Characterizing complex state machines
in modal logic

Victor Yodaiken
Krithi Ramamritham

COINS Technical Report 87-106
20 October 1987

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

Abstract

A logic for reasoning about finite state automata and products of finite state au-
tomata is shown to have much of the expressive power of branching time temporal
logics, a flexible notion of concurrency and constructive model definitions. The main
ideas of the logic are introduced and several examples are discussed.

(=N

%5

~&

1 Introduction

This paper introduces T, a logic of finite state automata (FSA). The logic provides a
surprisingly general and expressive methodology for reasoning about computational devices
and programs. The paper is divided into three sections. The first section introduces the
logic and some useful operators analogous to those found in branching time temporal
logics [1,4]. The second section shows how automata can be constructively defined by T
sentences called grammars . The third section presents some elementary examples.
Before introducing the methodology, we address the following natural questions; “why,
restrict ourselves to finite state systems?” and “why, use a modal logic to reason about
FSA’s?” The answer to the first question is that the restriction is not nearly as narrow
as one might suppose. Digital computers are finite state devices (even when connected
in parallel) and algorithms for digital computers cannot utilize infinite storage or com-
putation. The behavior of an algorithm which implements addition will depend on the
storage limitations of the machinery which executes the algorithm. The trick is to be able
to use the fact that these limits exist, without having to make the specification depend on
particular constant values. This brings us to the answer to the second question. The logic
allows us to parameterize, abstract and compose FSA’s without loosing ourselves in the
tedious details of transition functions and state sets. The state sets of intere§ting systems
are too big and too complex to investigate with standard methods. Modal logic, gives us a
perfect framework in which to be able to reason about state changes; a framework which
permits propositions about both the current state, and the states that can be reached after

some sequence of transitions. !

! An alternative approach to complex finite state automata is taken by Harel [8] and others who introduce
structuring to state diagrams. These approaches are not necessarily incompatible, but we feel that there are
evident advantages to our, more analytic, method.

1.1 Trace languages

For any finite state automata M, define the trace language L(M) to be the set of finite
paths originating at the start state of M. Clearly, trace languages are regular and there is a
unique trace language for every minimal automaton. A trace w € L(M) can be considered
to describe a sequential history of transitions — the most recent being the rightmost.
Thus, a trace defines a state by describing the sequence of events that have driven a finite
state machine from its initial state. It will be convenient to have a definition of trace

languages that does not directly refer to automata.

Definition. 1 Let A be a finite alphabet and L be a subset of A*. Then L is a trace

language iff L is regular and wwe€ L - u € L.

We incorporate concurrency into the FSA model by using a generalization of products of
automata [7,10]. A collection of instances of (not necessarily distinct) automata can be
considered to comprise a system of concurrent machines. These machines can be combined
to generate a “product” machine so that transitions in the product correspond to parallel
transitions (or sequences of transitions) in some number of the “component” machines. A

product trace language is defined similarly.

Definition. 2 Let X = {L£,...L,} be a collection of trace languages over alphabets
Ay ... An, respectively, and let d be a function. A trace language L C A* is a well de-
fined product of X with respect to d iff for alli € {1...n} and for all u,v € A*

(1) d(i,u) € A:

(2) dGi,) = {

(8) ue L — d(i,u) € L;

(4) d(2,u)d(z,v) = d(z,uv)

A “product” trace language L is associated with a decoding function d; which maps traces
in £ to traces in the components. The 4 constraints on the decoding function are difficult
to specify using standard representations of FSA’s but turn out to be rather simple in T.
The first property makes sure that every sequence of transitions in the product alphabet
maps to a sequence in each component alphabet. The second property makes sure that
the start state of the product is unique. The third ensures that the components are never
driven into undefined states. The fourth makes sure that components do not change state
discontinuously.

