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Abstract
The diamceter of a class of directed random graphs in which the outdegree of cach node is con-
strained to be exactly & is examined. The ares in the graph are selected as follows. Fach node con-
nects itself 1o & other distinct nodes with outwardly directed arcs, all possiblc sets of of & nodes
being chosen with equal probability. It is shown that the diameter of this random graph almost

surcly takes on only onc of two valucs.



1. Introduction

The connectivity and FHamiltonicity of dirceted random graphs on N vertices in which the out-

degree of cach node is constrained to be k has been studied by Fenner and ricze [ 2] and

McDiarmid [S]. They have shown that

1. If k> 2, the graph is almost surely weakly connected.

2. Ik=(t+e)ln N, £>0, the graph is almost surcly strongly connected and almost surcly

possesses a Hamiltonman cycle.

In this paper, we show that if k= cln N, ¢> 4.5, with probability — 1 as N = on the diameter

of the graph takes on onc of only two possible values- [log,{(k— DN + 1} -17 and

Mog,{(k - DN + 1)1, where TxT, is the smallest integer greater than or equal to x.

2. Some Useful Inequalities

A number of incqualitics that prove useful subscquently are listed here.

Mot Q) Q= [OF ]
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VaN T3 < N« V2N T2 Y exp( ) )

F'or a binomial random variable with paramcters 7 and p, define

n ,
Kn,ip)= ( )p‘(l - p)"_'.

!

Then
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Proofs of these incqualitics may be found in [3].

2. Outline of the Proof

The diameter of these random graphs is determined in the following way. Some node is sclected
as a root. A breadth first scarch trec is constructed from this root and is uscd to computce a lower
bound, ? on the diamcter in terms of N and 4. It is shown that this lower bound holds for all values
of k in some range (ky. ky). Upper bounds on the diameter arc then derived for the smallest and
largest possible value of k concommitant with the specified ? In the first case (k = k,) it is shown
that the diameter is at most : + 1, while in the second (k= ky), it is shown to be at most ’1\ I astly

we conclude that if k; < k < k, the diameter can take only these two valucs.

The technique used to prove the upper bound is shown in figure 1. For convenicnce, the root
node is given a label of 1. Nodes that lic at a distance i from the root node are referred 1o as the
nodes at level i. Node 1 is of course the only node at level 0. At every level, the number of newly

A
contacted nodes is estimated. At level i + | every node in the graph is shown to be contacted.



All nodes receive an edge at level f+1

Level f

4
Level -1

Level 1
Level O

Figure 1. Finding the diameter of a Random Graph.
3. The Proof
Lemma 1:
dG)= Tog(tk— DN+ 1) 11,47

Proof

Referring to figure 1, consider tracing links starting at node 1. As each node puts out k dirccted
edges whose endpoints are necessarily distinet, at level i we may contact at most k' new nodes. It

follows that the number of nodes contacted at levels 0,1, ... ,i can then be at most

A :
T'o lower bound the diameter, note that if a path is to exist to all nodes by level i but not carlier,

it must be that



- >N (4)
and
K=l (5)
k=1~ -

These may now be rearranged to give
dG)2 Togy{(k— DN+ 1) —11 2]
as required.

Observation 1.

The lower bound holds for all values of & in some range. This range is next computed. 1 .ooking

at (4)and ( §), two extremc situations can he identificd.

1 k:“ : = N and k{ : N 6
. ko an k1T~ (6)
2 'lé“ ! N and ki&l N-1 7
—— ~ —_———
. o1 > > N ang P . (7)

Clearly, k; and k, definc the range of k concommitant with the specificd value of 7. The diam-
eter is more likely to exceed the lower bound in situation | than in situation 2, as ky < ky. We shall
show that i the first situation, the diameter is almost surcly i 11, while in the second case it is
almost surcly i, As the diameter of this random  graph is a non increasing function of &, it follows

A A
that for k such that k; < k < k,, the diameter must be cither i or 7 4 1.



