Learning from Derived Oracles

Sharad Saxena
Department of Computer and Information Science
University of Massachusetts at Amherst

Ambherst, MA 01003

COINS Technical Report 87-105
October 19, 1987

Contents
1 Introduction
2 The Learning Algorithm:

3 Learning Monotone DNF expressions
3.1 DerivingtheOracles
3.2 Learning efficient recognizers for the oracles
3.2.1 An algorithm for learning monotone DNF expressions
3.2.2 Valiant’s method modified for learning efficient recognizers

3.3 Summary of the inductive element

4 Learning Logic Programs
4.1 DerivingtheOracles
4.2 Learning efficient recognizers for the oracles

4.3 Summary of the inductiveelement

5 Reliability Issues
5.1 Reliable Learning of Monotone DNF expressions
5.2 Reliable Learning of Logic Programs

6 Related Work

7 Conclusions

8 Acknowledgments
9 References

Abstract

A specification of a task to be performed is often not sufficient for the efficient
execution of the task. In this report a method is presented by which an executable
specification of the task, and a set of legal operators to perform the task, are used
to automatically deduce the subgoals that help in the problem solving activity. Effi-
cient procedures for achieving these deduced subgoals are then learned using inductive
methods.

10
12
15
16

16
18
19

19

21

22

23

1 Introduction

One aspect of intelligent behavior is the ability to execute efficiently, instructions for
a task given in general terms. These instructions form a specification for the task to be
performed if they express the purpose of the desired task, without indicating an algorithm
by which to perform the task. A specification of a computation may be unacceptable as
a means of performing the computation if, either the computation is expressed in terms
of procedures that are not executable by the computing agent, or if, the specification is
expressed in terms of procedures that are very inefficient to evaluate on the computing
agent. Therefore it becomes necessary to transform these specifications into procedures,
that are computationally more efficient.

The approach taken here is to derive from the specification of the goal the specifications
for the subgoals necessary for efficient execution of the task. For each subgoal efficient
procedures to achieve the subgoal are then learned.

This report describes a project to apply this approach to two problems. The first
problem is to learn efficient ways of playing the game of Tic-Tac-Toe from the definition of
a “win” , and a set of legal operators that define the game. The subgoals necessary for a
“win” are deduced as predicates over the board configurations, efficient classifiers for each
subgoal are then learned by inductive means. The second problem is to synthesize efficient
logic programs for a task whose executable specification is given along with a schema to
achieve the goal. The procedures necessary for an efficient program are derived from the
schema. For each procedure, a logic program is then induced.

The algorithms to induce efficient procedures for achieving the subgoals in both the
domains require an oracle to answer queries about the domain being modeled by the
induction algorithm. The derived subgoals, though inefficient to execute, by virtue of
being executable, serve as oracles for these queries. The induced procedures are expressed
in a language that makes them more efficient to evaluate than the corresponding oracles.
As learning progresses, the induced procedures can answer queries about a larger portion
of the domain and fewer queries are asked of the oracle.

2 The Learning Algorithm

The learning problem studied here is,

Given

1. A specification of the goal to be achieved.

2. The set of legal operators that can be applied to achieve the goal.
Find

Efficient procedures for achieving the goal.

Goal

specificatio Efficient
Deduction Execfli.xtab]e Induction |Procedures
——) Component | specification | Component | for each
Legal of the subgoals P subgoal
operators

Figure 1: The learning method

The approach taken to solve the learning problem is illustrated in Figure 1.

The deduction component of the algorithm reduces the given goal specification and the
legal operators into a set of subgoals necessary for problem solving. For each subgoal the
induction component builds an approximation. In the Tic-Tac-Toe problem, the induction
component is required to build an approximation for the subgoal as a disjunctive normal
form propositional expression that has no negated variables. Such expressions are known
as monotone DN F expressions.

For the problem of finding an efficient logic program from executable specification, the
induction component is required to build an approximation that can be expressed as first
order predicate calculus expressions, where the predicates are the procedures known to be
required to achieve the subgoal. The procedures required to achieve a particular subgoal
are known as a result of the deductive process.

The inductive component successively produces better approximations as it sees more
examples. In addition each approximation is expressed in a language that makes the
approximation more efficient to evaluate than the derived definition of the subgoal.

Figure 2 illusirates the events that occur when a subgoal is to be achieved. If the
approximation is reliable enough, it is used for achieving the goal. Otherwise, the derived
definition of the subgoal is used to achieve the subgoal. If Y is the result of achieving the
subgoal X then the pair (X,Y) is given as the next fact to the induction algorithm. The
induction algorithm uses this fact to produce a better approximation for the subgoal. This
process continues until the approximation has the required reliability.

3 Learning Monotone DNF expressions

In [15] a method of integrating induction and deduction to learn to play the game
of Tic-Tac-Toe efficiently~ given a definition of the “win” predicate, and a set of legal
operators to play the game- was described. The induction algorithm used in [15] was
developed as a part of this project. In this section, first the method used in [15] to derive
the subgoals to be achieved for achieving the goal is summarized. The induction algorithm
used in [15] is then described in detail.

Subgoal(X,Y)

Yes Does the induced cancept No
have high reliability?

Achieve the Achieve the
subgoal using the subgoal using the
induced concept executable specification

!

Give the solution

of the subgoal as the

next fact for the
Induction Algorithm

Figure 2: The learning algorithm
3.1 Deriving the Oracles

The definition of a “win” for “z”in the game of Tic-Tac-Toe, is expressed as a predicate
over the board configurations b. This predicate, denoted by win(“z",b), says that any
board configuration that has 3 “z™s in a row is a win for “z”. The learning system knows
this predicate and the set of legal operators that can be used to play the game.

A sequence of moves that result in a win for “z” are then analyzed. Dijkstra’s “weakest

precondition” method is invoked to determine the necessary conditions at each step in
the sequence of moves leading to a win for “z”. Starting at the end of the sequence, the
method regresses facts that must be true or {alse at each step in the sequence, as in program
verification [3]. At each step, the conjunction of facts defines the necessary conditions that
guarantee that the tail of the sequence will lead to a win for “z”. The conjunction of

necessary conditions is used directly as the definition of a subgoal to be achieved.

