ..., Pr+y) is the left eigenvector of M.

[ntuitively. the stability condition means that the rate of processing tasks (including
the ones that are sent out of this node) is greater than the total arrival rate of tasks
into this node. Thus, on the average, whenever there are more than T + 1 tasks ata
node. the process drifts towards the boundary specified by the threshold T. Similar
analysis may be carried out for the Forward and Reverse probing algorithms, with
the appropriate substitution of parameters.

We now assume that all the values of all the parameters are known. First, the
boundary conditions are determined, by solving a system of linear equations. Thus
for an arbitrary threshold T, we have

R

By, ... By By,
(PosP1s ey Pre1) | Boo By ... By By+RA; | =0
By By ... By

where the number of columns in the matrix is exactly T + 1. We know from
NeutsiNEUTS81] that if the process is positive recurrent

Pi = pr RT*1 vy >T +1

10

Thus,

,_\: P - prall - R)_'
v T

Also.
T

2P -pra(l - R) Ve=1

s =t)

E V', the expected number of tasks at a node, and E[D], the expected response
time of a task, are given by the following expressions:

EINl = > ipie

121

T
Prei(l - R)7*e+ T« [pro (I - R)“'e] + > ipse

1=1
(E(.'V? + E&f:lo'u—-lnj)
A

E'DI =

where Total-Flow-In is the flow into a node of remote tasks due to forward and re-
verse probes. Ir the next subsection, we derive the equations required to determine

the values of the unknowns 4. ¢, u' and « and describe the iterative algorithm used
to solve the resulting model.

3.1 Computational Procedure

Initially, it is assumed that the values for k,q, ' and a are known and the model is
solved using these values. In a typical step, a model solution is used to derive new
values for k,q, u and a, and a new solution is computed. The iteration procedure
that we use is described in a step-wise form, after the following definitions.

e FFRO : Flow rate out of tasks, as a result of forward probes made by this
node.

e FFRI : Flow rate in of tasks, as a result of forward probes made to this node
by other nodes.

11

¢ RFRO : Flow rate out of tasks. as a result of reverse probes made by other
nodes to this node.

* RFRI: Flow rate in of tasks. as a result of reverse probes made by this node.
Let : denote the iteration count. Thus. A", ¢".u™ o FFROW RFRO denote
the value of the variables after the i-th iteration.

Iteration Procedure

L. Let : = 0; choose values for (0 g0 k'O 0 FFROO RFROW
2. Determine Q") from A" g0 4"t} o(0)

3. Determine R

4. Solve the linear system corresponding to the boundary conditions
5. Determine FFRO"*!) and RFRO"*! from the model solution

6. If ABS(FFRO"*Y _ FFROM) < ¢ and ABS(RFROUY _ RFROW) < ¢,
where ¢ is an arbitrary small number, stop, else

. Leti=1~1. Goto 2

We have observed from experiments that the solution was insensitive to the initial
values chosen for the unknown quantities. Consequently, we conjecture that there
exists a unique solution to the model. Further, the number of iterations was usually
small. ranging between 10 and 30.

Because of the assumption of homogeneity and because of the symmetric nature of
the algorithm

FFRO = FFRI and, RFRO = RFRI.

To determine a, we use the relation FFRO = FFRI, where

FFRO = Ath.—e,
T

FFRI = a3 p,{1100|T,
+<T

12

Here, h can be represented as h = rl+ where, L, is the number of nodes that are
probed and z is the probability that a particular node will respond negatively to a
torward probe. This is given as

=) p;[0011)" + 3 pee.
1<T >T

Also,z =1l ~-zand h=1- A,

Thus,
_ FFRO
~ T.rpi[1100]T

To determine p', we use the relation RFRI = RFRO, as follows:

RFRI =) p;[0101]T 4,

i>0

where 1/ is the mean delay in receiving a remote task. Thus, RFRI denotes the
total flow.in due to reverse probes made by this node.

RFRO=y4" Y pe

i>T+1

Thus.
' RFRI
=

Yist+1Die

To determine ¢, the probability of a set of reverse probes resulting in failure, we use
the following procedure:

Let

y= Z pie

1<T+1

If the node probes L, nodes to receive a remote task, then the probability that all
of them will be unsuccessful is denoted by: g = y%», and § = 1 - ¢ is the probability
that at least one of the reverse probes is successful.

