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Abstract

This paper describes and analyzes a specific threshold load balancing policy in
a distributed computer system that executes a priority scheduling on jobs according
to the location of job origination. An approximate analysis is carried out to obtain
the response time performance of the system under the load balancing policy. In the
analysis we assume that the arrival of jobs at a node transferred from other nodes are
governed by a Poisson process. This allows us to decompose the behavior of the system
into separate models of each of the nodes. We then map the behavior of each node
into the framework of queueing systems subject to breakdown to obtain a closed-form
expression for the mean response time of a job. We prove that the Poisson assumption
on the job transfers is asymptotically exact and hence the performance predictions
of the model is asymptotically exact as the number of nodes in the system increases.
Simulation studies reveal that the Poisson job transfer assumption is good even for

small systems when we are interested in obtaining the response time performance of
the system.

‘Thm work was partially supported by the National Scxence Foundation under grant number ECS-8406402
tThis work was performed while Kyoo Jeong Lee was at the University of Massachusetts.



I. Introduction

A number of threshold-based scheduling policies for distributed computer systems
has been analyzed mathematically in recent years [4] 5] [10] [11] [12] [13]. Each of these
policies was approximately analyzed by modeling the system consisting of N nodes as N
independent subsystems under the assumption of Poisson external job arrivals and expo-
nential service times. This decomposion has required the additional assumption that the
arrival of jobs transferred from other nodes at each node is also governed by a Poisson pro-
cess. The conjecture has been made in several of these studies that this last assumption
is true in the limit as the number of nodes goes to infinity and that the analysis becomes
asymptotically exact. Results from simulation experiments have been provided to support

this conjecture.

In this paper we propose a new threshold load balancing policy for which we provide
a similar approximate analysis based on decomposition. However, unlike previous studies,
we prove that the assumption that job transfers from other nodes arrive according to a
Poisson process is true in the limit as the number of nodes goes to infinity. Simulation
results provide evidence that the convergence is rapid and that the model is accurate for
systems containing as few as five nodes. As this policy does not differ significantly from
earlier policies, we believe that the existence of limit theorems for this policy provides

further evidence that this type of approximate analysis is accurate for other policies.

Besides the existence of limit theorems, the load balancing policy is of interest for
two other reasons. First, the policy gives priority to jobs that are executed at the node
at which they originate. This may be a desirable property for a policy implemented on
a distributed system consisting of computers belonging to distinct independent entities.
Second, unlike the previous studies, the analysis technique yields a closed-form solution for
the mean response time of a job. This makes the determination of optimal load balancing

parameters much easier. Such an optimization has been studied in [12].

We state and prove limit theorems for two types of systems. In the first system

all nodes are equal partners and can send jobs to any other node (according to some



distribution). We refer to this as the peer system. Most previous load balancing studies
consider this system where all nodes are identical. We prove a limit theorem that states
that, as the number of nodes increases, the performance predictions of the model becomes

exact.

In addition to this system, we also consider a second system that receives little
treatment in the literature but is in widespread use. This system which we refer to as
the star system, contains one special node, the central node that may contain a significant
amount of computing power. We shall refer to the remaining nodes as leaf nodes. Although
jobs may be transferred between any pair of nodes, the central node is typically a prefered
node for job transfers from the leaf nodes. In addition, this node may call on the leaf
nodes to perform some of its tasks. For this system we state and prove a limit theorem
where the analysis of each node becomes exact as the number of leaf nodes goes to infinity.
This provides further evidence that the same modeling technique can be used with other

policies operating on star systems.

Section II contains a description of the system and the proposed threshold policy.
Section III contains an approximate analysis of a distributed computer system operating
under this policy. Section IV includes the limit theorems that indicate that the analysis
is accurate for large systems. In this section we will also describe the differences between
the new priority policy and earlier policies that make ours easier to analyze. Section V
provides some numerical results that show that the approximation is good even for systems

containing as few as five nodes. We summarize the results of the paper in section V.



