bd
ot

Interpretation in a
Tool-Fragment Environment

Steven J. Zeil
Edward C. Epp

COINS Technical Report 87-108
October 1987

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This work was supported by grants DCR-8404217 and DCR-8318776 from the National Science Foundation,
84M103 from Control Data Corporation, and RADC grant F30602-86-C-0006.

-

Abstract

The philosophy of composition of new software tools from previously created tool fragments is a
useful approach to facilitating the development of software systems. This paper examines the ex-
tension of this philosophy to the design of program interpreters, demonstrating how the separation
of interpretation into a core algorithm, value kind definitions, and computation model allows the
capture of conventional execution models, symbolic execution models, dynamic data flow track-
ing, and other useful forms of program interpretation. An interpretation system based upon this
separation is currently under development.

Keywords: interpretation, environments, tools, symbolic execution, data flow

Interpretation in a
Tool-Fragment Environment

Steven J. Zeil
Edward C. Epp

COINS Technical Report 87-108
October 1987

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This work was supported by grants DCR-8404217 and DCR-8318776 from the National Science Foundation,
84M103 from Control Data Corporation, and RADC grant F30602-86-C-0006.

Abstract

The philosophy of composition of new software tools from previously created tool fragments is a
useful approach to facilitating the development of software systems. This paper examines the ex-
tension of this philosophy to the design of program interpreters, demonstrating how the separation
of interpretation into a core algorithm, value kind definitions, and computation model allows the
capture of conventional execution models, symbolic execution models, dynamic data flow track-
ing, and other useful forms of program interpretation. An interpretation system based upon this
separation is currently under development. ’

Keywords: interpretation, environments, tools, symbolic execution, data flow

1 Introduction

This paper discusses the role and design of program interpretation tools in a software devel-
opment environment. We will examine the prospects for providing interpreters that satisfy two
important characteristics of powerful development environments:

e support for a wide variety of activities occurring throughout the development life cycle, and

e support for the straightforward construction of new software tools via the composition of
previously constructed tool fragments.

It is not the purpose of this paper to defend the utility of these characteristics, nor to discuss
general environment architectures for their support. Instead, we propose to examine a useful class
of tools that have not traditionally been designed with these characteristics in mind and to show
how these characteristics affect those tools.

1.1 Varieties of Interpretation

A survey of activities that can take place within a comprehensive software development environ-
ment reveals an impressive range of activities where some form of program execution is required. In
this section, we will examine some of these activities, with the goal of illustrating both the variety
of computation models that must be encompassed and the common threads that run through those
models.

Although it is not uncommon for a software development environment to center upon the use
of some single language [9,13,11,14], there is certainly no requirement that all environments should
do so. Indeed, as the scope of our environments widen to include direct support for more of the life-
cycle, we can reasonably expect that environments will include not only a variety of implementation
languages, but also distinct languages for specification, design, etc.

What may be less apparent, however, is that even for a given language there may still be a
requirement for many different forms of interpretation depending upon the development activity
being performed. Consider, for example, the following scenarios for the execution of the statement
A := B + C, where A, B, and C are integer variables:

Actual Interpretation: One possibility is to request interpretation in a form that mimics, as
closely as possible, the actions that would be taken by compiled code for that statement.
This form of interpretation is the most familiar, and can serve as the basis for a wide variety
of tools and activities that require more detailed monitoring/control of intermediate states of
execution than are conventionally provided by compiled, machine-native code.

In this case, we might choose, for example, to represent integer variables as 32-bit binary
numbers in 2’s complement form. The semantics associated with ‘+’ would be the familiar
2‘s complement addition, so that, if the initial values of B and C were the binary strings
corresponding to 2 amd 3, respectively, then following interpretation of this statement we
would expect the value of A to be the binary representation of 5.

Symbolic Interpretation: Another option is to represent the values taken on by variables as
algebraic expressions that denote the computational history of those variables. Symbolic
Interpretation has a variety of applications in software testing, verification, and analysis [2,7).

The semantics associated with ‘4’ could then be to form a new algebraic expression with
+ as its root operator and with the symbolic values of B and C as the operands of that
+. Thus, if the initial values of B and C had been z and 2 * = + y, respectively, then after
interpretation the value of A might be = + (2 * z + y). We can achieve different varieties of
symbolic interpretation by altering these semantics somewhat. For example, we might choose
to say that the semantics of ‘4’ involve forming a new algebraic expression as above, but
then simplifying that expression to yield, in this example, 3 * z + y as the final value for
A. Alteration of the semantics associated with conditional statements can yield the variants
known as path-dependent symbolic evaluation (2] or global symbolic ezecution [1,2]. Symbolic
and Actual interpretation can also be combined to yield dynamic symbolic evaluation [2].

