<+~
'

TOKEN-BASED EXTRACTION OF
STRAIGHT LINES

Michael Boldt and Richard Weiss

COINS Technical Report 87-104

October 1987

This work has been supported by the following grants: AFOSR-86-0021, DARPA N00014-
82-K-0464, NSF DCR-8318776, and NSF DCR-8500332.

TOKEN-BASED EXTRACTION OF STRAIGHT
LINES

Michael Boldg Richard Weiss

Dept of Computer and Information Science
University of Massachusetts, Amherst, MA 01003

*This work was funded by grants from DARPA (N00014-82-K-0464) and NSF (DCR-8318776).

TAddress correspondence to: Richard Weiss, Dept of Computer and Information Science, University of
Massachusetts, Amherst, MA 01003, or by computer, mail to weiss@umass.csnet

ABSTRACT

In this paper we outline an approach to intermediate-level processing which uses symbolic
tokens and relational measures between them as the basis for grouping. The first part
of the paper develops a computational framework for bottom-up image abstraction using
zero-, one-, and two-dimensional tokens, i.e. points, lines, and areas; starting with the
generation of tokens from the image, and followed by the creation of a hierarchy of levels
of abstraction. Each abstraction step from one level to the next either groups several tokens
into a single one (e.g. replacing a set of parallel lines by an area-token), reduces tokens
(e.g. replacing a long, thin area by a line-token), or eliminates less significant tokens.

While grouping depends on the density of tokens and their features like contrast and
color, often the most important property is their geometric configuration. Ways to reduce
the computational complexity of the grouping processes are studied, and in so doing the
advantages of a symbolic approach over other low-level vision methods are developed.

The second portion of this paper describes an implementation of collinear grouping
for straight line segments, which is developed within the general abstraction framework
of this paper. The initial line segments are generated from gradients at the position of
Laplacian zero-crossing contours. The next step is repeated in a hierarchical fashion: a
graph structure of linked lines is formed based on relational measurements between pairs
of lines, this graph is searched to find sequences of lines which can be fit by a straight line,
and the sequence of lines is replaced by a single line if the error in the fit is small. The
relational measurements are endpoint proximity, orientation difference, lateral distance,
overlap, and contrast difference. The results of the algorithm are shown for a variety of
natural scene images.

1. Introduction.

The subject of this study is the construction of a symbolic, two-dimensional descrip-
tion of arbitrary images. The framework of grouping developed here fits within many
different larger frameworks for image interpretation. For example, the VISIONS system
at the University of Massachusetts is a general system for knowledge-based interpretation
of natural scenes, such as house, road, and urban scenes {10,12,23]. The general strategy
is to build an intermediate symbolic representation of the image data using grouping pro-
cesses which do not make use of domain-specific knowledge. A partial interpretation is
constructed from the intermediate-level data by associating an object label with selected
groups of the intermediate “primitives” or “tokens”. The object labels are used to acti-
vate portions of the system’s knowledge network related to the hypothesized object. Once
activated, the procedural components of the knowledge network direct further grouping,
splitting and labelling processes at the intermediate level to construct aggregated and re-
fined intermediate structures which are in closer agreement with the stored symbolic object
descriptions. Within the VISIONS system, this forms the foundation for a three-level rep-
resentation with the low-level for pixel-based images, an intermediate-level for tokens, and

a high-level representation for object hypotheses. The construction and grouping of tokens
which is decribed here is part of the intermediate level of symbolic processing.

The grouping process also corresponds roughly to the full primal sketch proposed by
Marr {19], but differs from it in two major aspects: it is not viewed as part of a model for
the human visual system, and its descriptors are expected to be elaborate enough to be
used directly by matching and other high-level interpretation processes. Marr, on the other
hand, assumed that the primal sketch would be used only to construct the 2 1/2-D sketch
and that the main purpose of a visual system was the recovery of the three-dimensional
structure of a viewer’s environment. Ile proposed four major representational stages within
his model for the human visual system:

1. image;
2. primal sketch (organization of the image; two-dimensional);

(a) raw primal sketch (token formation process);

(b) full primal sketch (grouping processes);
3. 2 1/2-D sketch (description of visible surfaces; three-dimensional, viewer-centered);

4. 3-D model representation (description of shapes, organization of shapes; three-dimensional,
object-centered).