A cause predicate helps to express the weakest preconditions. The cause predicate is

defined as:
cause(b, P) = ~ P(b) \(3z)P(domove(z, b))

This says that, condition P can be caused in the board configuration b if and only if, P is
not already true, and there exists a move such that after that move P will be true.

For example the subgoal of being in a state where the game is has been won by “z” is
expressed as
ticO(y) = win(z,y)

Figure 3: A Tic-Tac-Toe board

Similarly being in a state from which “z” cannot lose in 1 step is expressed as

ticl(y) =~ |~ (win(y)) /\ more-moves(y) /\ cause(7,tic0))]

here 7 denotes the board configuration where it is o’s turn to make a move. The above
expression says that “z” cannot lose in 1 step in the board configuration y, if it is not true
that the board is not in a state where someone has already won, and there exists a move
that will make it a win state for 0. If such a move were to exist, o would select that move
and win, therefore “z” would lose in 1 step.

Similar subgoal predicates for each move in the sequence of moves that led to a win
for “z” are defined. Automatic deduction of these subgoals defines the facts that must be
true for the goal to be true. The learning system can use these subgoal definitions to play
the game. At any stage in the game the system should try to achieve one of the subgoals,
in the order tic0,1icl,..., and so on.

However notice that the cause predicate contains an existential quantifier. The cause
predicate tests candidate moves to find the one that satisfies the predicate. The nested
subgoal definitions therefore contain nested existential quantification. The result of eval-
uating such nested quantification is equivalent io doing a complete game tree search. The
next section shows how this inefficiency can be removed.

3.2 Learning efficient recognizers for the oracles

In the previous section it was shown how subgoal predicates for achieving the goal can
be derived for the game of Tic-Tac-Toe. This section explains how efficient recognizers for
the subgoal predicates can be learned.

Aninduction algorithm is used to determine a fast recognizer for each subgoal predicate.
The induction algorithm needs positive and negative examples of the concept being learned.
The board configurations where the subgoal predicates evaluate to true serve as positive
examples. The board configurations where the subgoal predicates evaluate to false serve
as negative examples. A board configuration is represented by the contents of each square
in the board. For example a board configuration like Figure 3 would be represented as

(z at 0) A(z at 2) A\(= at 3) A(z at 5) A(o at 1) A
(o at 4) \(b at 6) \(b at 7) A(b at 8).

The hypothesis space of concepts is represented by disjunctive normal form(DNF) ex-

pressions, with the propositional variables being the contents of each square. For example,
a proposition that “z”is at the square 0 (upper left corner), would be represented by the
variable (z at 0). A particular hypothesis is of the form

(lll/\112/\'"lljl)V"'V(lk]/\lk2/\"'lkjk)

where

Im,n € {(z at 1),(0 at 1),(b at 1),---,(z at 9),(0 at 9),(b at 9)}

A property of this form of representation is that a hypothesis can be represented as a
monotone DNF expression. If a particular literal is in the negated form, for example, say
it is z at m, then this literal is logically equivalent to (o at m\/ b at m). By replacing
all negated literals by their logically equivalent forms an expression in DNF form can be
converted into an expression in monotone DNF form.

3.2.1 An algorithm for learning monotone DNF expressions

L. G. Valiant [16]{17] has presented an algorithm for learning concepts that can be
described by monotone DNF expressions, using a necessity oracle. Given a vector of
assignment of truth values to a subset of variables (the others being undetermined, that
is, they could be either true or false), the necessity oracle for a concept will determine,
whether the vector is a positive instance of the concept. If the vector is a positive instance,
then so will be any vector obtained from it, by making some of the undetermined variables
determined (that is, giving them the truth assignment of either True or False).

The algorithm works with positive examples. The algorithm successively drops vari-
ous conjuncts to form generalizations, and asks the necessity oracle, whether making the
dropped conjuncts undetermined results in a positive instance. If it does, then the conjunct
is dropped, otherwise it is kept and the process is repeated for other conjuncts, until all
conjuncts have been tried. The resulting vector of conjuncts is known as a prime implicant
of the DNF expression and is added to the DNF expression being built for the concept.
At the end, the algorithm has determined the literals that are essential in making this
instance a positive example and removed the extraneous literals. Valiant’s algorithm for
learning monotone DNF expressions is reproduced in Figure 4, a more detailed discussion
and analysis of the algorithm may be found in [16]

The algorithm uses the following notation, A =—> B means if A is true then B is true.
A monomial m is a prime implicant of a DNF expression representing the concept F, if
m = F and if m' &= F for any m’ obtained by deleting one literal from m. ‘x’, will mean
that the corresponding literal is made undetermined. The necessity oracle called ORACLE
will return T for a vector v, if the vector is a positive instance of the concept. ¢ stands
for the number variables in the example. The test v #= g in Figure 4 amounts to asking
whether none of the monomials of g are made true by the values determined to be true in
v. Every time an example is produced such that » = g, the inner loop of the algorithm
will find a prime implicant m to add to g. Each m is different from any previously added
(otherwise v = g).

The algorithm is intialized with g = FALSE

v~ NEXT — EXAMPLE {This should be a positive example.}
if v = g then
begin

fori=1 1ot do

if P; is determined in v then
begin

set ¥ equal to v but with P, = %
if ORACLE(v) =T thenv =19
end

set m equal to product of all literals ¢ such that v = ¢
g=gVm

end

Figure 4: Valiant’s Algorithm for Learning Monotone DNF expressions

3.2.2 Valiant’s method modified for learning efficient recognizers

One of the decisions to be made when training an efficient recognizer is; when does
one stop training, and start using the efficient recognizer for performance tasks? This
problem becomes especially poignant when multiple concepts are to be learned and the
concepts may be defined in terms of each other. A wrong classification for a concept A not
only results in degraded performance, but may also result in a noisy training instance for
another concept B, that may be defined in terms of A. This makes it necessary to either
have a noise immune induction algorithm, or to ensure that every time a classification is
made using the fast recognizer it is reliable.