Dynamic Data Flow Interpretation: An even less conventional form of interpretation can be
achieved by letting the value of a variable or expression be a variable name or a null indicator.
This form of interpretation can serve to monitor many of the data-flow based testing metrics
surveyed in (3].

For this purpose, the semantics of ‘+’ is to check each of its operands and, if that operand’s
value is a variable name, to mark that variable as having last been referenced at this statement.
(Similarly, the semantics of ‘:=’ would mark it’s right-hand-side operand, if not null, as
having been referenced, but to mark it’s left-hand-side operand as having been defined at this
statement.) Many variations of dynamic data flow interpretation can be realized by minor
changes in these semantics, including monitoring of other testing metrics or, when combined
with symbolic interpretation, the generation of program slices [15]).

1.2 Tool Fragments

There is little chance that any single interpretation tool could encompass the range of interpre-
tation activities outlined in the previous section. Futhermore, the above descriptions were merely
a sampling of the kinds of activities requiring interpretation that might arise within a development
environment. One can reasonably expect the range and character of interpretation activities in an
environment to evolve over time and to vary somewhat from one project to another.

It is worth noting that, in many instances, interpretation is not itself an end goal but is instead
a part of some larger activity. The examples above may serve to suggest the existence of a variety
of software tools within the environment, tools of which the interpreter is simply a component.

Software development environments must have the construction of new software tools as one
of their major concerns, whether those tools represent the end product of some project or an
intermediate tool to aid in the construction of that end product. One philosophy that has proven
useful is an emphasis upon the composition of new tools from smaller, well-defined tool fragments
(10,9,12]. The question that we wish to raise in this paper is, “Can we define a fragment architecture

for interpretation that would encompass the varieties of interpretation outlined above and that
would facilitate the construction of new software tools having interpretation as one component?”

As diverse as the above examples of interpretation activities may seem, there are clearly common
threads that suggest that such an interpreter architecture should be possible. In each instance, the
interpretation of A := B + C consisted of the following sequence of operations:

1. Fetch the current values of B and C.
2. Apply the + operator to those values.

3. Determine the location known as “A”.

4. Apply the := operator to that location and to the value returned by the + operation.

What changed from one interpretation variant to another was
1. the representation of values of variables and expressions, and

2. the semantics associated with the operators + and :=.

This suggests that we may be able to define an interpreter architecture comprised of a common
core interpretation algorithm that determines the order in which values are fetched and opera-

tors invoked, a variant part providing the representation of values, and variant parts defining the
semantics of the language operators.

2 Interpretation Semantics

2.1 Value Kinds

Conventionally, the values manipulated by programs are classified by domain and operation
sets into different data types. The previous Section, however, suggests another classification, the
value kind. Our examples have served to informally introduce three value kinds, which we call
actual, symbolic, and data flow. Other value kinds are possible as well, but these three will suffice
as examples.

The need for this new classification stems from a fundamental and sometimes confusing property
of interpreters and interpreted code, namely the existence of two distinct levels at which we must
view the objects and operations being manipulated during interpretation. At the level of the inter-
preted code, we have various objects subject to the typing rules of the language being interpreted.
At the level of the interpreter, we have objects subject to the typing rules of the language in which
the interpreter is written. The connection between these two sets of types can be tenuous, even if
the language being interpreted and the language in which the interpreter is written are the same.
It is possible that an integer object in the interpreted code has an integer-typed counterpart in the
interpreter, but requiring that, for every object of type T in the interpreted code, there should be
an object of identical type T in the interpreter would raise severe problems in most implementation

languages, since such a correspondence would limit the ability to interpret code in which new types
are constructed.

At one level, then, a value kind is simply a data type used by the interpreter to hold values
during the course of an interpretation. Because these values also have types at the lower level of the
interpreted code, we here reserve the use of the word type to refer to the lower-level classification
and use kind to refer to the higher-level classification. There is a connotation, however, that may
be safely drawn from the designation of some class of objects as a value kind — that we intend that
set of objects and their associated operations to support one or more computation models.