The function of the primal sketch was to provide cues for the next representational
level; i.e. how a surface behaves in three dimensions, such as the recovery of likely surface
orientation and depth discontinuities. Vision was basically seen as the inverse of the
image formation process. However, our philosophy is fundamentally different. The view
taken in our paper and also expressed by Lowe [16] is that a complete three-dimensional
reconstruction of the objects is not necessary for many of the tasks in computer vision, and
in some cases is impossible. For example, since object recognition often can be achieved
even from a line drawing or other symbolic representation, it does not seem to require
a 2 1/2-D sketch or a three-dimensional model. On the other hand, having a detailed
analysis of the two-dimensional structure of a single image or a sequence of images would
be useful for any of the subsequent stages of processing. Even for model-based recognition,
a representation of the two dimensional features of a three-dimensional model should lead
to faster matching.

Two major tasks of computer vision are navigation and object recognition. To navigate,
one needs to know where objects are in space, not necessarily what they are. For recognition,
the case may be reversed; the viewer usually does not need to know how far away each
part of an object is to recognize it. For example, human observers are able to easily
recognize objects from a line drawing, and are very good at recognizing two-dimensional
shapes like letters. Moreover, the human visual system has no difficulty in dealing with
both tasks simultaneously. We realize that a movie screen is flat, and at the same time

are able to easily recognize objects on the screen, objects which we know to be three-
dimensional. Whether we consider navigation based on stereo and motion processing or
recognition based on two-dimensional features, it seems appropriate to have a much more
powerful low-level system at the two-dimensional level than the one which Marr outlined.
First, it should create symbols that are easy to match with those describing stored models.
Second, it should also be able to support the quantitative processes of three-dimensional
shape description, like shape from shading, contours, and texture in defining boundary
conditions, or simply delivering contours and texture descriptors. An example of a system
which recognizes an object from symbolic line data without reconstructing surfaces is
SCERPO, implemented by David Lowe [16]. He uses grouping processes to find lines
which are collinear or parallel and uses those lines in a model matching process.

Section 2 of this paper describes the requirements of a low-level system, and Section 3
elaborates on how a full symbolic intermediate representation (full primal sketch), which
meets these requirements, might be computed. We present an argument for the early use
of symbolic descriptors in low-level vision, and formulate an appropriate computational
framework. We propose the creation of a hierarchy of geometric symbols, or tokens, by
essentially replacing groups of tokens at level L in the hierarchy by a single token at level
L + 1, where level in the hierarchy corresponds to an iteration of the grouping process.
In the replacement step, a perceptual radsus (or neighborhood) around each token is used
to search for groups of tokens that belong together according to Gestalt laws. These laws
rely heavily on geometric relationships among tokens and are based on the computation of
relational measures such as orientation difference or percent overlap for any type of linear
structure.

Repeated grouping leads to the description of image objects at multiple scales; however,
the approach taken here is different from the current notion of scale space [27], where scale
refers to the width parameter of the Gaussian function used to smooth an image and the
results of processing are plotted with resect to this parameter. In our approach, scale refers
to the range of sizes of tokens which are being processed.

Section 4 gives a demonstration of the practicality of the approach; the construction
of straight lines from image data is described, showing that a straightforward algorithm
which incorporates some nonlocal mechanism in a hierarchical fashion produces results
which compare favorably with those produced by the best of existing algorithms.

2. Computational issues for low-level vision.

Consider the Gestalt psychologists’ view: we see more often the whole rather than
its parts. Unfortunately, introspection can only access the outcome of the abstraction
processes, not their steps. In order to answer the question of how we get from local
information to large scale geometric structures, we need to look at the type of processing
that is required.

2.1 Why symbolic processing?

Low-level computer vision has often been viewed as image, or iconic processing (i.e.
the generation of new images from old ones by convolutions, thresholding, or pixel labeling
and so on), followed by some simple feature detection process. While iconic processing is
thought to simplify subsequent computation, it does not reduce the huge representational
gap between pixels at the low-level and semantic contexts at the high level. It seems
natural to gradually change the representation as the scope increases from simple image
events to complex groupings. This is fundamentally different from the approach which
computes a succession of fntrinsic images, e.g. surface orientation, reflectance, range, etc.,
as an intermediate representation [3].

Initial consideration of the following minimal requirements for a general low-level vi-

sion system will facilitate a more detailed discussion of the merits of the use of symbolic
processing:

1. data reduction,
efficient performance,

integration of distributed image events,

Lol

multiscale geometric description of image events.