13

3.2 Forward and Reverse

As mentioned in section 1, we will only briefly describe the analysis for the Forward
and Reverse probing algorithms, because these algorithms are in some sense sub-
sumed by the Symmetric algorithm. F igure 2 represents the state diagram for the
Forward probing algorithm operating at a single node using an arbitrary threshold
T. The state of the node is represented by a tuple (N,,J,), where N, is the number
of tasks at a node and Ji is the probe state that indicates if the node is being
forward probed or not. The probe states have the following codes:

® 0: if not being probed,

¢ | : if being forward probed,

The infinitesimal generator matrix corresponding to this process is:

" Bor ... Boy By Ay A
QF =i Bo By .. By Ay A A
Az A2 ves Az Az A2 A2

with exactly T - 1 columns of (Bor, Buy, 4,).

Figure 3 represents the state diagram for the Reverse probing algorithm operating
at a single node using an arbitrary threshold T. The state of the node is represented
by a tuple (N, Ji), where N, is the number of tasks at a node and J, is the probe
state that indicates if the node is either probing or not. The probe states have the
following codes:

¢ 0: if not probing,

® 1: if reverse probing,
The infinitesimal generator matrix for this process is:

Ao ... A Ay Ay A,
Qr=| By By .. By B, A, 4
By By .. By A; A, A

14

with exactly T — 1 columns of (Ao, Byy, Byo).

All the parameters for the Forward and Reverse probing algorithms have the same
meanings as their counterparts in the Symmetric algorithm. For instance, x' in
Reverse probing is the rate at which a node sends out, tasks in response to reverse
probes made by other nodes, as in the case of Symmetric probing.

The computational procedure for both these algorithms is very similar to that for
the Symmetric probing algorithm, which was described earlier in this Section in
detail. The model is solved iteratively in both cases. The unknown parameters in
the case of Forward are a and h and in the case of Reverse, the unknowns are x' and

q. The internals of the matrices of Forward and Reverse are described in Appendix
B.

In both of these cases, initial values of the unknown parameters are used to solve the
model. Based upon this solution, new values of the parameters are determined. The
iteration continues until the stopping criterion has been satisfied. It was seen that
the iteration was insensitive to the initial values chosen for the unknown parameters.
Further, the number of iterations was usually small, between 10 and 20.

4 Performance Comparisons

[n this section, the performance of the three load sharing algorithms will be com-
pared to each other and to two bounds, represented by the no-load-balancing
M/M/1 model (also referred to as NLB) for K nodes and the perfect load sharing
with zero costs, i.e., the M/M/K model. Wherever relevant, we will also compare
the algorithms against a Random assignment algorithm, which transfers tasks based
only upon local state information. This algorithm is similar to Forward in the sense
that a node that goes above T + 1 transfers a task. However, the node does not
send any probes. Instead, it picks a destination node at random and transfers a
task to this node. The key performance metric for comparison is the mean response
time of tasks.

A large number of parameters such as the service time, the threshold T, the probe
limit L,, the communication delay 1/v, the number of nodes in the network etc.,
can affect the performance of load sharing algorithms. In this connection, we will
try to present the results that we believe are the most relevant. The presentation
will be in the following sequence:

15

e Validation of the analytical results with simulations.

Nominal comparisons between the algorithms.

Relation between delays and thresholds.

¢ Optimal response times as a function of delays.

Optimal thresholds as a function of delays.

Unless specifically mentioned otherwise, L, =2 in all the runs. Also, S = 1/u and
C = 1/4 are the means of the service time and task transfer delay, respectively.
Further, it will be assumed that § = 1 unit and all measurements of response times
will be in terms of this unit.

Validation with Simulations

We mentioned in Section 2 that the decomposition used in this paper is only an
approximate solution which is conjectured to be exact for infinitely large systems.
Thus, it is important to determine how well this approximation compares to sim-
ulations of finite sized systems. The simulation model consisted of 10 nodes in all
Cases except when p = 0.9, where the mode| consisted of 20 nodes. Figure 4 depicts
a representative set of curves regarding this study.