Lemma 2:

If ( 6} is satisficd and k = c/nN, then Ilm PrldGy=i _] = ().

N~scn

Proof:

Construct the random graph as follows. Starting at node 1, choose & endpoints at random and
join node | to them by a directed edge. From cach of these newly contacted nodes choose k
endpoints at random and once again join their “parent” node to them with directed cdges. If dG)
is not 1o exceed 7 cvery node other than node | must have an indegrec of 1. It is next shown that

by the time the first N -~ 1 edges are added, there is almost surcly a node with indegree greater than

D
T
)

N-1
k

.-’Jc_k

N

I.

Pri¥irst N-1 edges contact new nodes ] =

Ifk=cInN, lim PrlFirst N-1 edges contact new nodes] = 0, and the lemma follows.

—0on

Lemma 3:

I ( 6) is satisficd at lcast k% —1 new nodes are contacted at level 2.
Proof:

Clearly, the probability of wasting an cdge by contacting a previously contacted node is in-

creased if we sample with replacement, or choose edges independently. .-

2
Pl The i™ edge contacts a previously contacted node ] < ;/— ]l < —kN—_:-:- L l<i< k2

.
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Thercfore,

(=-1-n
(N- 1)

Pr 2 or more cdges contact previously contacted nodes ] < %

15i-j< k?
<k -1 ]2 (R)
N1

log® N
=27 )
N

ifk=clnN.

It immediately follows that at most | edge is wasted at level 2. As no edges can be wasted at level

1, we have that the number of newly contacted nodes at level 2 is at least k2 — 1 with probability
P

log*N
- (=27,
A/
Lemma 4:

A

If( 6) is satisfied, at level i, 3< i< L%J at most k cdges are lost at every level.

Proaf:

At level i there can be at most k° cdges available to contact new nodes. The probability of a specificd

i+1 i+1
edge contacting a previously contacted node is upper bounded by -(%- l_) NS at most 7—}'—

nodes can be contacted at levels up to and including i.

. it1
Let X be a binomial random variable with parameters &' and {i‘ ]—)—)\7 Thenfor 7> 0

Pri # of lost edges > 1< Pr{ X > 1)

F'rom ( 3) , it follows that



K l K ]k (9)

InN - NlnInN

From Stirlings approximation ( 2 ) and the fact that (In N) we sce that if

k=eclnN, c¢> 1 then % = ()(NlﬂlnlnN).

Lemma 5:

A

A ;
Teti>6and k=claN, ¢ > 1. Thenif (6)is satisfied, at level i, Ll?_] +1< is? -3, the number

of edges lost is at most k=2,

Proof:

Following the proof of [.emma 4, we may define a set of binomial random variables {X;} with

vers k' and Koo =1
paramcters k° and TR

These random variables have the property that
Pr[ # of lost edges at level i> 1]~ Pr{ X, > 1]

‘Then,
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- ‘,clnN
IHNI"N

- (XNr--InInN)
where the last step follows from Stirlings approximation.
Observation 2.

A
There is an N, such that for N > N, the probability of the loss at any level between LZ J and

A . i-2 ]
i — 3 exceeding k'™ ° = o N ).

Lemma 6

. . I I .
If(6)issatisficd. i > 6, and k= cIn N, ¢ 1, at level i —2 the number of edges lost 1s at most

A

K= o any fixed £ > ().

Proof:

Once again following the technique cmployed in the last two lemmas, we have

A
i 4

-

N k
P # of lost edges at Jevel i RN S I [ L]

k
¢ k
[#]

Ask=cinN, ¢~ 1,( 12 ) can be further bounded to give

10



2 ¢
I # of lost edpes at level ;\ 52N LR ALl P _N
: bﬁVrhN (|3)
- Nc—tInInN

Obscrvation 3.

For any fixed &£>0, there is  an  Nyr) such  that  for N> Nyx),

Pl # of lost edges at level P2a K Rl PR I‘:/‘ ).