2.2 Data reduction

In low-level vision, we deal with enormous amounts of data. Obviously, the information
has to be organized in such a way that the essence, or an overview, of the image structure
is available as well as a quick access to finer levels of detail. There are essentially two ways
of data reduction: filtering data and abstraction of data.

Let us consider two different types of filtering. The first is filtering via subsampling of
the original intensity image. Image processing pyramids have been used, e.g. by Burt [7] to
decompose an image into a set of bandpass images. An image at the level of a low-frequency
band needs fewer sample points, and in this sense is a version with reduced data. While the
result can be used in frame-to-frame matching, e.g. motion and stereo, it is not directly
useful for description. There is also a loss of useful information, and, for example, one

cannot rely on only low-frequency data for detecting boundaries. Variations in lighting
can create low-frequency changes which are not significant, while important fine lines
show up only in the high-frequency spectrum. In addition, low-resolution images normally
cannot help to find geometric relationships, since low-pass filtering destroys the necessary
spatial accuracy which is especially needed to group small objects. Smoothing the image
does not produce anything which describes the structure of the pattern. Simply removing
the high-frequency information does not solve the problem of reducing the amount of data
while maintaining the useful structures.

A second method of filtering is performed on a symbolic level to eliminate tokens which
do not satisfy certain constraints. The criteria often used are size (for regions) and length,
contrast, and orientation (for lines). This type of filtering can be used in conjunction with’
other processes in either a top-down or bottom-up approach. However, by itself, filtering
via constraints on token attributes is not reliable for finding significant events for a wide
range of domains [10]. Filtering only removes tokens, and it is often necessary to create
new ones which are more complex and more likely to be significant.

The process of abstraction is another approach for reducing the amount of data. Unlike
filtering it involves replacing a group of objects by a single object, or a complex object by a
simpler one. For example, consider a checkerboard. What we would like as a description of
the checkerboard is something like this: “the smallest meaningful units are squares; those
squares lie on straight lines; the lines form a regular pattern covering a certain area.”
Note the increasing scale in size and abstraction for the descriptions, which are all valid
simultaneously. They are symbolic, based on geometric relationships. We want to create a
hierarchy of symbolic structures, where each level in the hierarchy has less data than the
next lower level. The process of data reduction can be viewed as creating more abstract
descriptions, rather than the process of reducing the spatial resolution of an image.

Searching for the appropriate abstractions which provide this capability for data re-
duction is still a difficult problem. Our approach has been to try to capture structural
information, which is only part of the total information present in an image. This also
differs from filtering techniques such as the laplacian pyramid from which it is possible to
reconstruct the entire image. Leeuwenberg has formulated a measurement of conciseness
for representations of structural information; this seems to be related to the ease with
which humans perceive groups of lines as an object [15].

2.3 Efficient performance

When one considers the huge amounts of sensory data which must be processed and the
large number of significant image events which need to be detected for effective navigation
or object recognition, it becomes obvious that the low- and intermediate-level processes
need to be computationally tractable. Since the computing resources are limited, this
requires that in addition to reducing the amount of data so that there are fewer items
to process, the abstraction processes themselves should be made efficient. The process of

abstraction involves searching for events which can be described more concisely as a unit.
However, efficiency should not take place at the expense of generality.

Generalized Hough transform techniques are one way of performing rapid search and
are capable of finding certain parameterized structures (e.g. rectangles or circles) [1,2].
However, there are several reasons why the Hough transform is not a solution to the
general problem of finding efficient methods of processing for describing arbitrary images.
first, the number of different structures is essentially infinite; although we restrict our
interest to certain classes, like smoothly curved, compact, or repetitive structures, there are
huge numbers of such patterns and each variation would need to be recognized separately.
Second, Hough transforms ignore context (here we mean spatial or geometric context in
which the primitive is embedded rather than semantic context) like the distance between
tokens, or the location of other tokens that lie between the tokens to be grouped. For
example, two line segments which lie on the same line are grouped regardless of the distance
between their endpoints. To include all such parameters in a generalized Hough space
would increase the dimensionality beyond a feasible level.

This leads us to the question, “What is the necessary scope in the image needed to
detect ‘the whole’?” Surely it is not necessary to examine the entire image. On the other
hand, normally we can not just look at pairs of tokens (e.g. a token and a nearby neighbor)
to see if they form something meaningful. Depending on the type of grouping, there is a
“typical nonlocality” or context involved, leading to a minimal number of tokens, to form
a new, more compact geometric structure.