2.2 Computation Models

Out interpreter architecture is based upon an expression-oriented view of programs. A language
is considered to be a set of syntactic operators {f;} and a set of constraints on the legal ways in
which expressions may be built using those operators. Typical operators would include opera-
tors for manipulating data (e.g., addition, subtraction, array-component-selection) and also
operators for composing statements and groups of statements (e.g., sequence, while-loop). Con-
straints on the expressions built from these operators would include type rules such as “addition
takes two integers and returns a single integer” or “while-loop takes a boolean-typed expression
(the loop condition) and a statement list (the loop body) and returns a (compound) statement”. A
program is a legal expression built using those operators. The responsibility for determining that
a given expression is a legal program lies with the tool that produces the expression (usually a
compiler that converts source code into this expression-oriented form). The set of legal expressions
and subexpressions of legal expressions in a language L will be denoted by Ej,.

In a normal discussion of programming language semantics, one would take an expression from
EL and ask directly, “what is the meaning of this expression?” If an interpreter is intended to
support multiple value kinds, this question may not have a direct answer. This is in part due to
the different underlying representations employed by different value kinds. Were this not the case,
however, it is still far from clear that the question has a direct answer. Representation-independent
notations for expressing semantics seem to offer little meaningful information in this situation. For
example, one might try to argue on the basis of the axiomatic semantics of real arithmetic that
the result of executing Z:=X+Y; Z:=Z-Y is to leave Z and X equal, because “-” is the inverse of
“+”. This is not true in general for actual value kinds, however, because of possible round-off and
overflow. It is not even approximately true for many data-flow value kinds, where Z would have
a value indicating that Z and Y had been used in its calculation, which may or may not be true
of X depending on the rest of the program’s code. On the other hand, it is exactly true for most
symbolic execution systems. Thus even very simple properties of the data and operations employed
in a program may vary from one value kind to another. It is customary for any application making
use of an unusual value kind to acknowledge these potential differences from the results that would
be obtained using any given machine’s actual representations (1,2]. Designers and users of tools

must determine whether those differences are significant to the task at hand, whatever that might
be.

We take the view that the meaning of a program expression cannot be determined in isolation
from the value kinds that will be employed during the interpretation of that expression. Each
value kind has associated with it a set of semantic functions {u; : E}’ x s — s}, where s is
an interpretation state!. These semantic functions produce a new state from an old state and
(potentially) from a collection of program expressions.

A computation model is a relation {(fi,,v;,),(fi,,;,),...} that describes a binding of se-
mantic functions to syntactic operators. The interpretation (denotation) of an expression P =
fi. (91, - . .,9n) under such a computation model is taken to be

I[P](s) := uj. (91, - -1 9n, 9). (1)

For example, to accomplish actual interpretation of P = E; + Ej, where E; and E; are integer
expressions, we would use a sematic function u(E), E2, s) that evaluates its operand expressions,
(8" = I[Ey))(s);s" := I|E;|(s')) and then adds the results (the two “top” results in s"). By
binding this uy to the + operator, we in effect declare it as the semantics of + in this model.

There may be many different useful computation models possible for a given value kind, if that
value kind provides a sufficiently broad set of semantic functions that more than one meaningful set
of bindings is possible. For example, for symbolic value kinds the semantic function associated with
the syntactic operator “apply user-defined function F” might be to interpret the code associated
with the function F, or might be to simply form a new symbolic value with F as the root operator
(i.e. “F(%)”), where Z is the vector of current symbolic values of the actual parameters to this call
of F).

A value kind may also provide operations that are not semantic functions but are useful to tools
employing interpretation over that kind. For example, most symbolic kinds would provide some
sort of algebraic simplification routine, which would probably not by itself constitute a semantic
function that could be meaningfully bound to any syntactic operator, but which might be profitably
employed by a tool (or within some semantic functions). Note that this operation has no meaningful
counterpart in many other value kinds (e.g., actual or data flow), but this is not a problem since
this operation would not be directly invoked by the interpreter in any case and would only be
invoked by semantic functions or tools specifically designed for use with the symbolic kind.