Essentially, T is a formal system of arithmetic, extended to allow bounded assertions
about traces, paths and components. The choice of the 5dse formalization is pretty
arbitrary. We require only the most elementary arithmetic to be able to define state
machines. Greater expressive power in the base logic is convenient, but makes decision
procedures more complex. In a future paper we will discuss decision complexity and
verification implications of choosing limited arithmetics, like the bounded arithmetic of
[17], the polynomial or linear time arithmetics of [3,5] or more restrictive systems. For
this paper we assume the base arithmetic is PRA (Primitive Recursive Arithmetic) [21]
which is decidable and gives us the primitive recursive functions. The technical details of
the definition of T can be found in [23]. For now, suffice it to say that we add to the base
logic the following symbols; a set symbol A, representing the alphabet {a,..., ax}, a set
symbol C representing the set of components {c;,..., ¢, }, some new function and predicate
symbols {+, E, <,[,x} and two new connectives {=>, =}. We'll use a typewriter font to
" distinguish symbols in T that represent transition labels (like a,b,a’,2;...), from other

symbols of T. A path p = (a;,,2;,,...,a;,) represents a sequence of transitions. An event

e = (a,?) represents the ¢** most recent instance of a in the current trace. We often write
a¥) instead of (a,z).

The truth of formulae in T is relative to current state, represented by a trace, and
possible futures, represented by a trace language. There are five kinds of assertions about

statein T.

e +p is true iff the sequence of transitions p “can happen” in the current state. By
convention, we add a cyclic transition labeled A to all states that have no other

outgoing transitions. This ensures that there is always some p such that +p.

o E(a¥) is true if any trace leading to the current state must traverse at least ¢

transitions labeled a. Less formally, E(al")) is true if a has happened at least ¢ times.

o a(¥) < b is true iff in every trace that leads to the current state, the s** most recent
a preceded the 7** most recent b. A necessary condition for al) < bl) to be true is
that E(bl?)) be true, an event which has not happened cannot be preceded another

event.

p = A is true iff +p implies that p leads to a state where A is true.

¢ |= A is true iff the component ¢ is in a state where A is true.

If Ais true for a given trace w and trace language £ we write £, wl= A (A is satisfied
by L at w). If A is true for every trace in £ then we say A is a theorem of £ and write

LI= A. The definition of |=- is pretty straightforward (again, the details are in [23])

LiwE +piff wpe L

L,wl= E(a) iff there are at least ¢ a’s in w.

L,wk=-[a) < b)) iff the :** a (from the right) is to the left of the j** b in w.
LywEe[p=A]iff wp¢ Lor L,up= A

Liwe[c = Al L.,di(c,w)= A

The function symbol x is used to allow us to make universal assertions such as “all
paths lead to states where A is true” without having to quantify over the (infinite) set “all
paths”. The function symbol [is used to decode the effects of paths on components. The

two functions are introduced more precisely in the next two sections.
1.2 Analogs of the temporal operators

Temporal logic [16,11] is a modal logic which allows very intuitively appealing characteri-
zations of computation in terms of what could or will happen in the future. We can very

easily define an analog to the temporal operator “()”
Definition. 3 QA =4 Va € Ala = 4]

Thus QA is true iff A must be true in any next state. Note that our convention about A
makes it certain that Ja € A[+a]. T is really a “branching” logic [1] because there may

be more than one outgoing path from any state. Because of this ~ () A is not equivalent

to O—A and we can define
Definition. 4 © A =4 Ja € A[+afa = 4]

as a “weak” version of next. The proposition @A is true iff there is some transition that
takes us to a state in which A is true and now we have a duality Q-4 = -~ @ A.
A peculiarity of T is that we allow only bounded quantification. This prevents the

construction of assertions about non-regular languages and infinite strings, but one might