Valiant’s algorithm has a property that it has only single sided errors. If a classifier
built by using Valiant’s algorithm classifies a particular configuration as a positive instance,
then it is a positive instance. Howeverif it classifies a particular configuration as a negative
instance then it could be a positive instance. This single sided error property can be used
to check whether a classification is reliable, by accepting only those classifications that are
without error.

However if only error free classifications are accepted, then the negative instances can
never be reliably classified by the fast classifier. This can be rectified by learning classifiers
for both the concept and for the negation of the concept.

The subgoal predicates derived for the various concepts are used as the necessity oracles

Classification

Positive Negative
Fast-positive Reliable Unreliable
Fast-negative . Unreliable Reliable

Figure 5: Reliability of classification

for the concepts. These predicates can also be used as necessity oracles for the negation of
the concept. Therefore two classifiers for each concept are built, one for the concept(using
positive examples), and one for the negation of the concept(using negative examples).

When required to classify a configuration, the configuration is classified using both the
classifiers, if any one of the classifiers returns a reliable classification it is used immediately.
If an unreliable classification is returned, the slow definition of the concept is used for

classification purposes and the appropriate fast classifier is trained. This is summarized in
fig. 5

3.3 Summary of the inductive element

During the course of a game, it is required to determine whether a particular board
configuration belongs to a concept. The following sequence of events occur when this
happens:

1. The fast classifier for the concept is used to classify the configuration.

2. If the classifier in 1 calls the configuration a positive instance, it is a reliable classi-
fication, the classification is returned.

3. If the classification in 1 is not reliable, fast classifier for the negation of the concept
is used to classify the configuration.

4. If the classifier in 3 calls the configuration a negative instance, it is a reliable classi-
fication, the classification is returned.

5. If the classification is not reliable, the derived subgoal is used to classify the con-
figuration. If the classification is a positive instance fast classifier for the concept is
trained, otherwise fast classifier for the negation of the concept is trained.

As a result of the learning architecture and the ease of determining when the classifi-
cations returned by the induced classifiers are reliable, the following desirable properties
are observed during learning.

1. No noisy training instances are generated.

2. Fast recognizers are usable for performance tasks even when they have not completely

lcarned the concept.

3. No mechanism for switching over from derived definitions to induced classifiers is
needed.

For the necessily oracle to determine whether a vector of literals is a positive instance it
has to test, using the slow definition, whether all possible assignments to the undetermined
variables still keep the instance positive. This makes the time required to train the fast
classifier large. As a result if a concept is defined in terms of other concepts, the classifiers
for which are not yet fully trained, then it may take a long time to train these high level
classifiers. However as the lower level criteria get trained, the higher level criteria can get
trained, not only because the lower level criteria are fast, but also because the lower level
criteria no longer require any training.

4 Learning Logic Programs

This section illustrates how an efficient logic program to sort a list of numbers can be
learned given an executable specification of the sorting task, and the set of operators to
solve the task. This problem can be summarized as

Given

1. An executable specification for the program to be synthesized.

2. A program schema that specifies the abstract algorithm to be used to synthesize the
program

Find An efficient program for the specification.

In the work reported here deductive and inductive approaches to program synthesis
have been combined to derive the program. The program schema and the specification
of the program are used to automatically deduce the subgoals necessary for an efficient
program. Efficient procedures for achieving each subgoal are then inferred using inductive
methods. The induction algorithm used here is Shapiro’s Model Inference System [12],[13].

Shapiro’s Model Inference System infers a model M for a given first order language L.
Facts are presented as sentences of L that are either true or false in M. A brief description
of the Model Inference System is included here. Complete details of this system can be
found in {12][13].

The set of most general sentences in the language L, that are no longer than some
parameter d, and that have not been refuted by the facts known so far, is maintained as a
hypothesis of the model. If the sentences in the conjecture are ever discovered to imply a
fact known to be false, then an error detecting algorithm, which Shapiro calls the contra-
diction backtracking algorithm, is invoked. The contradiction backtracking algorithm finds

10

Next Problem Problem specification
and Program schema

T e | N
Yes! ‘Reliability of the ° g
Induced program Give th
high? Lve the Subgoal specifications
solution

as next fact

Oracle Query

Output | Model Inference

Induced Program System Oracle Response

Figure 6: Interaction between various components used for deriving logic Programs

at Jeast 1 false sentence in the conjecture. If the sentences forming the current conjecture
are discovered not to imply some positive fact, then the parameter d is incremented and
all sentences of size < d that have not been refuted are added to the conjecture.

An oracle for the model M is needed by the contradiction backiracking algorithm to
isolate false sentences from the conjecture. An oracle is also needed to determine whether
a particular sentence in the language is refuted. These oracles need to answer the following
types of questions about a particular sentence in the language.

1. Is the given ground sentence of L true or false in the model M ? !

2. What are the permissible set of values for the variables in the given sentence of L to
make it true in M ? It is assumed that this set is finite.

The deduced subgoals serve as oracles for the concepts represented by the subgoals.
The queries asked by the induction algorithm can be answered automatically by the derived
oracles. The oracles try to achieve the appropriate subgoal by executing their specification.
If the subgoal can be achieved then the sentence is true. This also gives the permissible
values for the variables.

In addition to being an oracle, the Model Inference System also requires the user to
name the predicates needed for the program being synthesized. In the approach taken here
each derived subgoal is a predicate needed for the program being synthesized. Therefore the
user does not need to know a-priori the predicates needed for the program. The deduction
component finds the specifications for the predicates needed. These specifications are given
a name by the user.

The architecture of the learning process and flow of data between various components
is illustrated in Figure 6.

1A ground sentence is one that has no variables.

11

4.1 Deriving the Oracles

This section illustrates a method to automatically derive the specifications for the sub-
goals o be achieved for synthesizing a program to sort a list of numbers. The specification
of a sorted list and a program schema specifying the abstract algorithm to do the sorting
are given to the system. The system deduces the subgoals for doing Insertion sort by first
deducing that a procedure that will insert an element into a sorted list and return a sorted
list is needed. The system then uses the same program schema- which was used to derive
the subgoals needed to synthesize a program for sorting a list— to synthesize a program
for inserting an element into a sorted list such that the resulting list is also sorted. This
atlempt at using the schema to generate the subgoals does not give any new subgoals.