Because the simulation results were almost identical to the analytical model, we
have chosen not to depict the actual sample means of the response times from the
simulations. Instead, the 95% confidence intervals of the simulation results are
Presented, as computed by the Student-t tests. On the average, the confidence
interval for the response time is about +0.015 units about the sample mean. The
only exception to this is at p = 0.9, when the confidence interval is about +0.165
units about the sample mean.

We have observed (results not presented here) that in most of the cases, the vari-
ation between the simulation results and the analytical models is less than 2%.
Furthermore, the model is almost invariably optimistic, compared to the simula-
tion results. The maximum variation that we observed was about 15%, and such
numbers were very infrequent and were seen to occur at low communication de-
lays and high loads (p > 0.9). As the delays increase however, the model tends
to become more accurate. In any case, for loads < 0.8, the model is a very good
approximation, even for reasonably small systems. In cases where the variation was
more than 2%, it was seen that by increasing the size of the simulation system to 20

16

nodes, the results generated better agreement with those of the analytical model.
For instance. the variation at p = 0.9,C = 0.1S, which was about 15%, decreases
to about 3% for a system of 20 nodes.

Comparison of the Algorithms

In an earlier study by Wang and Morris| WANGS5), it was postulated that at low
traffic intensities, Forward probing is likely to perform best, while at high traffic
intensities, Reverse would be more suitable. However, it was not known exactly
where one policy became better than the others, especially when there are significant
communication delays involved.

Another factor that takes on a degree of importance in this comparison between
algorithms, is that of probe overhead. While we have assumed that probes take
zero time, there is the potential for the probes to interfere with other messages,
especially if they are generated in large enough numbers. It has been shown in
IMIRC87| that the Symmetric algorithm generates probes at a higher rate than do
Forward and Reverse. While we have not included the effects of such overhead in
our model thus far, this aspect of the study is currently under progress.

Figure 5 shows the performance curves of the algorithms for C = 0.1S and T = 0.
From this figure, we can make the following observations:

o At low delays and low loads (p < 0.5), Forward performs essentially like
Symmetric but Reverse is worse by as much as 30%. This can be explained
by the fact that in most cases, Reverse is ineffective in load sharing as most
nodes will not have a spare task. Thus, the Reverse component of Symmetric
does not improve its performance over Forward.

e At moderate loads, Symmetric performs much better than both Forward and
Reverse, by as much as 20%, while Forward and Reverse are about the same.

o At high loads (p > 0.9), it is seen that Reverse is better than Forward by
a substantial margin of about 25% while Symmetric is still the best overall,
being better than Reverse by about 25%.

o At all the loads tested, there appears to be a substantial gain in load sharing
as opposed to NLB. This is true for all three algorithms. However, the
improvement is much more pronounced as the load increases. For instance, at
p = 0.9, the response time for Symmetric is about 2 units whereas the NLB
response time is 10 units, a significant difference.

17

* As may be expected, the algorithms perform worse than the exact M/M/K
model. However, Symmetric generates close performance to the M/M/K
model. For instance, at p =09, M/M/K results in a response time of 1.3
units while Symmetric generates 2 units.

Figure 6 shows the performance curves of the algorithms for C = 2$ and (T =2).
From Figure 6, we can reach the following conclusions:

e For moderate communication delays and low to moderate loads (p £0.7), the
behavior of the three algorithms is virtually the same. It would appear that
the delay overhead predominates at these loads.

* At moderate loads, (p = 0.8), Symmetric is about 10% better than Reverse
but almost identical to Forward.

® Only at very high loads (0 > 0.9) does Symmetric actually perform signifi-
cantly better than both Forward and Reverse.

* In comparison with NLB, it is seen that at low loads (p < 0.5), there is little if
no improvement by load sharing. However, as the load increases, load sharing
becomes more viable. At p = 0.9, Symmetric generates a response time of 3.5
units as opposed to 10 units for NLB.

* The comparison against the M/M/K model is not very flattering at high
delays, as might be expected. For instance, Symmetric at » = 0.9 is about 2.5
times worse than the M/M/K value of about 1.3 units.

Thus, one can conclude that at moderately high delays, the performance of the three
algorithms is virtually identical. A surprising result though is that Symmetric is
significantly better at very high loads.