What does it cost to find a new geometric structure involving a symbolic object A?
The set of objects around A which are examined in this search is called a neighborhood.
Let us assume we want to detect the best combinations of A with its neighbors which
satisfy specific criteria. The amount of computation for blind search would increase very
rapidly with the number of objects : if we searched in areas with n neighbors around every
object, and looked for combinations of m objects, then the amount of computation would
be of the order C(n, m), which grows as n™. How can the search space be reduced? One
option is to reduce m, the number of objects which compose a new structure. This can be
done by building structures hierarchically. Another option is to reduce n, the number of
objects examined. This can be done by locally filtering the set of objects to be searched
based on object features or searching only in appropriate directions or areas. The effect of
these approaches is the reduction in the number of combinations in the neighborhood. In
addition processing each neighborhood in parallel will reduce the time considerably.

2.4 Integration of distributed image events

In general, one of the most important issues in intermediate-level processing is the
consistent integration of unreliable or ambiguous information across different and possibly
large parts of an image. The image events which provide evidence for objects are often
not present in contiguous pixels alone. While local processing in a small neighborhood is

necessary as the starting point, it is not sufficient. Figure 1a-d shows some examples of
how distributed image events need to be integrated. In this figure the events are perceived
as straight lines at some scales, but not at others. Figures 1a and 1b show lines which are
fragmented, but which seem continuous when viewed from a distance. Figure 1c shows
lines whose directions vary, but when viewed from a distance they are seen as straight.
Figure 1d shows a sequence of dots are perceived as a straight line. In fact the lines on this
page are composed of dots. In each of these cases the evidence for a straight line is not
present if processing is restricted to a small window; there are gaps and the orientations
are not equal. If we integrate the information present in a large number of these windows
which are properly aligned with what we perceive as the line, then the evidence is very
strong. The use of geometric context is this process of integrating distributed information.

2.5 Multiscale geometric description of image events

There are at least three possible meanings for the term scale. Here it refers to a range
of sizes with respect to the entire image. This is useful for describing image events or
processes. In our model of processing, computation for a particular token or image event
is restricted to a neighborhood whose scale can depend on the goals of the process and the
tokens already found. Processing is done at multiple scales because the same algorithm,
when applied to objects of different sizes will produce different results, which then need to
be integrated to obtain the most useful information. The integration of distributed infor-
mation in the image is accomplished in our system by performing processing sequentially
at multiple scales, restricting the processing at each scale to the output of processing at
lower scales, although the processing at any scale can be spatially parallel. The reason for
this ordering of scales is that our approach is both hierarchical and constructive. Fischler
and Bolles [11] perform an analysis using multiple scales on curves which have already been
produced, so each scale can be processed independently. Reynolds and Beveridge [22] pro-
cess all scales simultaneously by defining the neighborhood of a line to be dependent on
the length of the line and refer to this relational measure as spatial proximity. In any case,
the results from different scales need to be combined. For example, the final description
of our checkerboard example earlier encompasses information at many scales. Note that
there is also a concept of abstraction scale, and the description of the checkerboard has
multiple abstraction scales.

Lowe and Binford [17,18] have also tried to deal with the problem of how to determine
which scales contain the information needed to solve a specific problem. For example, if
one has a description of some objects which might be in a scene, and one does not know a
priori how large the objects are in the image, how can one determine at which scale to look
for evidence for those objects which are present? In their paper, they analyze the problem
of segmenting a curve into straight and circular line segments. The solution they propose
is a measure of meaningfulness based on probability. Events are considered meaningful
if they have a low probability of occuring when the scene does not contain the desired

Figure 1: Perceptual Integration of Distributed Image Events.

Each part is a group of events which can be perceived
as a straight line at a sufficiently large scale.

objects and a high probability when they do. In the case of points lying on a curve, Lowe
and Binford compute the first probability based on the assumption that edge points which
do not lie on the same straight or curved line will be distributed uniformly in the image.
This assumption will be violated in some cases, and it might be possible to find a weaker
assumption which would still permit a mathematical formulation. In their paper, they do
not explicitly compute the second probability that edge points which lie on the same line
will be within a fixed distance from an approximating straight line. This probability will be
large provided one does not impose too strict a test for straightness. A scale is determined
to have significant information if the events when measured at that scale have a local
maXimum in the meaningfulness measure when compared with other scales. The curve
segmentation problem is attacked by examining the curve at a point simultaneously at all
scales and selecting those at which it is most likely a straight or circular line, provided that
the meaningfulness is at least above a minimum value. This seems to work well for curve
segmentation, but was not demonstrated for curve construction, where the complexity of
the search is much greater. While a weakness in this approach is the assumption of a
uniform distribution of edge directions for background areas, this type of analysis holds
the most promise for deriving the parameters which govern the grouping in our system
and which we have chosen empirically.