suppose that such a restriction limits our ability to make universal assertions about future
states. Without unbounded quantification over paths, operators found in temporal logics,
such as A (A is henceforth true) and A (A is eventually true) appear to be undefinable.
Fortunately, we can use the pumping properties of regular languages to define bounded
versions of these operators. Suppose we wish to determine, for some sentence A, if there is
a path p such that +p A p => A. Note that the atomic formulae of T fall into 4 “sorts”.
Arithmetic formulae are those not containing any of the new symbols we have added to
the base logic. Clearly, the truth of these kind of formulae is unaffected by current state.
For arithmetic A we know that p => A for any path p. That is, the truth of A is not
affected by path p. Suppose, on the other hand, we wish to know whether there is any
path p which leads to a state where +p' is true. We know that the trace language we are
reasoning about is regular, so that there is a minimal FSA, M, which accepts the language.
Let m be the number of states in M. Clearly, if there is any such p there must be one of
length less than m. Event formulae are those of the form E(a(¥)). If there is any possible
path p which contains at least one a then there must be such a p of length less than m.
So if there is a path which contains at least 7 a’s, there must be such a path of length less
than ¢ - m.

The difficult case is that of sentences a® < bl4). Note that there must be upper bounds
for the value of the terms 7 and 7, because we only have bounded quantification. Let h be
the sum of the upper bounds of 7 and 5 and let m be as above. We can show, through a
pumping argument that there is a path p which leads to a state where a®) < blY) is true,
iff there is such a path of length less than A - m. Details of the unremarkable proof can
be found in [23]. The intuitive content of the proof is merely that because 7 and 7 are

bounded we only need remember the last ¢ a’s and last 7 b’s to determine the truth of the

inequality.

Let ho(A) be the upper bound of any term 7 used as a transition “superscript” in A,
ie., in a subformula E(a,7) or a!) < b} of A. Let h(A) be the sum of all the k,’s for
every a. The upshot of the argument of the preceding paragraphs is that by interpreting

k as m we can make universal assertions about automata using bounded quantification.
Proposition. 1 Vp € AiS~hA+)[p —s 4] - p' => A

For notational clarity we will omit the factor (h(A) + 1) in such terms (it is always clear

from context).
We'll take a quick detour here to define a construct of interval temporal logics
[14,15,18]. Let |p| denote the length of path p and let pp' denote concatenation. The

function pref maps a path p to the set of “prefixes” of p (including p itself and the empty
path).

Definition. 5 pref(p) =; {p1 : p1 € A'SlPl, Ip, € AislPl[p = p,p,]}
Then
Definition. 6 Adurp =,.; Yz € pref(p)[z = A]

In words, Adurp is true iff all prefixes of p lead to states where A is true. Now we can

define analogs for all of the other operators of branching temporal logic.

Definition. 7 O A =,,; Vp € 4*[A dur p]
Definition. 8 OCA =, Vp e .4"[+p — =[(—4) durp]]

Thus, OA means that A is true in the current state and in all reachable future states,

and O A means that A becomes true in some future state, no matter which path is taken.

Branching time temporal logics offer weak versions of ¢ and O to allow existential asser-

tions about future paths.

Definition. 9
@ A =4 Ip € A°[+p \(A dur p)]

Definition. 10
@ A =u; 3p € A*[+p A\ ~((—A) dur p)]

The predicate B A is true if there is some non-terminating (cyclic) sequence of transitions
which keeps A true. The predicate © A is true if there is some reachable future state in

which A is true. We can also define the until relation.
Definition. 11 A until B =;.; Vp € A*Vz € pref(p)[(—B) dur z — A dur z]

Informally, A until B holds if every path that keeps =B true, keeps A true too. This
version of until is sometimes called weak because A until B does not imply &OB. There
are many possible alternate definitions of these operators. The choice made here was in

order to take advantage of the proof system developed by [1].

Proposition. 2 The azioms of UB (Unified Branching Time Logic) are valid in T given

definitions 3-11, and the deduction rules of UB are sound in T

1.3 Concurrency and composition

The function symbol [is used to refer to decoded paths. The term plc represents the path
d(c,p). Our definition of a well-defined product trace language (definition (Def 2)) ensures
that [behaves “sensibly”. We write A,[y] to denote the formula obtained by substituting

the term y for the free variable z. Thus

Proposition. 3 (¢ Fz = A), [pl'c] —(p=[cEA4])

is the valid assertion that if p encodes a path which leads component ¢ to a state where A is
true, then p leads the product automata to a state where ¢ = A is true. The fourth clause

in definition (Def 2) implies that (plc)(p'fc) = (pp')fc. From clause (3) of the definition we

can see that
Proposition. 4 +p - Ve e C [(c = +z), [p]'c]]

Another important consequence of (Def 2) is that theorems about languages carry over

to products.
Proposition. 5 If L' is the i** component of L and L'}= A then LI= [E A

For proof suppose for some u € L the sentence [|= A] is false, then d,(¢,u) cannot be in
L' and thus d; cannot be well defined.