All the subsequent discussion is based on the results obtained from the Symmetric
algorithm. Unless explicitly mentioned otherwise, the conclusions reached are also
applicable to Forward and Reverse. In cases where the performance of these algo-
rithms is markedly different from that of Symmetric, a separate discussion will be
provided.

18

Delays vs Thresholds

Figures 7. 8 and 9 show the response times for the Symmetric algorithm tested over
a wide range of communication delays and thresholds, for the traffic intensities of
0.5.0.7 and 0.9. It can be seen from Figure 7, that at low delays (C = 0.1S), the
optimal threshold is 0 and the performance is a monotonically increasing function
of the threshold. Also, the response time generated at T = 0 is only about 20%
worse than the exact M/M/K value for moderate loads (p £ 0.7). For example, at
p = 0.7, the Symmetric response time is about 1.3 units whereas the exact M/M/K
value is approximately 1.04 units. Further, the NLB resonse time for this load is
3.3 units, which is much worse than the performance of the Symmetric algorithm.
The performance improvement due to load sharing in this case can be explained by
the following arguments: ' ‘

e At low delays, the cost of transferring a task is much lower than the potential
improvement due to the effect of load sharing. Thus, T = 0 permits very
active load sharing.

¢ Because the delays are small, much greater certainty exists in the knowledge
that an idle node will continue to remain idle during the time it takes to
transfer a task to it. Thus, in some sense, T = 0 ensures that all task transfers
are useful in that a remote task arrives at the node soon after it becomes idle.

For moderate delays (C = S, Figure 8), the behavior is as follows: Even at p = 0.5,
there is a gain of about 22% from load sharing. For instance, the best response
time at this load is about 1.56 units while the corresponding N LB performance is 2
units. The improvements over NLB by load sharing at higher loads are even more
substantial, being as high as about 73% for p = 0.9. The NLB response time in
this case is 10 units whereas the optimal Symmetric value is about 2.7 units, as can
be seen from Figure 8. Further, T = 1 for p = 0.5 and 0.7, while T = 2 for p = 0.9,
are the optimal thresholds.

When the communication delays increase to the order of 10S (Figure 9), it is seen
that the best that can be achieved for p = 0.5 is the NLB performance which is 2.0
units response time. Thus, it would be appropriate to turn off load sharing here.
For p = 0.7, a small gain of about 5% is seen, at T = 5. This impovement is small
enough that if the interference of probes could be accounted for, the best strategy
might very likely be to turn off load sharing. However, at p = 0.9, the reduction
in response time from the NLB is about 40% and this occurs at T = 6, where the

19

Symmetric response time is about 6.0 units. In any case, the response times at high
delays are significantly worse than the M/M/ K values as might be expected. For
instance, at p = 0.7, the M/M/K response time is 1.04 units whereas the best load
sharing value is about 3.1 units.

Optimal Response Times

The purpose of this set of tests is to determine the best possible performance of
the algorithms under a very large range of transfer delays, ranging from as small as
1/100 S, to as large as 100 S. Thus, in this study, one can assume very fast local
area networks will form one end of the spectrum and slow, long-haul networks the
other end. Figure 10 shows the results of the tests for the algorithm.

The response time in each case is normalized by the M/M/1 response times. Thus,
a lower ratio indicates greater improvements as a consequence of load sharing. Cor-
responding to each curve representing a particular traffic intensity, there is a curve
for the performance of the Random assignment algorithm, to be used as a baseline.
From the figure, one can see that at low delays (< 1/2 S), the gain from load shar-
ing is quite substantial, at all traffic intensities considered. Further, the gains are
greater for higher loads. At loads of 0.9, the response times are 0.25 times those for
the no load sharing case.

As can be seen from the curves representing the performance of the random as-
signment, there is a definite advantage in probing. However, as the delays increase,
(> 1S), this advantage of probing seems to disappear. Random with a suitable
threshold is able to perform as well as any probing policy, giving the impression
that the state information due to probing is so out of date as to not really be useful.
Also, the best that can be achieved in lower traffic intensities (< 0.5) is no better
than the M/M/1 response time at these delays. However, there is still a marked
improvement in the performance of load sharing at higher loads, for example at 0.8
and 0.9. The remarkable fact that should be noticed here is that even at delays
as high as 100 S, there-is about an 8% improvement over no load sharing for traf-

fic intensity 0.9. We postulate that at higher loads, this effect will be even more
prominent.