3. A computational framework for symbolic processing

The need for a multiscale description suggests a hierarchy, which when combined with
a symbolic representation, facilitates the satisfactory meeting of the other processing re-
quirements. For hierarchical, symbolic processing, neighborhoods at each level have a
small number of image events, thus the search space is kept small. At the same time the
neighborhoods at higher levels cover a large part of the image, so integration of distributed
events is also achieved. Having explained why symbolic processing or abstraction would be
useful for a low-level vision system, we now describe conceptually such a system. It con-

sists of extracted image events called tokens, and operations on tokens called ebstractions
which produce new tokens.

3.1 Image tokens

A token is a description of a set of image events or other tokens. The goal is to create
tokens that correspond to those events which the human observer perceives as a unit.
There are two ways to produce tokens. They can be generated directly from an image, e.g.
by edge detection, or they can be generated from other tokens, e.g. straight lines can be
grouped into longer straight lines. Since tokens which have a large size may require several
steps to construct, it will be necessary to have tokens of intermediate size as precursors.

Tokens fall into three major classes based on their dimensionality :

10

1. points (dimension 0): spots, corners, line endpoints, etc.;

2. lines (dimensioh 1): straight line segments, circular segments, quadratic curve seg-
ments, linked line segments, etc.;

3. areas (dimension 2): closed curves, parallel lines, rectangles, general polygons, tex-
ture patterns, etc.

One should consider the generality of the vocabulary of tokens. The complexity of a
system can be reduced by including only those tokens which are specific to one domain.
On the other hand, such a system might not easily describe events outside that domain.
In general, the larger the vocabulary of tokens, the more concise the description can be,
but this economy of description is achieved at the expense of increased computational
complexity in the search for best description.

3.2 Token abstraction

There are two types of operations which we would need in order to carry out our
programme of symbolic processing. The first type involves the grouping of tokens to form
aggregates which are then represented by a single token; this is called “grouping”. The
second type occurs when we want to ignore some of the information present in a token;
this is called “reduction”. This not only reduces the amount of information which needs
to be stored for a token, but also allows a simpler grouping process to be applied. For
example, the latter type is useful in the case where we have a number of regions which are
part of a larger geometric structure. The individual regions have a variety of attributes,
such as average intensity, area, texture, and measurements associated with the boundary.
In the case of geometric grouping, especially when the size of the whole structure is large
compared with the size of the individual component regions, these attributes would not be
used in the grouping process. Instead, we might consider each region as being represented
by just its location (and perhaps its orientation). For example, an area which is not
elongated can be reduced to a point, and several areas can be grouped by a point-grouping
process. An area which does have a major axis can be reduced to a line which approximates
that axis; e.g. smoothed local symmetry [4] or medial axis transform [5]. A line which has
a short length can be reduced to its midpoint. In all of these cases, the criterion for the
reduction process will depend on the relationship between the size of the token and the
scale at which processing occurs. The scale will determire the size below which a token
will be a candidate for reduction.

A general system which allows all possible reductions may require a sophisticated con-
trol structure to decide which reduction to apply and when. H one were simply to allow all
reductions and groupings to be instantiated, the number of tokens would increase rapidly,
resulting in a large increase in the processing time. While the application of some grouping

11

Token Abstractions
gradients group to | an area (spot) (‘whole’)
an area reduces to a point
points group to a curve segment
curve segments [group to | a circle (area) (‘whole’)
a circle reduces to a point
points group to a line (‘whole’).

Table 1: Example of Grouping and Reduction: abstractions for Figure 2.

processes can be applied in almost all domains, e.g. straight line grouping, it seems likely
that top-down strategies would be useful as a way of limiting the types of grouping.

The grouping algorithm itself does not require that we know whether the tokens came
from region segmentation, line extraction, or feature point detection. The reduction pro-
cess makes this explicit by transforming the region tokens into point tokens, so that the
same algorithm which was designed for points can be applied. Within the framework of
hierarchical processing, the reduction transformations are also related to the concept of
scale. If the scale at which processing is occurring is large with respect to the diameter of
the regions involved, then their behavior should be point-like. As a more complex example
of hierarchical grouping and reduction, consider Figure 2. Let us assume that the most
primitive detector finds gradients in the image, and the token vocabulary consists of cir-
cular areas (spots), points, line segments (circular or straight), and closed curves (circles).
Some tokens represent a complete unit or ‘whole’ in that they not part of a larger aggregate
without first undergoing reduction. The abstraction process for this example is described
in Table 1.