2.3 Trace-Equivalent Models

Combinations of different value kinds are often valuable, requiring simultaneous support for
more than one computation model. Our earlier examples noted applications requiring combinations
of actual and symbolic and combinations of symbolic and data flow models. Applications requiring
other combinations can be anticipated. We could, of course, require tool implementors to provide
a new value kind and model that simply merges the information and operations of the appropriate

!Because the interpretation state must include bindings of current values to variables, the structure of the state
must clearly vary from one value kind to another. This level of detail, however, is not crucial to an understanding of
the notion of a computational model.

combination of separate kinds, but concern for the reusability of code for implementing value kinds
and for avoiding a combinatorial explosion in the number of value kinds has moved us to instead
design our interpreter with the expectation of simultaneously supporting multiple models from one
or more value kinds.

This support is not completely general. Some models are so incompatible that it is not even
clear that “simultaneous interpretation” would have any useful meaning. For example, under actual
execution and some forms of symbolic execution, the interpretation of an IF statement involves
choosing either the then or else branch and requesting interpretation of that branch alone. Under
global symbolic execution, the interpretation of the same IF involves interpreting both branches
and combining the resulting states to form something like (c A then-state) V (€A else-state), where ¢
is the symbolic value of the IF condition [1,2]. The term “simultaneous” would seem to have little
meaning when applied to global symbolic and actual execution, although it may make perfect sense
when used with other model combinations.

To characterize the models that can be supported in combination, we return to the definition
of interpretation in equation (1). There we noted that many semantic functions would request
interpretation of the subexpressions passed to them as parameters. Define a trace of P on state s
under a given computation model as the tree with P at the root such that for any node N labeled
with fi(e1,...) there is exactly one child labeled with e; if the semantic function associated with
fr in this model would request interpretation of e;. An implementation of the semantic functions
may specify not only which subexpressions e; need to be interpreted, but also an order in which the
different subexpressions are to be interpreted. If this is the case, then we will require the children
of a node to be ordered accordingly. We will say that two traces are equivalent if any pair of nodes
occurring in corresponding positions in each trace have identical labels.

We allow simultaneous use of models that yield equivalent traces on the programs and states
being interpreted. This means that most models resulting in the same flow of control through a
program can be interpreted simultaneously. An important additional case satisfying trace equiv-
alence arises when one trace includes nodes for which no corresponding nodes occur in the other.
An example of this might arise during simultaneous actual and symbolic interpretation of ABS(X),
where actual interpretation might require subsequent interpretation of the body of the ABS routine,
but the symbolic interpretation might be content to immediately return “ABS(z)”, where z is the
current symbolic value of X, without actually conducting a symbolic execution of the code for ABS.

3 The ARIES Interpretation System

The ideas presented here are being used in the development of an interpretation system called
ARIES, for ARcadia Interpretive Execution System, which will be a part of the Arcadia-1 envi-
ronment [12].> ARIES is an interpreter skeleton that can be instantiated, much as one instantiates

2The Arcadia project is a consortium effort that includes researchers from the University of California at Irvine,

University of Colorado, University of Massachusetts, Stanford University, Aerospace Corp., Incremental Systems
Corp., and TRW.

an Ada generic package, to yield a particular interpreter. The creation of a tool that employs
interpretation involves the following steps:

1. Determining the computation model(s) appropriate to this particular tool;

2. Implementation of the value kinds implied by the selected models;

3. Implementation of the semantic functions for those models;

4. Instantiation of a version of ARIES containing the selected value kinds and semantic functions.

In this Section, we sketch some of the key features of the ARIES design.

3.1 IRIS

Programs in the Arcadia-1 environment will be compiled into an internal representation called
IRIS (5], and it is this internal representation that will be provided to the interpreter. IRIS, which
stands for Internal Representation Including Semantics, is an abstract syntax graph that represents
a program in terms of expressions. In essence, IRIS encodes everything as literals or as operators
applied to a set of operand expressions. Thus the expression 2 + 3 is encoded as the application of
an addition operator to the literals 2 and 3. A while-loop would be encoded as the application of
a while operator applied to two operands, the first being an IRIS structure encoding a condition
and the second an IRIS structure encoding a statement list.