Optimal thresholds

Figure 11 indicates the variation of the optimal thresholds corresponding to the
optimal response times indicated in Figure 10. Note that the thresholds are low at
lower delays and get higher as the delays increase. Further, this effect is seen to

20

be more prominent at higher traffic intensities. At p = 0.9, the optimal threshold
varies between 0 when the delay is 1/10S and 25, when the delay is 100S. The
variation is significantly lower at low loads.

5 Summary and Conclusions

This study was concerned with the performance analysis of simple load sharing
algorithms in the presence of significant task transfer delays. The three algorithms
that we tested were called Forward, Reverse and Symmetric. The analysis of the
algorithms was carried out using the Matrix-Geometric solution technique. -

The Markov process of the entire network appeared to be computationally in-
tractable. Thus, we employed a decomposition technique to solve the Markov
process. While this resulted in an approximate solution of the original system,
it was seen by means of simulation studies, that the variation between the exact
and approximate solutions was minimal for systems of 10-20 nodes. Consequently,
the analytical solution is likely to be more accurate for larger systems. This leads
us to hypothesize that the decomposition is an exact solution of the system in the
limit as the number of nodes tends to infinity.

The three load sharing algorithms were tested over a large range of parameter
values. Some of the salient observations that we made were as follows:

* There is considerable difference between the performance of the three algo-
rithms at low to moderate delays (< S), with Symmetric providing the best
results. As delays increase, the algorithms tend to provide almost identical
performance, especially when (D > 105). Further, at such delays, Random
assignment performs as well as any probing scheme, leading us to believe that
at moderate to high delays, probing is wasted effort.

¢ At high delays (> 10S), the optimal response times are no better than those
for the NLB case, leading us to believe that load sharing is not useful in
such situations, for low to moderate loads. However, at high loads (p > 0.9),
susbtantial benefits accrue from load sharing even at these delays.

¢ Reverse probing is outperformed by Forward over most of the range of loads
tested, except when p > 0.9. While Symmetric is the best of the three al-
gorithms tested, it does have the potential for generating high probing over-

21

“

heads. Given these observations, Forward would appear to have even greater
applicability if realistic overhead costs might be assigned to probes.

The benefits of load sharing are more pronounced at high loads (p > 0.8).
This is evidenced by the fact that the percentage reduction in response times
in these cases is greatest over the corresponding N LB values.

At extremely high loads p = 0.9, it is seen that about 8% reduction is achieved

over the corresponding NLB response time, even when the delays are as high
as 100S.

The optimal threshold was seen to be a function of the load and the task
transfer delay. At low delays, the optimal threshold was 0 for all the loads
tested. However, as the delays increased, the optimal threshold increased
correspondingly, becoming about 24 for p = 0.9 and delay = 100S.

Appendix A

In this appendix, we give closed form representations of the matrices Ay, A,, A, and
the matrices By, Bo,, By, By;, and By, for the Symmetric probing algorithm.

—{a+ A) 0 a 0
B — 0 -(a+v+1) 0 a
00 0 ~(v+) 0
0 0 0 —(2v+4)
A 00O
7Y A 00
Box = Y0 A0
0 v 4 2
kg ng 0 0
0 o 0 O
By =
T 0 0 g oug
0 0 0 4.

22

B, = 0 ~(v+o)] 0
- 0 0 ~(v + o) 0
0 0 0 —(27+0)
A0 0 0
4 Yy AR 0 O
o Yy 0 A 0
0 v v Ah
-6 0 0 0
4, =9 ~(v + 6) 0 0
: 0 0 ~(7 +6) 0
0 0 0 —(2v+9)
Ay = (u+),

where
§=(Ah+u+u),

o= (A+u),
and I, is the identity matrix of size 4.

Appendix B

In this appendix, we provide closed form representations for the matrices in the
case of the Forward and Reverse probing algorithms.

Forward

—(a+A)

Bm:[0 -hilﬂ

~(a+ A+ p) a

Bu = 0 —(k+y+A)

=) pi[01)T + 3 pe

i<T >T

which is the probability that a node will respond negatively to a forward probe.