The model of concurrency used here is a byproduct of the method of composition we
use. That is, components, ¢ and ¢’ change state concurrently on product transition, a,
iff afc # () and af¢’ # (). In effect, this method allows components to be synchronized in
arbitrary ways. This notion leads to a view of concurrency that is completely independent
of any particular methods of communication, clocking or scheduling. Essentially, any model
of communication that does not involve unbounded buffering can be described in T. That
is because we can arbitrarily synchronize the transitions of component state machines. For

example, a CSP [9] style of communication between components can be defined as
alc = input, , < af¢' = output,,

for message k and “processes” ¢,¢'. At this point we'll introduce some notation borrowed

from [9] which makes it simpler to handle large alphabets and indexed other sets. Instead

of littéring our notation with multiple subscripts, we will adopt the “dot index” notation.

Thus the formula above can be rewritten
ae = input.(c', k) « al¢' = output.(c, k)

Indexing variables will always be constrained to vary over finite sets.

Note that the properties of decoding functions imply that this method of communica-

tion is synchronous.
(afe = input.(c', k) A +a) — [¢' = +output.(c, k)]
2 Models and grammars

The question that naturally arises for some T specification A is, “is there a trace language
(and a decoding function if components are mentioned in A) that makes A true?” In other
words “is there a model for A?” There are two well known methods of approaching this
question. The first is to define a “proof system” and to show that if this system proves A
then there must be a model for A. The second is to try to “synthesize” a model for A,
using A as a.'constra,int on the structure of the model. A proof system for T is described
in [23]. In this section we show how aspects of both methods can be used in T. On the
one hand we will take advantage of the soundness of modal deduction for simple proofs.
On the other hand we will rely a great deal on “model theoretic arguments” using the
particularly transparent nature of regular languages and finite state machines. The key
to this approach is to show that trace languages can be defined by certain T sentences
called grammars. Grammars are attempts to capture the algorithmic nature of automata
by defining under what conditions which transitions will be enabled. The major result of

this section is that there is a deterministic procedure for generating trace languages from

10

grammars.

2.1 Construction of Trace Languages

A path free sentence of T is a sentence in which neither + predicates or the x function
appear (except within the scope of a |=). Note that if £, wl= A for path free A, then
the language L is irrelevant to the truth of A. Path free sentences are assertions about
individual traces, components or arithmetic and thus if d; = d,., and A4 is path free, then
(£,w= A) « (L', w= A). This fact allows us to define trace languages in terms of path
free sentences. For path free A we will further abuse notation and write wj= A.

A simple rule is a sentence A\ -E(AM)) — +a, where A is path free and contains
no [=, or [symbols and a # A. Intuitively, a rule of this form says that if A is true and A
has never happened then a can happen. The purpose of the conjunct ~E(A() is to make
sure that once A happens no other transition can be traversed. Since these conjuncts are
always present in rules, we will omit them from the text as an abbreviation. Given a rule
R =(A — +a) we write Cons(R) for a and Hyp(R) for A. If Hyp(R) is true we say R is

enabled. A simple grammar is a sentence

RiAR,...A\ R, \ Default

where Ry,..., R, are simple rules and Default is the sentence

0<i<n
(A -Hyp(R)) - [a= Ao +a)
asserting that if no rule is enabled, only A can happen.
Let § be a grammar. We claim there is exactly one trace language £ such that L|= §.
First we show there is at most one such language by contradiction. Assume that both £

and [’ satisfy § and that £ # £'. Without loss of generality pick some w € £ so that

11

w ¢ L'. Every prefix of w must be in £ by definition of trace languages and for the same
reason A, the null string, must be in both £ and £'. So let u be the longest prefix of w in
both languages. By hypothesis, there must be some a so that ua ¢ £’ and ua € £. But
this means that £,ul= + a is true while £/, ul= =+ a. For £,ul= + a to be true there
must be some rule in R in § so that £,ul= Hyp(R) and Cons(R) = a. But, Hyp(R)
must be path free so £',ul= Hyp(R) and thus £',ul= + a — contradiction.