A key feature of IRIS that separates it from other syntax graph representations (e.g., DIANA
[6]) is that none of the operators in IRIS are predefined. Instead, the operator in each graph node
is represented by a pointer to an IRIS structure representing the declaration of that operator,
including such information as the operator’s name, the number of operands it takes, the data
types of those operands and of the returned value (if any), the in/out mode of the parameters,
and whether each parameter is to be evaluated prior to invoking the operator’s semantics (for
example, ‘+’ operators assume that their operands have been evaluated prior to performing the
semantic action we call addition; the while operator does not expect its operands to have been
previously evaluated but instead will, as part of its semantics, determine when and how often to
evaluate them). There is essentially no difference between the declarations for the “predefined”
operators for the programming language and for user-defined procedures and functions that have
been compiled into IRIS. IRIS is therefore a general purpose structure for representing programs.
To represent a given language in IRIS, one must provide the IRIS-structured declarations of the
syntactic operators for that language. Different sets of primitive operators would yield different
languages.

3.2 Dynamic Manipulation of Computation Models

The set of operators defined in a given IRIS graph constitute the set of syntactic operators
during interpretation of that graph. In practice this set includes both language-primitive operators

and operators representing user-defined functions and procedures. Semantic functions must be
bound to each operator for each model supported by a given instance of ARIES.

In ARIES we have chosen to allow these bindings to be altered dynamically. This means that
a tool is actually able to change computation models during the course of an interpretation. We
do require that the value kinds and the number of models to be based upon each value kind be
declared when the tool’s version of ARIES is instantiated. Also, current environmental limitations
require that the semantic functions be compiled as part of the tool. Thus the pool of semantic
functions from which models are constructed must also be determined at compile time. Within
that pool, however, one still has considerable flexibility in the construction/alteration of a model.
The advantages of allowing dynamic alteration of the computation models are:

o It provides a simple mechanism by which tools can exert control over the interpretation pro-
cess. For example, during interpretation of a program that reads a large amount of input,
a tool might wish to begin taking inputs from a file but then allow the tool user to add
additional items from the keyboard. This can be accomplished by altering the binding to
various I/O operators at the appropriate time. Similarly, a debugger might wish to dynami-
cally choose whether an operator representing a user-defined routine should be interpreted by
simply invoking a previously compiled-into-native-code version of that routine or instead by
interpreting the code for that routine, depending on whether the internals of that particular
routine were of interest to the person employing the debugger. Similar choices have earlier
been described for symbolic execution of functions and procedures like ABS. These choices
are easily achieved under ARIES by changing the semantic functions bound to the relevant
syntactic operators.

¢ Dynamic manipulation of these bindings also provides a natural treatment for dynamic cre-
ation of new procedures and functions to be interpreted. Many tools slated for implementation

under Arcadia-1 involve incremental changes to the code coupled with immediate interpreta-
tion (e.g., [17]).

¢ Tools may also easily adjust the response of the interpreter to exceptions and run-time errors

by changing the bindings of exception handlers, etc., in response to changing tool require-
ments.

We have found it convenient to define one special model, called the traversal model, whose
values consist of IRIS expressions and whose activation stack is used to summarize the control
flow information for each process. The use of this value kind has the advantage of providing a
mechanism by which trace equivalence can be readily enforced, of providing a standard means by
which tools may gather control flow information no matter what other value kinds and models
are employed, and of providing a basis for a set of standard semantic functions for describing
control-related semantics that are common to many models. For example, the meaning of an IF
statement can change from model to model (as in global versus non-global symbolic execution) but
the “standard” definition is sufficiently common that it is worth providing a commonly accessible

semantic function defining it, which we do using the traversal kind. This does not prevent a tool
from binding a new function to the IF operator; it merely provides a useful default.

3.3 ARIES Components
ARIES has been partitioned into four conceptual levels, as illustrated in Figure 1:

1. The Tool is the highest conceptual level. Operations occurring at this level will vary consid-
erably from tool to tool.

2. The second level is the Tool Interpreter Interface (TII). This level serves as an interface
between the particular requirements of a tool and the details of the interpreter. It is at the
TII level that the interpreter becomes language and tool specific via the importation of the
appropriate value kinds and of the appropriate semantic functions.

3. The third level is the language and tool independent Atomic Interpreter level. Its primary
functions are to traverse the IRIS structure and select the semantic procedures that have
been bound to the syntactic operators.

4. The lowest conceptual level consists of the set of semantic functions, which implement par-
ticular operators for particular value kinds.

These four levels are discussed in more detail below. Because the TII serves primarily as the
interface between levels, we reserve its discussion until after the functions of the other levels have
been made clear.