Now consider the general case of which transitions can occur for each of the three classes
of tokens: points, lines, and areas. This is divided into two cases: grouping processes and
reduction processes, which are shown in Table 2.

In this paper, we primarily discuss grouping tokens of the same type; however, work on
grouping of tokens of different types and the grouping of tokens of the same type to produce
a token of a different type has also been done. Riseman et. al. [24] have examined regions
and lines together in order to combine the information available from different types of
segmentation algorithms. This can be viewed in terms of the above formalism as creating
an area token which includes in its description the attributes of the regions and lines
which are grouped together and several relational measures based on their intersections.
Reynolds and Beveridge [22] have grouped aggregates of parallel, collinear, and orthogonal
lines into area tokens and have produced very useful results. They also discuss the problem
of deciding which aggregates are most significant.

The abstraction process is central to our approach to symbolic processing and consists
of multiple cycles of grouping and reduction, during which the scope and token size increase

12

U U

Figure 2: This shows an abstraction process: points are grouped
into curved lines, curved lines are grouped into closed
curves which define areas, areas are reduced to points,
points are grouped into a straight lize.

13

Grouping (takes multiple tokens to one token)
dimension dimension description
of input tokens | of output tokens
0,1 1 points or lines group to a line
0 2 points group to an area
1 2 lines group to an area, e.g.
texture, rectangles etc.
2 2 areas group to bigger areas
reduction(takes a single token to another one)
dimension dimension description
of input tokens | of output tokens
1 0 small line is replaced by a point
1 1 rough line is smoothed
2 0 small region is replaced by a point
2 1 elongated region is replaced by a line

Table 2: Summary of token abstraction: grouping and reduction.

from fine to coarse scale. As discussed above, the reduction process transforms a complex
token into a simpler one. In the grouping process, an aggregate of tokens is found which
is transformed into a single token. This process is divided into two steps: linking and
replacement.

3.3 Linking tokens

Linking is the first step in the grouping process and is the means by which we can
reduce the size of the search space by filtering the number of tokens to be examined in the
subsequent processes. For each token, all other tokens of a specific type in its neighborhood
are examined, and links are formed only to those tokens whose attributes satisfy prescribed
geometric and non-geometric criteria. These criteria are formulated in terms of relational
measures, which are general functions of the attributes of a set of tokens. Since tokens
will not necessarily link symmetrially, the links have a direction. The resulting graph,
which has nodes which are tokens and arcs which are their links, is a directed graph called
the “link graph”. As illustrated by the example of the checkerboard, we would like to
extract the structural information in the image, so we want the link graph to preserve this
information. In the case of straight lines, this geometric information is captured by the
geometric relational measures of proximity, collinear alignment, orientation, and overlap.

In general, for most tokens there will be a proximity measure and a relative orientation
or alignment measure. The measurement of proximity and alignment is a function of the
scale of the processing. For the linking process, the radius of the neighborhood is called

the linking radius; two tokens can be linked if the minimum distance between two tokens
is less than this radius. In the case of lines it is from the endpoint of one line to the
closest point on the line to which it is linked. The alignment measure for lines is the angle
between them as well as the overlap of their lengths. For aggregates of regions with lines
which bound them, alignment can be measured by the overlap between the boundary of
the region and ecach of the lines. Relational measures for line grouping have also been
explored by Reynolds and Beveridge [22]; for a general discussion of relational measures,
see Riseman et. al. [23].

3.4 Replacing tokens

The second step in the grouping process, which is the replacement step, consists of
searching the link graph for geometric structures, which may be implicitly or explicitly
represented by models, verifying the match and replacing those structures by a token
which describes them. In the case of straight lines or circles the model is given implicitly
by the equation of the curve which best fits the data and the verification is done with a least
squares measurcment of endpoints on the line segments. For objects such as rectangles, the
inodel may consist of pairs of parallel lines with an orthogonality relation between them.
The verification might be accomplished by finding the smallest rectangle containing the
line scgements and comparing the boundary with the original segments. In either case,
the relational measures which are used for the linking step (usually for pairs of tokens) are
not necessarily used in the verification step where higher order relations are tested.