The facts known to the system during the deduction process are represented in PRO-
LOG notation. In this notation a program is a finite set of definile clauses, that are
universally quantified logical sentences of the form

A:=By,By,....Bi. k>0

where the A and the B’s are logical atoms, also called goals. Such a sentence is read as “A
is implied by the conjunction of the B’s”, and is interpreted procedurally as ,“To satisfy
A, satisfy the goals B, B,,..., By.

Consider the following specification for a program to sort a list of integers in this
notation.

sorted(X,Y) :- permutation(X,Y), ordered(Y).

The definition of sorted says that, Y is the sorted list X, if Y is a permutation of X
and Y is ordered. A list is ordered if it is a increasing sequence.?

Also consider the program schema in Figure 7 to do the task of sorting. This schema
says that if X is a primitive list then the solution can be found directly. Otherwise break
X into head and the rest of the list. Solve the rest of the list and compose the solution.
Notice that this schema is an instance of the divide and conquer strategy for algorithm
design. Different ways of splitting the list will lead to different sorting algorithms. For
example if the schema says, split the list into two parts, solve each part and compose the
solution, then merge sort is got.

To deduce the procedures needed to synthesize Insertion Sort the facts known to be
true after each step in the program schema given in Figure 7 are collected.

The first step in the schema is the test whether a list is primitive. The system knows
that a list is primitive if it contains only 1 element. If now the ‘No’ branch from the test
is taken, the next step is the decompose operator. The decompose operator breaks the
list into the head and the rest of the list. Therefore the fact known to be true after the
decompose operator is:

construct(E, X1, X).

2The predicates permutation(X,Y), and ordered(Y) are known to the system.

12

solve(X,Y)

No [imitive(X)? |—res

decompose(X,E,X1) directly-solve(X,Y)

solve(X1,Y1)

compose(E,Y1,Y)

Figure 7: Program schema used for learning to sort

where construct is a list construction procedure that takes an element E and adds it as the
head of the list X1 to give the list X. The next procedure in the schema is solve(X1,Y1).
This is the problem being solved, therefore its specification is known. The procedure solve
takes the list X1 and produces the list Y1, therefore the facts known to be true at the end
of the procedure solve are

construct(E, Y1, X), permutation(X1,Y 1), ordered(Y 1).

The next procedure in the schema is compose(E,Y1,Y)- The specification of any
predicate gives the relationship between the variables of the predicate. One of the facts
known to be irue before compose is called is, permutation(X1,Y1). This predicate has
as its input parameter a variable X1 that is not an input parameter of compose. X1 is
also not an output produced by the facts known to be true before permutation is called.
As a result permutation(X1,Y 1) does not constrain either the input variables of compose
or the outputs produced before. Therefore the predicate permutation(X1,Y1) is dropped
and: the input specification of compose becomes:

construct(E,Y1,X), ordered(Y 1).

After the compose operation has been done, the result should be a list of numbers that is
sorted. Therefore afier the compose operation it should be the case that

permutation(X,Y), ordered(Y).

Combining the input and the output specification of compose gives the definition of
compose operator as:

consiruct(E,Y1,X), ordered(Y 1),
permutation(X,Y), ordered(Y).

13

solve(X,Y)

No primitive(X)? 7 Yes

decompose(X,E,X1) directly-solve(X,Y)
construct(E,X1,X).

solve(X1,Y1)
construct(E,Y1,X),permutation(X,Y),
ordered(Y1).

compose(E,Y1.Y)

construct(E,Y1,X),ordered(Y1),
permutation(X,Y),ordered(Y).

Figure 8: Decomposition of sorted(X,Y)

This new definition becomes a subgoal to be achieved. This process is illustrated in Fig-
ure 8. For the ‘Yes’ branch of the the primitive(X) predicate symbolic evaluation is used
to find if any new subgoals are defined there. When a list X is primitive it contains a single
element. Symbolic evaluation of permutation([X),Y),ordered(Y), gives sorted([X], [XN.
Therefore directly-solve does not change the input. The decomposition of the specification
of sorted gives us only 1 new procedure

compose(E,Y1,Y) :— construct(E,Y1,X),ordered(Y1),
permutation(X,Y), ordered(Y").

Call this procedure insert(E,X,Y). Next this specification is analyzed using the same
schema as in Figure 7, appropriately changed to reflect the new inputs. Decomposition of
the insert operation using the schema is illustrated in Figure 9. The facts known to be true
after each operation are listed after that operation. Notice that, when the specification
for the procedure compose(E1,Y1,Y) is being derived, the known facts true at that point
are,

construci(E1, X1, X), construct(E, X1, Z1), ordered(X 1),
permutation(Z1,Y 1), ordered(Y 1)
Of these facts the only fact whose input variables are a subset of the input variables
of compose and the output variables in the facts known to be true before that fact is
ordered(Y 1). The input specification of compose is therefore ordered(Y'1). The output

specification of compose is the set of facts that must be true after the schema has been
used to solve the insert problem, therefore the output specification of compose is:

consiruct(E, X, Z), ordered(X), permutation(Z,Y), ordered(}")

14

solve(E,X,Y)

Mo primitive(X)?] Yes
decompose(X,E1,X1) directly-solve(E,X,Y)
construct(E1,X1,X).
solve(E,X1,Y1)

construct(E1,X1,X),construct(E,X1,21),
ordered(X1),permutation(Z1,Y1),ordered(Y1).

compose(E1,Y1,Y)

ordered(Y1).

Figure 9: Decomposition of the insert procedure

None of these facts have their input variables as the subset of the input variables of compose
and the outputs of the facts collected so far (namely ordered(Y 1)). The specification of
compose then becomes ordered(Y 1). This is a known goal. Therefore no new procedures
are added by the 'No’ branch of the schema. Symbolic evaluation of the direcily-solve
procedure yields:

Solve(E,|El])) = E =< E1,[E, El]

The Directly-solve procedure gives the =< operator as a subgoal. This is a subgoal known
to the system, therefore it is not decomposed further.