Lemma 7

—24¢

A A 2
Ifi > 6, at level i —1 the probability that the number of edges lost cxceeds k' for any fixed

£>0is ONTPNyit k= cln N, e~ 1.

Proof:

Identical to that of l.emma 6.

Observation 4.

For any fixed &3>0, there is an  Nie) such  that  for N> Nye),

P # of lost cdges at level Pl kM= —,:7- ).

Lemma 8:

A A
For sufficiently large N, if i > 7, at lcast 99k’ ~! new nodes arc contacted with probability

l—n(#)atlcvcl?--l.

Proof:

This follows from the last three lemmas. The number of new nodes contacted at every level is

computed as follows.

At level 0 we contact | new nodc.



n

Atlevel 1 we contact k& new nodes.
2
At level 2 we contact at Icast & — 1 new nodes.

At level 3 we contact at least (k2 — Dk - k= kY - 2k new nodes.

A /‘ .
If continued upto level i -3 we find that the number of nodes contacted by level i -3 is lower

bounded by

A

We can weaken the bound by adding terms to get
A [ I,\ A A
Number of nodes at level i —3> & 7 —(r%1 ——l)kl Skt
» 14
-3 _r i 1 i-s k- 0
B =1 - 2—— 2
> t7'-n K=
lemmas 6 and 7 may now be uscd to give
A P 3 » U T A
Number of nodes at level i —1> &' ! . (r--z—1 —k -—k—-'--— — KA gl
rin (15)

sl 2 I | |

B h=Dxk? K2

A
Notice that i grows as log log N while k grows logarithmically with N. If k = c/nN, for any fixed
¢ the bracketed term in (115 ) is an increasing function of N. It follows that for any fixed £ > 0 there

is an Ny(c, €) such that for all N > N4. the bracketed term is greater than .99.

I N> max {N. Ny5), No(r), Ny(c, £)}, this incquality holds with probability 1 - o % ).
Lemma 9:

Y

. A
Wk=clnN, c21, at lcast 49k ncw nodes are contacted at fevel i with probability

1— o —){,— ) for sufficiently large N.

12



Proof:

A
I'rom the last lernma, under the conditions stated above, at least 994 ~! nodes are contacted

A . - | . .
at level i -1 with probability 1 of - N ). Each of these nodes puts owt k edges and therefore there

~

H A
{ . o
are at least 994" edges available to contact nodes af level .
Of course, not all of these edges will contact new nodes. A given edge may be wasted in onc
of two ways:

A
1. It may contact a node that was contacted at level i —1 or lower, or

A
2. It may contact a node at level i that has alrcady been contacted by some other edge.
We shall call the the first kind of loss a hacktracking loss and the sccond kind an overlap loss.

For any fixed 6 > 0

oqk' ? 1 el
Pl Backtracking loss exceeds 5/( 1« (k I
[ (16)
6( ln 9— ] —inin
_ ofn "
For any fixed >0, there is an Ns(6) such that for

N > N¢(8), Prl Backtracking loss exceeds okil=o % ).

The overlap loss is bounded indirectly. The number of nodes that arc not contacted at level i
is upper bounded, resulting in a lower bound on the number of nodes that arc contacted. By doing
so we avoid the need to estimate the number of nodes that reccive more than onc edge. Now,

"
f i ;
k vk 9%

Prl # of uncontacted nodes > pk' ] < A - . (17
yk! N

78
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A

The binomial cocflicient is the number of different sets containing yk' nodes, while the term that

follows it is the probability that none of the nodes in a specified set receives an edge. (117 ) can be

simplificd using ( 1), (3) and the fact that &' < N 10 give

A
i "

’ K\ 99k’
Prl # of uncontacted nodes > yk ] < ~ (1 =y)
{

vk

Y ? A 2 3 4
§ Yk - gi, Y M4 y
ol KTl KOTer + Sang * Tieass N
= : (1-y)
yk't

| y2 y' y! 9 | ¥
_ 1V _ __ _ oy
= [( Y ) Xy ~ 798 ~ SRRo6 ~ Treas X1 oW ]

Ify=.504

A
i

4 k
Prl # of uncontacted nodes > .504k' ] = (X.99956 ) (18)
~ (X.99956").