The size of the subgraph which should be examined during the search depends on the
amount of context which must be examined in order to reliably determine if the new, ab-
stracted token is present. At each step it is necessary to limit the computational complex-
ity, so we restrict the search around each node to subgraphs contained in a neighborhood,
whose size is given by the perceptual radius. The perceptual radius is possibly larger than
the linking radius and allows the search process to look at more than two tokens at a time.

An additionzal aspect of the replacement process is the description of complex tokens
which represent aggregates of simpler tokens. This must be done in such a way as in
facilitate grouping of the new tokens. In the case of straight lines this is straightforward,

but in many other cases such as curved lines a concise, symbolic representation must be
developed.

3.5 Control of grouping

Each subgraph found in the grouping step is a hypothesis of a geometric structure to
be verified before being replaced by a single new object and stored. A control issue arises
since it is possible for a token to be part of multiple aggregations which are candidates
for replacement. This could lead to multiple representations of the same image event. In
some cases it may be desirable for the replacement of a token to block the replacement of

15

a different aggregation containing the same token. It is easy to see that the linking and
replacement steps must be done sequentially, but within each step there is potential for
parallel computation across the image. For the linking step this is not difficult to do, and
if mutiple replacements of a token is allowed, this is also possible for the replacement step.
If multiple replacements are disallowed, a decision must be made for any given aggregation
by looking at all other aggregations which have a token in common with it. In general,
this will not involve looking at a large number of aggregations and tokens; however, there
is no guaranteed upper bound.

As a general approach to solving the control problems, we consider a hierarchical or-
ganization of tokens. This allows us to represent the description of a checkerboard at
multiple scales and provides a framework for describing the processing of such an image
which is done separately for each scale. The hierarchy must be capable of representing the
information associated with reduction processes as well. The hierarchy which results has
two dimensions; scale and abstraction. The simplest control structure for the processing
of this token hierarchy is to start with tokens at the smallest scale (usually pixel size) and
increase the scale monotonically with the number of cycles. A basic assumption is that the
density of tokens at each scale is restricted and decreases as the scale increases. If there
is a high density of tokens at one scale, and if they are not grouped, some tokens will be
dropped. If the density is low, e.g. a few points against a homogeneous background, then
the density constraint does not force their removal, so they can persist to higher scales.
The abstraction level of a token is more difficult to describe, but it should increase with
the number of reductions which have been applied to produce it.

16

4. Applying Token-Based Abstraction to Straight Line Grouping

In this section we apply the principles of low-level symbolic processing that we have
developed to the problem of grouping lines into longer, straight lines. This is demonstrated
on the images of natural scenes (see Figure 3) for which standard boundary detection
techniques encounter significant problems due to noise or texture, or where edge events have
low contrast [25,26]. Our goals are to show that geometric grouping via token aggregation
and replacement is effective in finding the significant straight lines in an image when
combined with standard local edge detection techniques, as well as to develop an effective
straight-line grouping algorithm for image interpretation.

The grouping algorithm is based on relational measures which are used to derive bi-
nary relations between tokens. These binary relations can be summarized as collinearity,
proximity, and similarity in contrast; they are used for filtering in the search process for
replacing aggregations by new tokens. The relational measures are described in more de-
tail in Section 4.2. A straightness test, which is a verification procedure, is applied line
sequences of arbitrary length; it is not restricted to pairs of tokens. Thus, we take the
following algorithmic definition of a straight line: it is composed of a sequence of line
segments in which consecutive pairs satisfy the relations of collinearity, proximity, and
similarity of contrast, such that the entire sequence passes a straightness test. All of these
criteria depend on scale; long lines, for example, can be separated by a larger gap than
small ones and still be close.

The two major components of the algorithm are edge detection and hierarchical group-
ing. Hierarchical grouping has two steps which are performed at each level: linking and
replacement.

4.1 Edge Detection

The input to the grouping algorithm is a set of line tokens together with a measurement
of the average intensity contrast from one side of the line to the other. Usually this is
produced by an edge detection algorithm applied to the image. The properties which an
edge detection process should satisfy are: 1) high positional accuracy of an edge, even with
aliasing, 2) good sensitivity to high frequency data, and 3) reduction of the data (many
pixels don’t produce edge points). The last of these properties, reduction of data, can
make a significant difference in the computation time. However, it is also important that
the algorithm be sensitive to low-contrast edges. There are many possible edge detection
algorithms which could be used. The two algorithms which we have used for selecting initial
edge locations are zero crossings of the Laplacian operator and a directional edge operator
based on the work of Haralick and Canny [13,8]. Although there may be algorithms which
have better performance in some cases, these two are representative of a class of algorithms;
most of them are expected to have the same types of problems which we encounter here [9].
The Laplacian operator was chosen because it seemed to be the better of the two.