Thus, T =1 - z is the probability that a node will respond positively to a forward
probe.

If a node probes L, nodes, then the probability that the set of probes results in
failure is

A, = —(u + Ah) 0
v 0 —(u+ AR +79)

Ay = uly

where [, is the identity matrix of size 2.

Also, R = [r; ;] can be written as follows:

"y = Ah/u
0+ - ((0+7) - durn)/?
22 =
2u
ru = 0
0
r2a1 = T

24

where 6 = Ah + 4. It can be shown that the stability criterion for the Forward
probing algorithm is
Ah < p.

Reverse

To determine g, the probability of a set of reverse probes resulting in failure, we use
the following procedure:

Let

V= Z Pie

1<T+1

If the node probes L, nodes to receive a remote task, then the probability that all
of them will be unsuccessful is denoted by: g=y"*,and§=1-gqis the probability
that at least one of the reverse probes is successful.

B”":[HOA —(»\Oﬂ)}
B, - [ﬂoq :;q
Bu = [_(“0+ . —(u+0~r+A)
w=]33]
A [_(NIOJF i —(p +0A+'y)

Az = (u+u)h

25

Also, R = [r, | can be written as follows:

riao= A ()
e = 2T (B4)~ 4+ p)A)
2(u +u')
rn2 =0
B
rap1 =

é—(r1q + raz)(pn + ©')

where ¢ = A ~ 4 + 4", It can be shown that the stability criterion for the Reverse
probing algorithm is
A<u+up.

Acknowledgements The authors would like to thank the referees for their valuable
comments. In particular, one referee pointed out the flaw in our initial analysis
pertaining to the reducibility of A and suggested the correction that appears in this
paper.

References

{BOKHT79| Bokhari, S., “Dual Processor Scheduling With Dynamic Reassign-
ment,” [EEE Trans. Soft. Engg., Vol. SE-5, No. 4, July 1979.

'dSeS84| de Souza e Silva, E. and M. Gerla, “Load Balancing in Distributed
Systems With Multiple Classes and Site Constraints,” Performance
84, , pp. 17-33, 1984,

'EAGES6| Eager, D., E. Lazowska, and J.Zahorjan, “Adaptive Load Sharing in
Homogeneous Distributed Systems,” IEEE Trans. Soft. Engg., Vol. SE-
12, No. 5, pp. 662-675, May 1986.

[LATOS81] Latouche, G., “Algorithmic Analysis of a Multiprogramming-
Multiprocessor Computer System,” J. ACM, Vol. 28, October 1981.

[LEES87| Lee, K. J., Load Balancing in Distributed Computer Systems, PhD the-
sis, ECE Dept., University of Massachusetts, February 1987.

(LIVN82] Livny, M. and M. Melman, “Load Balancing in Homogeneous Broadcast
Distributed Systems,” Performance Evaluation Review, Vol. 11, No. 1,
pp. 47-55, 1982.

26

'MIRCS87|

NEUTS81]

'STANSS|

'STON78a)

'STONT78b)|

[TANTS3]

| THEIS5)

I TOWSS86|

'WANGSS|

Mirchandaney, R., L. Sha, and J. A. Stankovic, “Load Sharing in the
Presence of Non-Negligible Delays,” 1987. in preparation.

Neuts, M. F., Matriz-Geometric solutions in Stochastic Models: An Al-
gorithmic Approach, Mathematical Sciences, Johns Hopkins University
Press, 1981.

Stankovic, J., “Bayesian Decision Theory and Its Application to Decen-
tralized Control of Task Scheduling,” [EEE Trans. Computers, Vol. C-
34, No. 2, pp. 117-130, February 1985,

Stone, H., “Critical Load Factors in Two Processor Distributed Sys-
tems,” IEEE Trans. Soft. Engg., Vol. SE-4, No. 3, May 1978.

Stone, H., “Multiprocessor Scheduling with the Aid of Network Flow
algorithms,” IEEE Trans. Soft. Engg., Vol. SE-3, No. 1, May 1978.

Tantawi, A. and D. Towsley, “Optimal Static Load Balancing in Dis-
tributed Computer Systems,” J. ACM, Vol. 32, pp. 445-465, Apr. 1985.