4.2 Learning efficient recognizers for the oracles

From the program schema the subgoals that have to achieved, to achieve the goal, were
detived. The decompose operator is a known function in PROLOG, therefore it is not
metitioned explicitly as a procedure called for achieving a goal. For the sorting problem
(cdll it Soried), the analysis of previous section showed that:

Sorted calls Sorted, Insert.

For the Insert procedure no new subgoals were derived, except =< and ordered, which
are operations known to the system. Therefore

Insert calls Insert,=<,ordered.

To induce efficient programs for these procedures Shapiro’s Model Inference System is
used. The specifications for the various subgoeals serve as oracles for the concept they

15

represent. The oracle queries that are generated by the induction algorithm are answered
automatically by executing these specifications.

For the problem of sorting a list of numbers a session with the Learning system is
presented in the Appendix.

4.3 Summary of the inductive element

The following events take place when a particular query about the model being inferred
is asked.

e If the reliability of the inferred model is high then the query is answered using the
inferred model.

e If the reliability of the inferred model is not high, then the query is answered using
the derived subgoals.

1. The query and its solution are presented to the Model Inference System as the
next fact.

2. If the Model Inference Sysiem generates any oracle queries, then these queries
are answered using the derived oracles.

3. The Model Inference System returns the updated conjecture of the model

5 Reliability Issues

The induced programs try to approximate the functions computed by the oracles. If
the approximations are computationally more efficient, then it is desirable to use them
instead of the specifications. However if it is required that the same function be computed
by both the appoximation and the oracle, an algorithmic way of determining whether the
approximation should be used or not is needed. The approximation is perfect if it gives the
same result as the oracle everywhere where the oracle computation converges. However
in general, given only a finite amount of information, it is not possible to know when the
approximation is perfect. In absence of an algorithmic way of determining whether an
approximation is perfect, it can be ensured that if the computation by the approximation
converges it gives the same result as the oracle.

In this section first the fact that there exists no algorithmic way of determining that the
approximation is perfect is proved. Then the weaker condition mentioned above is formally
stated. A method for ensuring that this condition is met while learning monotone DNF
expressions is illustrated, and a way of ensuring that this condition is met while learning
logic programs is suggested.

16

Let ¢(z) be the function computed by the oracle.® Let %(z) be the function that
approximates ¢(z).The approximation would be perfect if it satisfies the following require-
ment.

Completeness Requirement

(Vz & dom(p))lp(z) = y = ¢(z) = y].

That is, for all elements of the domain for which the oracle computation converges, the
appoximation converges and gives the same answer.

There can exist no algorithmic way to determine when the completeness requirement
has been met. Because, if dom(yp) is infinite then there exist functions that cannot be
approximated by any finite amount of information. This fact is proved using the diagonal-
ization principle.

Induction tries to identify an efficient function that has the same input-output charac-
teristic as the oracles. Therefore the identification paradigm of learning [1] is used. This
paradigm is summarized here.

An inductive inference machine is an algorithmic device or a Turing machine that works
as follows:
First the machine is put into some initial state with its tape memory completely blank.
From there it proceeds algorithmically except that from time to time the device requests
an input or produces an output. Each time it requests an input an external agency feeds
the machine a pair of natural numbers (x,y) or a ‘*’, and then returns control to the
machine. Typically the input is printed in some designated area of the tape memory, or on
some auxiliary tape in such a manner that the machine may scan and make use of it. The
outputs produced by the machine are all natural numbers and are to be interpreted as an
index of a computable function in an effective enumeration? of all computable functions.
It is assumed that this effective enumeration is known to the inductive inference machine.

Let ¢ be a computable function. f is an enumeration of ¢ if T = (a0,ai,...) is an
infinite sequence in which q; is either a pair [z, f(z)] or a ‘*’, and further more [z, f(z))
appears at least once in f for every z € dom(p) :

M(f! | i denotes that M with input J = (ao, @, ...) converges in limit to 7, if whenever
(@0,a1,...) are fed in this order to M, there eventually comes a time when M produces a i
and never again produces a different number.

M is said to identify ¢ if for every enumeration f of ¢ there exists a i such that M[f] |
and ¢; is an extension of ¢, that is ¢;(z) = ¢(z) for all z € dom(yp). Here ¢; stands for
the ith computable function in the effective enumeration of computable functions.

Given the above model it is extended to finite sequences in the following manner. Let
f* be a finite prefix of f. M[f*] = j, denotes that if j is the last number output by M. on

3Without loss of generality consider only functions of one variable. By use of pairing functions any
function of more than 1 variable can be converted into a function of 1 variable.

*An effective enumeration is one in which there is a computable procedure, such that given the index of
a function in the enumeration, it gives the function.

17

being given the input [, and say that ¢; is the current conjecture. In particular M[\ =0,
where 0 is the index of the computable function that diverges everywhere and X is prefix
consisting of no elements.

Now consider the funclion defined as follows

(z) = éi(z) +1 where M(f*] = j,if ¢;(z) |
LAST 1 otherwise

where f~ is the finite prefix seen by M so far.

Clearly ¢ is computable. However, there cannot exist an inductive inference machine
M that will approximate ¢, given any finite prefix of f. Intuitively ¢ is the function, that
for a given input finds out what the result of the computation , by the current conjecture,
would be for a particular value, and gives a different answer.

Even though the completeness requirement cannot be met we can try to meet a weaker
requirement.
Correctness requirement

(Ve £ dom(p))[d(z) = y = ¢(z) =y

That is, if the approximation converges at a point in the domain, then the answer is correct,
otherwise the approximation does not converge. Trivially the correciness requirement can
be met by letting ¢ be all the known values, and making ¢ diverge everywhere else.

The correctness requirement suggests a strategy to be used for determining the the ap-
propriate moments for using the induced approximation. If at each stage an approximation
that satisfies the correctness criteria exists, then for a given instance of the query, if the
query can be answered in a specified resource bound, the result is correct. If however, the
computation does not converge in the specified resource bound, then the oracle definitions
can be used to answer the query. The result obtained from the oracle computation can be
used to provide the next fact for the induction algorithm.