We prove that there is a trace language that is a model for § by construction. The

construction is as follows:

L(G) = (M UH{wa : w € L(G), (wl=- (§ — +2))}

We need to prove that L(§) is a trace language. The details of this proof are not given
here, but L() obviously has the trace prefix property (wu € £ — w € £L). The non-trivial
part is proving that L(§) is regular. We say that two strings u,w are G equivalent if for
every suffix v the rules of G that are enabled by uv are the same as those enabled by wv.
Let h, be the maximal upper bound of transition exponents al®) in G, let A be the sum of
all the h,’s and let n be the size of the alphabet. Then every string in A* of length greater
than n* is G equivalent to some string of length less than or equal to n*. This establishes

a finite indexed congruence on L(§) and proves the language is regular.
Proposition. 6 If G is a simple grammar then L= G iff £ = L(§)

To define product automata in T we need to add axiomatizations of components, and

the decoding function. Thus product grammars also have conjuncts of the form

cEA

where we refer to A as the “type” of ¢, and conjuncts
da=p

12

defining the decoding function. The rules of product grammars are like those of simple

grammars but have an additional guard conjunct.
Definition. 12 Enables(c, z) =4; [c = +2]

A product rule has the form:

AN-E(AM) A\ Ve € C Enables(c,afc) — +a

The condition A must still be path free but may contain component, = and [symbols and
thus path predicates in the scope of |= symbols. The guard conjunct makes sure that the
decoding function of the product automata is well defined.

If the types of all the components mentioned in a product grammar § are themselves
grammars then § is called determined . If the tree of component definitions rooted at §
has only determined nodes (the leaves must be simple grammars) then § is said to be

fully determined and both L(§) and dy4) can be deterministically constructed.
2.2 Families of languages

Grammars are intended to specify algorithms. Consider the class of grammars Q = {G :
L(G)= Fifo} where Fifo is a T proposition about fifo queues. This class is defined
without reference to the internal structure of the languages or automata. We do not have
to assert that there is any structural or algorithmic mapping between the elements of Q
as is common in the algebraic study of automata [10] and computation [2,13]. We only
need assert that every element of Q “behaves like a fifo”. Alternatively, if G, is a grammar
when z is bound, then G, defines a family of trace languages. A useful consequence of this
is that we can define a implementation parameterized over various resources. For example

we can define a grammar §,, for a fifo queue with z parameterizing queue length and y

13

parameterizing the possible elements of the queue. While unbounded inductive proofs are
not a part of T (since we have no unbounded quantification) we are free to use such proofs

in algebra and so may be able to show that

Vi >0,V > O[L(G.4fi, 5])F= Fifol

Product grammars that are not fully determined describe partial algorithms. By a
partial algorithm we mean an algorithm that makes use of the propertieé of a components
that may not be fully defined. For example, if § describes an algorithm that makes use of
Fifo s there may be a component definition in § of the form ¢ |= F7 fo. Suppose we wish
to prove that § — A. The grammar will not be fully determined because we have not yet
given an algorithm for the fifo so we cannot (even if it were practical) generate L(§) and
then verify L(G)l= A What we can do then is try to prove that ¥ € Q implies that the
grammar §' obtained by redefining the type of ¢ to be ¥ is such that L(§')[= A. Thus we

can consider the iypes of components to be parameters for grammars.

3 Some Examples

In this section several elementary examples are developed. The first example is a counter,
_ illus{;rating the use of a simple grammar, and the integration of arithmetic and state
asseftions. The second example example is a store and the third example is a “real-time”
store.v The fourth example is a fifo queue, which for the fifth example we transform into a

lifo queue (stack). In the final example we combine the fifo with the store. Before starting

the examples we need a few preliminaries.