Theimer, M., K. Lantz, and D. Cheriton, “Preemptable Remote Exe-
cution Facilities for the V-System,” Proceedings of the 10th Symposium
on Operating System Principles, December 1985.

Towsley, D., “The Allocation of Programs Containing Loops and
Branches on a Multiple Processor System,” [EEE Trans. Soft. Engg.,
Vol. SE-12, pp. 1018-1024, October 1986.

Wang, Y. and R. Morris, “Load Sharing in Distributed Systems,” I[EEE
Trans. Computers, Vol. C-34, March 1985.

27

Figure 1. Symmetric Probing

Figure 2. Forward Probing

seee

T.IL u (P-{-l,l ‘H_“' (r+2.ll”+#‘
N’ L S’

Figure 3. Reverse Probing

"

0

®© W3 o0 WLWo ™

® B =3

Figure 4. Validation with Simulations

4.0+ /

1.0 + ' : $: : : ! ; : +—
0.0 035 040 045 050 0.55 0.60 065 0.70 0.75 0.80 0.85 0.90

Traffic Intensity

Delay=0.18
............... Delay=S
----- Delay=10S8

T Confidence Interval

@ w 3 OO ®w e
[+]
T

Comparison

of Algorithms

1]

1 qu
.

Figure 5.
'
,
.
'
1]
'
'
!
'
I

,
’
4
4
s
rd
4
4
e
.
-
.
-
.
-
.
PRt
,.—-‘
R B
o P

o Y

- -

. _ po—

ROy
1 L L 1 N .) l
']
89 o9.88

’ - - - - -
- - -
1

l"’ : L] T L] L] L L] T
36 0.49 0.46 O0.50 9.56 9.8 3.85 2.70 9.76 O.

8.26 9.30 a.
Traffic Intensity
Symmetric
-~ Forward
Reverse

]

® @ 32 0V w o X

Figure 8. Comparison of Algorithms

715‘- t

8.oT k
§.5T !

5.0T i

i i 4 i 3 3 i 4 i i i i 3 I
1 r g |

- T ¥)] Li T ¥ T T ¥ v 4
9.20 9.26 0.3 3.36 2.40 8.46 0.50 0.56 9.60 9.65 9.7 9.75 0.80 .85 .90
Traffic Intensity

T Symmetric
Forward

o v P oT wa T

a -1

Figure-7.-Vartation-of-Threshoid-{Delay=0.18)

1) 4=

1.0+

3.0-

T
~

.......
......

1 L

l.G! d 4 L J I L
0

00.51.01.52.02.53.03

54.04.55.0556.0657.07

Threshold

................. - rtho=0.7

- - - -

rho=0.5
tho=0.9

5 8.0 8

5 9.0 9.510.0

w

o

a3~ 0ounudowwao'

Figure-S.-Variation-of—Threshold-(De!ay:S)

2.4+

L

2.21

9 O
1 .8+-\/
1.6+

1.4 + + t i ——t—t s N e S e ——
00(l5II)LSZIJ253I)&54i)&551)&56i)&57i)1581)&591)&51&0

Threshold

rho=0.5
.................. rho=0 . 7

oD CU wa D

S ey

Figure-Q.-Variation-of-Threshold'(DelayleS)

e
[

T

(7]
e
— -
/

>
2.
!’
1
U
]
\
\

-
-
- - - -

o o
- S

W

{
L
0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0 7.5 8.0 8.5 9.0 9.5 10.0

Threshold

[4]]

rho=0.5
................... rho=0.7

&

a1

-~ — ® 3 " o 2z

a & »n

® @« O 0 U w 0 D

55 8

"]
&
-+

GJFL

(]
R
— -

o
[

Figure 10. Optimgl Normaiized Response T

imes

N
S o
8-
-t

Delay es & Fraction of §

——

- - - -

1.009

rho=9 .6
rand
rho=z0.7
rand

10.009

A

199.000

wa—0Tuwe 1T o

Figure 11. Variation of Thresholds

18-'- ,.—" . ’:': a

et

14T e

12

4T

K

9.50 8.65 2.688 2.66 g.79 9.76 2.80 . 9.88
Traffic Intensity

Deliay=d.1S§
e Do lay=2S
""" Delay=20S
""""" Delay=480S
S Delay=689S
=== Delay=100$S

-