3.3.1 The Tool

Although the set of tools that will employ interpretation is not fixed, we do know that tools
will need to set up interpretations of arbitrary IRIS structures, to run the interpreter, to halt
interpretation at appropriate times, and to then gather information before resuming interpretation.
A typical scenario for tools is therefore:

State := initial _state(Code_To.Be_Interpreted);
while not done(State) loop

run_interpreter (State);

collect information from the state;
end loop;

Levels

Tools

Tool-Interpreter
Interface

Atomic
Interpreter

Semantic
Functions

Examples

Debugger

Test Data
Selector

Loop Analysis

Small Granularity,
Actual Values

Large Granularity,
Actual & Symbolic
Values

Interpreter

actual
addition

\\ |

symbolic
addition

while-loop

Figure 1: Levels of Abstraction in ARIES

10

The operations initial_state, done, and run_interpreter may vary from tool to tool. Their
precise definition occurs in the Tool-Interpreter Interface. Other high level functions in which a tool
might be interested include altering operator bindings, altering the interpreter state, and comparing
the results of different states.

3.3.2 The Atomic Interpreter

The atomic interpreter knows nothing about specific languages, tools, and value kinds. It treats
the IRIS structure as an expression to be evaluated. Most of its work is therefore concerned with
determining what IRIS node is currently being executed, whether that node has operands that
require evaluation, and what semantic functions should be invoked to execute that node. IRIS
contains information about the expected evaluation patterns of many operators, in that it allows
indications as to whether an individual operand is to be evaluated prior to invoking the operator’s
semantic function. Thus the atomic interpreter can follow a default evaluation order for operators
such as “+”, “<” or “:=”, but allow other operators such as “IF” or “LOOP” to leave all decisions
on interpretation of their operands to the semantic functions.

Information about which node in the IRIS structure is the next to be interpreted and which
nodes have already been visited is kept on the activation stack for the traversal value kind. A
rough sketch of the atomic interpreter’s interaction with this traversal information is

Get the current node from the top of the traversal model stack;
Determine the current node's operator;
If all operands of the current node have not been processed then
Get first unprocessed operand;
If this operand is to be interpreted before
invoking the operator’'s semantics then
Push root node of operand onto stack;
(Subsequent calls to the interpreter will result
in the evaluation of this operand, eventually returning
to the current node.)
end if;
else
invoke the semantic functions bound to the current
operator for each computation model;
end if;

From this sketch, it can be seen that a single call to the atomic interpreter results in a change of
state to force subsequent evaluation of an operand of the current node or in the invocation of the
semantic functions for the current node’s operator. Implicit in this simplified view of the atomic
interpreter is the idea that the values returned by evaluated operands (e.g., any operands of the +
operator) and the IRIS structures representing unevaluated operands (e.g., the statements in the

11

“then” and “else” parts of an if operator) are all collected and eventually passed to the semantic
functions.

3.3.3 Semantic Functions

The purpose of the semantic functions has already been discussed at length. The iterative
approach to ARIES means that some of these functions (those not employing the default operand
evaluation order) must examine the interpreter state to determine which of the operands have
been interpeted and adjust the state to force interpretation of the other operands, as necessary.
For example, the usual semantic function for the while operator would alternately modify the
interpreter state to switch interpretation between its “condition” and “statements” operands until
the evaluated condition is false.

Some semantic functions actually cut across the value-kind boundaries. For example, user
defined operators representing procedures and functions to be interpreted can be evaluated with the
semantic procedure interpret-body. Interpret-body will do the appropriate state manipulation
so that subsequent calls to the interpreter level execute the IRIS-encoded body of the user-defined
operator. In essence all the semantic procedure interpret-body does is change state in the IRIS-
encoded program from one IRIS operator to the IRIS-encoded subtree that defines the semantics for
that operator. Any IRIS operator that has an IRIS representation of its body may be interpreted
via interpret-body in any model.

3.3.4 The Tool-Interpreter Interface

All interactions between the tool and the interpreter pass through this interface. What those
interactions are will depend on the tool. For example, a testing tool might view the program with
large grain, being interested only in the final results and not in any intermediate values. On the
other hand, an interactive debugger might require very fine-grained control over the interpretation,
allowing execution to be halted at any node.