A

A . A
It follows that we must almost surcly contact (1 - .504)k° = 496k’ nodes at level 7. These
496k nodces include those to which cdges are lost due to backtracking, and this loss must be ac-
counted for. Clearly, we can find an N, such that for N> N,

P # of nodes contacted < 496k’ ] = o —# ).

Now let £> 0 be fixed, & = .006 and N > max {N), Nyfs), Ny(s), N,. Ns(.006), Ng). Then we

confact at lcast (.496 — .0()6)ki = 4% new nodes at level ;\ with probability 1 - ,%; ).

Theorem:

A
If ( 6)is satisficd . : 27, and k= clIn N, ¢ > 4.5, then for sufficiently large N, dG) =i +1 with

probabhility 1 — o(1).

”

99k’

i



Proof:

,

A i . o 1 - .
At level i at Teast 494" nodes were contacted with probability. 1 of — ). ‘These nodes in turn

N
N A
put out k cdges each, giving us at least 49k edges with which we can contact nodes at level i + 1.
i N
As N= ,./S_k__l:.'_‘ there must be an Ny such that for N> N, k' > 99N, implying that for

N> N, 2 nax (N}, Nyfe), Ny(r), N N5(L01), Ng. N3} at least 49 x 99N = 4RSIN cdges arc avail-

able to contact nodes at level i 4 1 with probability 1 — o % ).

A
We now contend that at level i 1 every node in the graph receives an incoming edge. To show

this, we need the following result duc to Von Mises [4] which can also be found in Feller {1l

If r balls arc placed into N boxes so that all possible configurations arc equiprobable
( i.c. have probability -;:7 ), and if Nexp(— —I:,— ) is bounded, then as N — oo the probability that

all the boxes are filled is asymptotically equal to exp( =N exp( - —l’\'l- ).

In our problem r= .4851N » 4.5InN = 2.1829N/nN, so that if N > N,

Pr[ Every node reccives an cdge at level i +1] > exp( =N cxp( — 2.1829/nN)) — o % )

= exp(-N""") - o ) (19)
1= N"‘"m—n(—,!l )

A
It immediately follows that the longest path from any node ( say 1) is at most i +1 with
probability at least 1 — NIy % ). As any node could have been chosen as the root node,

we have that

l’r[d((?)s? F1]> 1= N [INTHR9, n(—/:/ Y]

=1-ol).

(20)

: . A
In lemma 2, it was shown that the diameter was almost surcly at lcast as large as i +1. It follows

A
that the diameter is exactly i +1 with probability 1 — o(1).

[
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Observation 5:

In the case when (7 ) s satisfied, a virtually identical argument shows that A¢G) - i with
probability 1 — o(1). As the diameter is a non increasing function of & it must bhe that for interme-

A A
diatc values of k, d(G) =i ori 4 I.

4. Summary:

The diameter of a class of random graphs has been investigated. It has been shown that if
k=cinN, ¢> 4.5, for sufficiently large N the diameter takes on onc of only two values. Explicit
calculation shows the various constants Ni.... Ny to be quite Targe. Simulation studics, on the
other hand, show that the asymptotic behaviour is exhibited for graphs that contain as fow as a
hundred nodes or so. Interestingly, even for very small N the diameter hardly cver exceeds i + 2.
We belicve this result to be truc for all fixed ¢ > 1, though we have not been able to prove it. The
difficulty arises at level ’i\, where the bounds on the losses are very weak, and consequently it be-

A
comes impaossible to prove that cvery node receives a link at level 7 + 1.
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