17

Since most of the results have been obtained for the Laplacian operator, we describe
the processing for that operator in more detail. First, the image is convolved with a3 x 3
mask which approximates the Laplacian:

010
1-41
010

Next, zero crossings of the Laplacian image are detected and their positions determined
by linear interpolation. A zero crossing is a zero value of the Laplacian output and conse-
quently is the location of a change in sign; it typically occurs within a pixel and requires
intrapixel interpolation. Figure 4a shows that the zero crossing contours do not consis-
tently follow the boundaries of objects or other identifiable parts of the image (e.g. see
the house roof). The reasons why the contours are not necessarily a reliable indicator of
the direction of an edge can be understood by looking at some of the assumptions about
edges and the Laplacian operator. In Marr’s paper [19] on the use of the Laplacian, he
makes the assumption that the intensity surface is planar in a neighborhood of the edge.
Even for an ideal curved step edge this assumption will be violated, and the results in real
images with aliasing from the digitization process have serious problems. On the other
hand, the gradient tends to remain perpendicular to the edge. For this reason, we use the
gradient direction at each edge point for the edge orientation; in general, this will differ
from the direction of the zero-crossing contour. Figure 4b shows the gradient information
for the edges in the house roof scene.

The location of a zero-crossing point is computed by interpolation of the values at four
pixels which form the corners of a square. The gradient at that point is also computed
by interpolation. An edge is positioned with its center at the zero-crossing point, and
the orientaticn of the edge is perpendicular to the gradient. Each edge carries with it a
contrast (the gradient magnitude) and direction. In addition, each edge (now considered
as a line) has an instial start point, a final end point, and is defined to have a length of one
pixel.

The grouping algorithm does not require that the input edges be completely reliable,
and it has produced very good results despite the variety of problems encountered with the
Laplacian operator. These problems include saddle points of the Laplacian and anti-edges
at local minima. When a zero-crossing point is a saddle point of the Laplacian surface,
then locally the contour will consist of a pair of hyperbolas or a pair of lines which cross. If
these saddle points have low density, then they can be ignored. If they have high density,
then a different type of grouping nceds to be applied because the orientation at a saddle
point is ambiguous (we do not consider that here.) Zero crossings of the Laplacian also
occur where the gradient magnitude has a local minimum. The current implementation
does not test for these anti-edges, and therefore they remain present in the initial edge
data.

The process of acquiring an image itself can introduce artifacts which complicate the

18

line grouping process. Subsampling of an image, quantization effects, and the presence of
noise can result in isolated pixels which have a high contrast with respect to their neighbors.
Subsampling is cspecizally noticeable when the pixel size of the sensor is large compared
with the spatial period corresponding to the highest frequency of the intensity variations
on the image plane. As a result of the local extrema produced by these phenomena, zero-
crossing contours surround isolated pixels and produce a point-like structure. The line
grouping algorithm presented here is not specifically designed to handle this situation,
which would require the grouping of isolated points. In addition, noise can introduce
numerous local maxima in the gradient of the intensity, producing multiple zero crossings
and hence multiple edges parallel to the visually significant one. Many of these problems
could have been solved by smoothing with different-width Gaussian masks, which has
been explored by Witkin and others [27,28,19] using a scale-space approach. However, as
mentioned earlier, smoothing removes details which are essential for some structures. For
example, a very thin linear structure, even if it is long, will become undetectable if high-
frequency data are filtered out. Our approach, on the other hand, is to use the geometric
context to eliminate edges (due to subsampling, noise, anti-edges, etc) which do not form
lines in the image.

4.2 The Hierarchical Grouping Process

In this application, the grouping process uses geometric and intrinsic properties at
multiple scales to form long, straight lines from shorter segments. In general, a grouping
cycle consists of two steps: linking and replacement. In the linking step pairs of line
segments are connected based on binary relations. In the replacement step, sequences
of linked line segments are tested for straightness and possibly replaced by a single line
segment. The issue is how to avoid searching and testing all combinations of line segments
within a large area. The fir<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>