The TII is the customizing agent. It collects the objects and operations that might change
from one tool to another. TII’s may be unique to a particular tool, or tools with very similar
interpretation requirements may share a common TII. The major components defined in the TII
are:

o the value kinds to be employed during interpretation;
e the pool of semantic functions that may be bound to IRIS operators;

e the RunInterpreter procedure that repeatedly invokes the atomic interpreter until a state
is reached in which the tool should regain control; and

e procedures to initialize the interpreter state and to establish default bindings of semantic
functions to operators.

12

4 Summary and Current Status

There is considerable variation in the forms of interpretation that may be required in a versatile
software development environment. The decomposition of interpretation into an appropriate set of
tool fragments can aid in the construction of the software tools that include some form of program
execution as a part of their functioning.

We have suggested the separation of the core interpretation algorithm from the questions of
representation of values (value kind) and of the binding of semantics to language operators (compu-
tation models) as one such decomposition that permits the capture of a wide variety of interpretation
activities. This separation has been employed in the design of the ARIES interpretation system.

Work is now continuing on the development of ARIES-based interpreters. Our first instantia-
tions of ARIES will be for the Ada language, with expansion into Ada-related languages such as the
Anna specification language [8] and the PIC interface-control language [16] expected in the near
future. As of this writing, we have successfully demonstrated actual interpretation of some simple
Ada programs and are beginning to develop the semantic functions for symbolic interpretation.

13

REFERENCES

(1) T. E. Cheatham, G. H. Holloway, and J. A. Townley, “Symbolic Evaluation and the Analysis
of Programs”, IEEE Transactions on Software Engineering, SE-5, 4, July 1979, pp. 402-417

(2] L. A. Clarke and D. J. Richardson, “Symbolic Evaluation Methods — Implementations and

Applications”, Computer Program Testing, B. Chandrasekaran and S. Radicchi (eds.), 1981,
North-Holland Publishing Co.

[3] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A Comparison of Data Flow
Path Selection Criteria”, Eighth International Conference on Software Engineering, August
1985, IEEE, pp. 244-251

[4] E. C. Epp and S. J. Zeil, ARIES: A Multi-Lingual Interpreter for a Tool-Fragment Environ-

ment, COINS Technical Report 86-57, University of Massachusetts at Amherst, December
1986 (revised May 1987)

[5] D. A. Fisher, “IRIS Arcadia Presentation”, Arcadia Document INC-86-03, Incremental Sys-
tems Corporation, Pittsburgh, April 1986 '

[6] G. Goos, W. A. Wulf, A. Evans, Jr. and K. J. Butler, Diana: An Intermediate Language for
Ada, 1983, Springer-Verlag

[7) S. Hantler and J. King, “An Introduction to Proving the Correctness of Programs”, ACM
Computing Surveys, vol. 8, no. 3, September 1976, 331-353

(8] D. C. Luckham and F. W. von Henke, “An Overview of ANNA, a Specification Language for
Ada”, IEEE Software, vol. 2, 2, pp. 9-24, March 1985

[9] L. J. Osterweil, “Toolpack - An Experimental Software Development Environment Research
Project,” IEEE Transactions on Software Engineering, vol. SE-9, 6, pp. 673-685, November
1983

[10] D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System”, Bell System Technical
Journal, vol. 57, no. 6, July-August 1978, part 2

[11] R. N. Taylor and T. A. Standish, “Steps to an Advanced Ada Programming Environment”,
IEEE Transactions on Software Engineering, SE-11, no. 3, March 1985, 302-310

[12] R. N. Taylor, L. A. Clarke, L. J. Osterweil, J. C. Wileden, and M. Young, “ARCADIA:
A Software Development Environment Research Project,” IEEE Computer Society Second
International Conference on Ada Applications and Environments, April 1986

[13] W. Teitelman and L. Masinter, “The InterLisp Programming Environment” , Computer, vol. 14,
no. 4, April 1981, 25-33

[14] W. Teitelman, “A Tour Through Cedar”, Proceedings of the Seventh International Conference
on Software Engineering, September 1982, IEEE, 58-67

[15] M. Weiser, “Program Slicing” , IEEE Transactions on Software Engineering, SE-10, no. 4, July
1984, 352-357

[16] A. L. Wolf, L. A. Clarke, and J. C. Wileden, “Interface Control and Incremental Development
in the PIC Environment”, Proceedings of the Eighth International Conference on Software
Engineering, London, England, August 1985

[17] S.J. Zeil, “The EQUATE Testing Strategy”, Proceedings of the Workshop on Software Testing,
July 1986, IEEE, pp. 142-151

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