14

A -]

3.1 Some preliminaries

First, a notional prelude. If Vi € X[a.i € A] then we will often refer to the set {a.i : ¥i € X}
by simply omitting the index variable and just writing {a}. All quantification will be
bounded and so for clarity of notation we will often write Ve (3c) instead of Ve € C
(3¢ € C). and likewise for Va (3a). We will use a similar trick for sets other than C and A

whenever convenient. A variable declaration
varz€ X

constrains ¢ to vary over X and allows the use of V7 in place of Vi € X in the text. Variable
declarations are basically defining axioms. That is, a variable definition introduces a new
symbol in terms of previously defined symbols. As a textual convenience we will sometimes
treat variable declarations as ordinary (true by definition) propositions. For example,
writing (var ¢ € X)A ViA(7) instead of Vi € X(A(z)). We will use the same trick for
defining formulae. Thus (A =4; D) A B is an abbreviation (in a loose sense of the word)
for B' where B is the formula obtained from B by replacing each subformula A in B by
D.

A very useful function for referring to the “most recent” of some set of transitions can

be simply defined. If B is a set of transition symbols

Definition. 13

_ if Va € B~E(aV);
last{B} = { a:a € B and Vb€ Bb* <alll)] otherwise.

A particularly useful case is where B = A4 and we will abbreviate this

Definition. 14 Last = a =, last{A} =a

15

There is an obvious theorem about Last which will be useful below
Proposition. 7 a => Last = a
3.2 b quick examples
3.2.1 A mod n counter

The first example presented is a grammar for a mod n counter. This grammar is not at

all deep, but illustrates some techniques. The grammar is a conjunction of its clauses.

Counter(n) =4; var:1€{0...n—1}
A={tz:V}
Last = A — +t.1 (R1)
Last =t.4 — +t.({ + 1 mod n) (R2)

The variable definition and definition of 4 are not strictly part of the grammar, but
make it more self-contained. Note that a Default rule is present in spirit (by the convention
of Section 2.1) although it does not appear in the text. Rule 1 (R1) makes sure that in
the initial state the counter can traverse a transition labeled t.1 and Rule 2 makes sure

that in each subsequent state, the last transition determines the next transition.

3.2.2 A store

Let V be a set of “values” and L be a set of “locations”.

Store =4; varlel
varveV
A = {put.(l,v) : Vo, Vi}
true — +put.(l,v) (R1)

16

ro

We can define a predicate to “fetch” values from locations
Value(l,v) =45 put.(l,v)M > last{put.(l,v') :v' # v}V

Suppose that the store requires a certain amount of settling time after each assignment.
We can add a new transition symbol t to the alphabet to represent the passing of one
“tick” and replace rule (R1) with two rules

t® > Last{put}V — +put.(l,v) (RY)

true — +t (R2)

which allow put’s only after k ticks have passed (where k is some constant) and always
allow time to pass. Now suppose that the locations can be partioned into two disjoint
sets, a set F' of “fast” locations that need a settling time of & ticks, and a set S of “slow”
locations that need a settling time of r ticks where r > k. We replace rule (R1') with two
rules:

t®) > Last{put}¥ Al € F — +put.(l,v) (R1.1")

t() > Last{put}V Al € S — +put.(l,v) (R1.2")

The predicate value should also be redefined to reflect a delay while storage settles.

Value'(l,v) =gop Y0'[+put.(L.v)] A put.(l,0)V > last{put.({,v') :v' # v}V

If | is not “settled” then Value'(l,v) is not true for any v.