5.1 Reliable Learning of Monotone DNF expressions

Valiant’s algorithm for learning Monotone DNF expressions has a property of single
sided errors. If at any stage of learning the induced classifier, classifies an instance as a
member of the concept, then it is correct. However if it classifies an instance as not being
a member of the concept, the instance could be a member of the concept.

Classifiers for both the concept and its complement can be learned, this process has
been explained in section 3.2. If either of them return a value that classifies the instance
as a member of their concept, then that classification is reliable. Otherwise the oracle is

used to get the classification of the instance, this classification serves as a training instance
for the inductive classifier.

It should be noted that for a finite number of propositional variables, the set of instances

18

is finite, therefore the completeness requirement can also, in theory, be met. The easiest
way to do this would be to check for each member of the domain, whether the induced
classifier returns the same answer as the oracle. However for large domains this is not
practical.

5.2 Reliable Learning of Logic Programs

Let S be a specification for a logic program P and let R be a query. P is said to
conform to the specification S, with respect to query R, if and only if,

(VE)I(P F R(§)) = (S F R(¢))):

where { is the n—tuple of arguments of the query R.

In principle, the correctness of any ¢ computed by a particular execution of P can be
investigated by trying to deduce R(£) from S, denoted by S + R(£). More generally, it
would be desirable to prove the partial correctness of P to be able to deal with all possible
computed solutions.

This can be done by exploiting the transitivity of logical implication. Suppose that it
can be shown that every procedure in P is logically implied by S. If S + P holds, then for
any n—tuple £, if we have P+ R(€), then S + R(£) holds by transitivity of . That is, any
logic program is partially correct if its procedures are logically implied by its specification.
The expression for partial correctness criterion therefore simplifies to S-+ P.

A way lo incorporate this correctness requirement in the Model Inference System would
be to mark as ‘false’ all sentences of size < d- where d is the current value of the complexity
parameter— that are not logically implied. by the specification of the oracle. However the
question, whether a sentence is logically implied by a set of axioms, is in general, only
semi-decidable. A bound is therefore needed on the number of steps allowed before it
is concluded that a sentence is not logically implied by the specification. Further work is
needed on finding ways to determine this bound. In the system that has been implemented
reliability is measured by recording the number of queries that were answered correctly in
past.

6 Related Work

The process of learning eflicient procedures for the derived concept can be viewed as
the operationalization of the derived concepts.

Operationality is defined in [5] as:

Given

e A concept description

19

e A performance system that makes use of the description.

e Performance objectives specifying the type and extent of systemn improvement de-
sired.

Then

The concept description is considered operational if it satisfies the following require-
ments:

1. Usability: The description must be usable by the performance system.

2. Utility: When the description is used by the performance system, the system’s
performance must improve in accordance with the specified objectives.

In the work reported here each derived oracle is the concept description. The learning
architecture presentied in Figure 2 is the performance system. The performance objectives
are specified as learning the concepts represented by the oracles, in a specific language. For
the game of Tic-Tac-Toe, this language is the set of monotone DNF expressions, where the
propositional variables are the contents of the various board positions. For logic programs,
the language is the set of first order predicate calculus sentences over the predicate names
defined by the oracles. Using the above terminology, the oracle definitions are useful, but
have low utility, and therefore they are not operational. The aim of the learner is to get
at an equivalent definition that is both useful and has high utility.

In (5], Keller has approached the problem of operationalization by using a set of trans-
formation operators. The application of transformation operators results in the search of
the concept description space. A control strategy, that favors those transformations that
have improved the system performance in past, is used to reduce the search.

The work reported here presents an architecture to integrate deductive and inductive
approaches to learning. The architecture uses deductive methods to automatically formu-
late learning subproblems. For each learning subproblem inductive methods are applied
to arrive at efficient procedures for solving that subproblem. Lebowitz(7] and Pazzani, et
al.[10] have approached the problem of integrating inductive and deductive approaches to
learning differently. They use inductive methods to propose theories. Deductive meth-
ods are used to explain new facts based on these theories. These explanations are then
generalized to cover similar situations and are stored for future use.

The section on learning logic programs relates to the work on program synthesis. Two
ma jor approaches to program synthesis have been:

1. Deriving a program for a given specification by either using theorem proving tech-
niques or by direct application of transformations and rewriting rules, to the specifi-
cation. Manna and Waldinger’s work [8],[9], and Burstall and Darlington’s work [2]
are representative of these approaches.

20

fo

™

2. Inferring a program from examples of its input output behavior. [13] contains a
chapter on Program synthesis that is representative of this approach.

The problem with a purely deductive approach to program synthesis is that all the
facts about the domain, that may be needed to synthesize a given program, may not
be known a-priori. Similarly all the rewrite rules necessary for a particular synthesis to
go through may not be known before the synthesis starts. This work presents a way to
integrate the deductive and inductive approaches to program synthesis. The places where
the deductive methods fail, inductive methods may be useful. For example, in the insertion
sort problem illustrated here, it was found that the problem of inserting an element in its
proper position in a sorted list, could not be solved by the schema given. However here
a program to do this was synthesized using inductive methods. Though the synthesized
program is guaranteed to produced correct results only for the observed instances, model
inference system produces programs that generalize to give correct results for instances
that have not been observed.

Smith in |14}, has described a system for synthesizing a program from a problem spec-
ification and a program schema- which he calls a design strategy. The approach taken
here- of decomposing a specificalion subgoals required for achieving the goal- is similar to
the approach in [14]. In [14], the decomposition process continues until the specification
of a subgoal matches the specification of a known operator. The known operator then
produces a program segment in the target language. In the work reported here, inductive
methods are used when it is found that further decomposition of the problem cannot be
done with the current knowledge, and that the subgoal specification does not match any
known operator.

Hogger in [4], describes a nonmechanical method to derive logic programs from speci-
fications. The logic program is developed as a sequence of goals (G1,...,Gy) where G; is
the synthesized logic program. Each goal G,.; is derived from from its predecessor G,, by
the application of two types of inference rules, which are called goal simplification and goal
substitution. This method is also a purely deductive procedure and requires a complete
theory to be present for a program to be successfully synthesized.