3.2.3 A fifo queue

One can consider a queue to be a ordered set from which the element with the highest

priority can be removed (“dequeued”) and to which new elements may be added (“en-

17

queued”). In a fifo (first in first out) queue, the member of the queue enqueued first, is

the member with the highest priority.

fifo=4; varee ek
A = {enqueue.¢,dequeue.e}
member(k) =q4.; enqueue.e!) > dequeue.ef?)
Better(e, €') =g4ey [-member(e') V enqueue.e'!V) > enqueue.e!]
First(e) =4 member(e) \ Ve' # e[Better(e, e')]
—member(k) — +enqueue.e (R1)
First(e) — +dequeue.e (R2)

Member(e) is defined to be true if e has been “enqueued” more recently than it has
been “dequeued”. Better(e,¢') is true if e has higher priority than ¢’ — if either ¢’ is not
on the queue at all, or ¢’ was “enqueued” after e was enqueued. Element e is the First iff e
is on the queue and it is better than all other elements. Rule. (R1) asserts that is e is not
on the queue then e may be enqueued, and rule (R2) asserts that the First element may
be dequeued. This implementation will only permit an element e to be enqueued if e is
not currently a member of the queue. One may argue that this is a peculiar limitation to
put on a queue, but in fact all queues suffer from this limitation. If we cannot distinguish
e from ¢’ how can we order them? One usually considers the elements of the queue to

“name” storage cells in which values that may or may not be unique are stored. In the

final example we present a queue of this sort.

3.2.4 A Stack

The grammar given in the previous section may be trivially modified to obtain a gram-

mar for a lifo queue (stack). Change the definition of Better by reversing the transition

18

"y

L]

inequality
Better(e,€') =y.; [-member(¢') \/ enqueue.e! < enqueue.e!]

and the grammar as given defines a stack.

3.2.5 Adding storage to the fifo

We now give a grammar for a fifo, where elements in the fifo are “pointers” to data. To do
this we let L = E, the set of locations equal the set of elements and then use the previously

defined fifo and store as components in a product grammar.

fifo2 =45 A = {push.v,pop}
fEfifo
s |= store
push.v € {e.(v,!)}
pop € {d.l}
e.(v,!)[f = enqueue.!
e.(v,)fs = put.(l,v)
d.[[f = dequeue.
[f = +enqueuve.l] — +e.(l,v) (R1)
[f E +dequeue.l] — +d.l (R2)

This grammar incorporates several novel features. First, we introduce two components
f and s, a fifo and a store, respectively. Second, we “hide”some of the index variables
of the transitions by defining push.v to be a variable over the transition terms e.(/,v) and
pop to vary over terms d.l. The goal here is to allow use of the queue without explicit
reference to locations. The decoding function is defined implicitly in the next 3 clauses.

The value at the top of the queue is the value stored in the location matching the first

element of the fifo component.

Top(v) =yes Ell[[f = +dequeue.l] A[s value(l,v)]]

19

4 Conclusions and current research

We have introduced a method for reasoning about and specifying very large, complex
finite state systems. We believe that the combination of modal logic, finite state machines
and products of automata provides a very powerful mathematical tool for investigating
computational systems. The development of our method was motivated by problems in
operating systems and computer architecture. In these fields intricate timing dependencies
and the layering of components present a barrier to the use of formal methods developed
for “higher level” programming. An illustration of this difficulty in the case of “standard”
temporal logic can be found in the ambiguity of O when previously specified components
are combined. T permits the logical specification of a system to be defined using the same
modularization and layering techniques used in actual system design.

T is still in an early stage of development. Currently, we are investigating several
methods of verification and theorem proving, including a Hilbert style deductive proof
system, a model theoretic proof system and applicability of automated verification. The
intuitive content of finite state automata helps to make syntactic deductions in T less
“abstract” (i.e. more intuitive) than deductions in “standard” temporal logic. We find
that' it is often convenient in proofs to be able to combine “logical” deductions with model
theoretic ones, e.g. to deduce A and A — B from £ and some w and then to deduce B via
MP. This type of reasoning is more difficult in modal logics where the algebraic structure
of models is more complex or less well defined. A second interesting aspect of deduction
systems arises from the “selectable” complexity of the base arithmetic logic. Limiting the
complexity of the base logic may be useful in limiting the complexity of decision procedures
for T. We are also exploring various automated technj(jues for applicability to £. The work

of [4,20] is very similar in intent to our work and clearly model synthesis is appealing in a

20

A

FSA based logic. An important question for us is whether “hierarchical” techniques similar
to those which have been applied to Hamiltonian circuit problems [19] and VLSI problems
[12] can be used to analyize the hierarchy of FSA’s described by a product grammar. Such
techniques would make the model checking paradigm more feasible for very large state

machines.