Prieditis and Mostow {11} have developed a PROLOG meta-interpreter called PRO-
LEARN for adapting to a particular execution environment. The meta-interpreter moni-
tors a particular execution sequence and generalizes the execution by converting constants
to variables and simplifying the resulting expressions by using partial evaluation. The
generalized execution is a new rule which is used to solve future problem instances.

7 Conclusions

This work presents a method to integrate the deductive and inductive approaches
to machine learning. Deduction can be used to derive useful concepts from a known
theory. However if the theory is intractable or incomplete inductive methods may be

21

required. For the game of Tic-Tac-Toe, boolean expressions for the various subgoals— with
the propositional variables being the contents of various board positions— can be derived
directly from the subgoal concepts. The expansion and simplification of the various terms
of the subgoal concepts will achieve this. But the simplification of boolean expressions is
known to be intractable. By using inductive methods approximations for these concepts
can be learned. While synthesizing insertion sort it was found that the given schema was
not sufficient to synthesize a program for “insert” operation. The theory here was not
complete to derive all the required facts. Here too inductive methods made it possible to
synthesizc the program.

The work reported here is only a preliminary investigation of ways of integrating de-
ductive and inductive methods. There are a number of issues that have to be addressed
if this approach is to be a general way of transforming high level specifications for a task
into efficient procedures for doing that task. Some of the issues are:

1. What is the level of detail at which the operators must be specified 7 The two
extremes are giving all the subgoals, leaving nothing to be deduced by the learner,
and giving nothing, leaving it for the learner to find the necessary operators.

2. What are the general data structures and algorithms that can be used to derive
subgoals from a specification?

3. Developing induction algorithms that guarantee the partial correctness of the induced
procedures.

As an extension of this work, general algorithms for deriving the specifications for the
subgoals from the specification of the goal are being investigated.

8 Acknowledgments

This work was done under the guidance of Professor Paul E. Utgoff. The idea of
combining Deduction and Induction into a single integrated system was his. I cannot
isolate a single idea in this work that did not either come directly from him, or that did
not arise out of a discussion with him. His meticulous reading of the earlier drafts of
this report and suggestions for improvement have significantly improved this presentation.
Any shortcomings that still remain in this work or in the presentation are because of my
inability to rise to his standards. I would like to thank him for his time, support and
encouragement.

Professor David A. Mix Barringlon read an earlier draft of this report. This report has
improved considerably because of his suggestions and comments.

I would like to thank Margret P. Connell and Harpreet Sawhney for always being
interested in knowing what I was trying to do and for patiently listening to my explanations.
The discussions with them always helped me to clarify the issues to myself.

22

"~

I would also like to thank Peter S. Heitman for helping me with PROLOG.

Thercis a lot that 1 have to thank my friends Kartik Venkataraman, Sandeep K. Gupta,
V. Krishnan and S. Raghuram for. It is because of them that my stay in Amherst continues
to be very pleasant. They have always been very patient with me. Their willingness to
listen to me and put things in proper perspective whenever I have had “things” to discuss
has helped e a lot.

It is not possible for me to thank with words, those to whom I owe everything. Without
the constant love, support and sacrifice of my parents and my sister, I could not have even
begun.

9 References
f1] Blum.L. and Blum,M. Towards a Mathematical Theory of Inductive Inference, Infor-
mation and Control, 28, 125-155, 1975.

2] Burstall,LR.M., and Darlington, J. A transformation system for developing recursive
programs Journal of the ACM 24,1,(Jan 1977), 44-67,1977.

[3] Dijkstra, E.W. A Discipline of Programming, Prentice Hall,1976.

|4] Hogger, C. J. Derivation of Logic Programs, Journal of the ACM, vol 28, No 2, April
1981, pages 372-392, 1981.

[5] Keller, R.M. The Role of Ezplicit Conteztual knowledge in Learning Concepts to Im-
prove Performance, Technical Report ML-TR-7, Department of Computer Science,
Rutgers University, 1987.

[6] Keller. R.M. Defining Operationality for Ezplanation- Based Learning, Proceedings
AAAI-87,pages 482-486, 1987.

(7! Lebowitz, M. Not the Path to Perdition: The Utility of Similarity-Based Learning,
Proceedings AAAI-86, pages 533-537, 1986.

[8] Manna, Z. and Waldinger, R. A Deductive Approach to Program Synthesis, ACM Trans-
actions on Programming Languages and Systems, vol 2, No 1, pages 90-121, 1980.

[9] Manna, Z. and Waldinger, R. The Deductive Synthesis of Imperative LISP Programs,
Proceedings AAAI-87, pages 155-160, 1987.

[10° Pazzani, M., Dyer M. and Flowers M. The Role of Prior Causal Theories in Gener-
alization, Proceedings AAAI-86, pages 545-550, 1986.

(11" Prieditis A.E. and Mostow J. PROLEARN: Towards a PROLOG that learns, Pro-
ceedings AAAI-87, 1987.

23

[12. Shapiro, E.Y. Inductive Inference of Theories from Facls, Technical Report 192, Yale
University, Department of Computer Science,1981.

{13 Shapiro, B.Y. Algorithmic Program Dcbugging, MIT Press, 1982.

[14° Smith, D.R. Top Down Synthesis of Divide and Conguer Algorithms, Artificial Intel-
iigence 27(1985) 43-96. 1985.

(15" Utgofl, P.E. and Saxena, S. Learning via Induction and Deduction, Unpublished Re-
port, COINS Department, University of Massachusetts, 1987.

{16. Valiant, L.G. A Theory of the Learnable, Communications of the ACM, vol 27, no
11,1984,pp 1134-1142.

(17 Valiant,L.G. Deductive Learning, Philosophical Transactions of the Royal Society of
London,scries A, no 312, 1984,pp 441-446.

24

e

‘e

v

Appendix

In this appendix we present a session with the system that infers a logic program for Insertion sort.
User input is indicated in italics.

User first inputs the specification for the program and the schema to be used to infer the program.

subgoals([(sorted(X,Y) : — permutation(X,Y),ordered(Y))]).

[For the goal]

(sorted(X,Y): ~permutation(X,Y),ordered(Y))

[Give the Schema as a list of Clauses,follow by the Schema specification]

[the format is [[schema],(schemaspec)]]

[[(sorted(X,Y): — primitive(X),directly(X,Y)),
(sorted(X,Y): —decompose(X,21,U1),sorted(U1, W1),compose(21, W1,Y))],
(sorted(X,Y): — permutation(X,Y),ordered(Y))]

The system then asks the user to give the types of the variables, + is used to indicates that the
corresponding variable is an input variable and - to indicate that the corresponding variable is an output
variable.|] indicate that the corresponding variable is a list.

[Declare,sorted(X,Y)]

sorted(+[z],-[z]).

[Declare,compose(X,Y,Z)]

compose(+z,+(z/,-[z]).

From the above information the system derives the specification for insert and asks the user to give a
name to the specification.

[the following spec is called]

[construct(X,Y,Z),ordered(Y),permutation(Z,W),ordered(W))

insert(X,Y,Z)

The procedures required by induced _sorted have now been determined.
[Procedures called by ,induced_sorted(X,Y), are ,induced.sorted(Z,U), and ,induced_insert(V,W X1);

The user is asked to specify the schema to be used for synthesizing a program for the insert operation.
[For the goal)

[construct(X,Y,Z),ordered(Y),permutation(Z,W),ordered(W))

[Give the Schema as a list of Clauses,follow by the Schema specification]

[the format is [[schema],(schemaspec)]]

[[(insert(X,Y,Z): —primitive(Y), directly(X,Y,Z)),

(insert(X,Y,Z): —decompose(Y,W1,X2),insert(X,X2,U2).compose(W1,U2,2))],

(insert(X,Y,Z): —construci(X,Y, W), ordered(Y),permutation(W,Z),ordered(Z))]

The user is then queried about the type of the variables of insert.
[Declare,insert(X,Y,Z)]
insert(+z,+(z],-[z]).

From the information about the schema to be used and the derived specification of the insert operation,
the procedures required by the induced-insert operation have been determined.

|Procedures called by induced_insert(X,Y,Z), are ,iinduced_insert(U,V,W),

and ,X1=<Y l.ordcred(Z1)]

The analysis of the problem specification and the program schema to derive the subgoals required for
achieving the goal is now complete. The Model Inference System is now used to get efficient programs
for these derived subgoals. The subgoal definitions will be used to answer the oracle queries generated by
the Model Inference System.

The first sorting problem is submitted to the system.

czecute(induced_sorted([2,3,1],X))

ichecking facts;
[Error: missing solution induced_sorted((2,3,1],/1,2,3]) diagnosing...]

The induction algorithm asks a query :
induced_sorted({3,1],X) ?

The specification of sorted is used to get the answer:
{ Exccuting specification to get the answer]|
IThe answer is ;induced_sorted(|3,1],{1,3]),true]

The induction algorithm next asks the query:
induced_insert(2,[3,1],X) ?

The specification of insert is executed to get the answer:
[Executing specification to get the answer]
[The answer is ,induced_insert(2,[3,1],X),false]

Similar queries about sorted and insert are asked until the Model Inference System finds a clause
that is not false and can be used to solve the given problem.

[Found clause: ,(induced_sorted([X|Y],Z): —induced_sorted(Y,V),induced.insert(X,V,Z))]

[listing of,induced_sorted, :]

(induced_sorted([X|Y},2): —induced_sorted(Y,V),induced.insert(X,V,Z})).

The known facts are then checked to see whether the program induced so far can indeed solve the
problem.

[checking facts]

{Error: missing solution,induced_sorted([2,3,1],{1,2,3]) diagnosing...}

[Found clause: ,(induced_sorted([],[}): —true)}
[listing of induced_sorted]

(induced_sorted({X1Y},2): —induced.sorted (Y,V),induced.insert(X,V,Z)).
(induced_sorted([],[}): —true).

AL

Fad

-

At this stage the system has synthesized the program to do the sorting. But the insert operation has
not yet been synthesized. The various queries about the insert operation that were asked and answered by
the oracle are the facts that are now checked.

[checking facts)

[Error: missing solution,induced_sorted([2,3,1],[1,2,3]),diagnosing...]

[Found clause: ,(induced.insert(X,[],[X]): —true))
[listing of induced_insert)

(induced_insert(X,[},[X]): —true).

This process of checking facts continues until a set of clauses that can solve the given problem is found.
These clauses-are:

(listing of induced.insert)
(induced_insert(X,[],(X]): —true).
(induced_insert(X,[Y],[Y,X]): —true).
(induced_insert(X,[Y|Z],[Y,X|Z]): —=Y=<X).
(induced_insert(X,[Y],[X,Y]): =X=<Y).

[checking facts]
[no error found]

The next sorting problem is now given to the system.
ezecule(induced_sorted([3,2,1],X)).

[Induced Program is incorrect]
[The correct answer is)
induced_sorted([3,2,1],[1,2,3])

The system finds the correct answer and checks to find the cause of error. It then searches for a clause
that will solve the problem. Each time the system is given a problem the system checks the facts, if the
answer is wrong it finds the wrong clause, removes it from the program, and then searches for the clause that
will sove the problem. After few more problem instances the system finds the correct program for insert.

[listing of,induced_insert, :]

.(induced_insert(X,[],[X]): —true).

-(induced_insert(X,[Y],[X,Y]): —X=<Y).
(induced.insert(X,[Y|Z],[Y|V]): —induced.insert(X,Z,V),Y=<X).
(induced.insert(X,[Y,Z|U},[X,Y,Z|U]): - X=<Y,Y=<Z).

[checking facts]
[no error found]

The synthesis is now complete. Notice that the last clause for induced_insert has an unnecessary
test Y=<Z. The list into which an element is to be inserted is always sorted, therefore Y=< is always
true. This fact is generated because in the synthesis process, before the procedurc for soried was completely
synthesized, a query induced_insert(2,[3,1],X) is generated. The fact that this query cannot be true for
any X is recorded. The test Y=<Z is present to account for this fact.