References

[1] Ben-Ari, M., Pnueli, A. Manna, Z. “The Temporal Logic of Branching Time”. Acta
Informatica, 20(1983).

[2] Browne, M.C., Clarke, E.M., Grumberg, O. Characterizing Kripke Structures in Tem-
poral Logic Technical Report CMU-CS-87-104, Carnegie Mellon University, Jan. 1987.

[3] Buss, Samuel. Bounded Arithmetic Studies in Proof Theory, Bibliopolis, 1987.

[4] Clarke, E. M., Emerson A.P., Sistla, A.P., Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach.

Proc. 10th Annual Symp. on Principles of Programming Languages, Austin, 1983
pp-117-119.

[6] Cook, S. A. Feasibly Constructive Proofs and the propositional calculus. Seventh
ACM Symp. on Theory of Computing. (1975) 83-97.

[6] Emerson, E. A., and Halpern, J. Y. “Sometimes” and “Not Never” Revisited: On
Branching versus Linear Time Temporal Logic. JACM ,33(Jan 86).

[7) Gecseg, Ferenc. Products of Automata Monographs in Theoretical Computer Science,
Springer Verlag, 1986.

[8] Harel, David. Statecharts: A Visual Formalism for Complex Systems, Technical Re-
port, Weizmann Institute, 1984.

[9] Hoare, C. A. R. Communicating Sequential Processes Prentice-Hall, 1985.
[10] Holcombe, W.M.L. Algebraic Automata Theory Cambridge University Press, 1983

[11] Lamport, L. “Sometime” is sometimes “not never”- On the temporal logic of programs.
Proceedings, 7th Annual ACM Symposium on Principles of Programming Languages
(Las Vegas. Nev., ACM New York. 1980, pp. 174-185.

[12] Lengauer, Thomas. Efficient Solution of connectivity problems on hierarchically de-

fined graphs. Technical Report #24. Reihe Theoretische Informatik, University of
Paderborn, June 1985.

21

[13] Milner, R. A Calculus of Communicating Systems Lecture Notes in Computer Science,
Vol. 92, Springer Verlag, 1979. '

[14] Moszkowski, B. and Manna, Z Reasoning in Interval Temporal Logic, Stanford Univ.
Tech. report STAN-CS-83-969. July 83. .

[15] Moskzowski, B. Reasoning about Digital Circuits Ph.D. Thesis, Stanford Univ. June
1983.

[16] Manna, Z., and Pnueli, A. The modal logic of programs. Proceedings of the 6th
International Colloquium on Automata, Languages, and Programming. Lecture Notes
in Computer Science, vol. 71. Springer-Verlag, New York, 1979, pp. 385-408.

[17] Nelson Predicative Arithmetic Mathematics Notes, Princeton University , 1986.

[18] Schwartz, R. L., Melliar-Smith, P.M. and Voght, F. An Interval Logic for Higher level
Temporal Reasoning: Language Definitions and Examples, Principle of Distributed
Computing, August 1983.

[19] Sislenko, A.O. Context-free grammars as a tool for describing polynomial-time sub-
classes of hard problems. Information Processing Letters, volume 14, number 2, April
1982.

[20] Sistla, A.P. Theoretical Issues in the Design and Verification of Distributed Systems
Ph.D. Thesis, Harvard University 1983.

[21) Smorynski, C. Seif-Reference and Modal Logic Springer-Verlag, 1985.

[22] Thomas, W. Classifying regular events in symbolic logic. J. Computer Syst. Sci.
25(1982) 360-370. '

[23] Yodaiken, Victor. Ramamritham, Krithi. A modal logic for finite automata. Tech.
Report. University of MA. (forthcoming)

22

-

“@.

(S

-