II. System Model and Load Balancing Policy

In this section we describe the system model and the load balancing policy that we

study.
I1.1 Model Description

The system consists of a number of autonomous host computers interconnected by
a communication network (see Figure 1). The communication network can be either a
local area network or a store-and-forward network. Specifically, we consider two system
topologies. The first one is a peer system where all nodes are peers. In this case it is
assumed that jobs arriving at a node can be processed either locally or at any other node
in the system after being transferred through the communication network. On the other
hand, in the second topology, one of the nodes is considered as the central node in the
system and the remainder as leaf nodes. We refer to this system as the star system. Here,
jobs arriving at leaf nodes can be processed either locally or at the central node. However,
there is no workload sharing among leaf nodes. This may be due to software/hardware
restrictions among leaf nodes. Jobs arriving at the central node can be processed either
locally or at any other leaf node in the system. One variation on this star system would
prohibit the central node from sending its jobs to leaf nodes. This is a special case of the
star system described above and the results obtained in this paper can be readily applied

to that system.

We assume that jobs arrive at each node according to a Poisson process with rate
$iy t =0,1,2,..., N where N +1 is the number of nodes in the system (node 0 denotes the
central node when the star topology is considered). The external workload and/or pro-
cessing power of each node may differ from each other. An example of a peer system is an
interactive transaction processing system consisting of multiple computers (e.g., collection
of Service Control Points for database query processing in Common Channel Signaling net-

works [6]). A distibuted system consisting of a mainframe and a number of workstations



interconnected by a local area network is an example of a star system topology.

If a job is chosen for remote processing, it is transferred from the source (origin) node
to a processing (destination) node and the results are returned to the source node. Com-
munication delays consisting of packetization, unpacketization, transmission and queueing
delays are incurred during both transfers. We assume that each node contains an off-load
processor (communication server) that takes care of job transfer between nodes. Conse-
quently, the node processor is not affected by the job transfer between nodes. For the
sake of simplicity, the communication delay is accounted for only at the communication

network.

Specifically, we model each node as a single-server queueing system (i.e., all resources
and queues in a node are lumped into a single-server model) having a mean service time
of 1/u;, 1 = 0,1,2,..., N. We also model the communication network as a single-server
queueing system having a mean service time of 1/u.;. The effect of more complex node

models is discussed in [12].
I1.2 Load Balancing Policy

The load balancing policy studied in this paper is a sender-initiated policy in the
sense that the sending node makes decisions for job transfer. Jobs within the system are
divided into two classes; namely, local jobs and remote jobs. Local jobs are those processed

at the node of origination and remote jobs are those processed at some other node in the

system after being transferred through the communication network. Let L,('), LS') and L;

be the random variables denoting the number of local jobs, the number of remote jobs and

the number of jobs at node 7 respectively (L; = L + L{"). In the following we describe
the load balancing policy executed at node ¢ in a peer system. When the system is of star

topology, the only difference is that leaf nodes can transfer jobs only to the central node.

Policy SLO (Sender-initiated LOcal)

e If node ¢ receives a job from the external world with Ly) > T;, the node sends the



job to node j in the system with probability Pi; where S} ;s P = 1 (P = 0).

Otherwise, it processes the job locally.

e Jobs arriving from other nodes are always accepted at the destination node. Hence,

jobs can be transferred at most one time.

e Each node schedules jobs on the processor according to a preemptive priority disci-

pline where local jobs are given a higher priority than remote jobs.

Job flows at node ¢ are shown in Figure 2. In the figure, A; denotes the rate at
which jobs are transferred from node 7 to other nodes, ~; denotes the rate at which jobs
arrive from other nodes, and B; denotes the local job throughput. The parameters T;’s
and P;;’s need to be determined to obtain good system performance. The problem of
how to determine values for these parameters is beyond the scope of this paper and is
discussed elsewhere [12]. This paper only focusses on the analysis of the system for given
parameter values. Note that when T; — oo for all 7, it corresponds to the system without

load balancing.

Jobs can be processed by any scheduling algorithm (e.g., First-Come-First-Served,
Last-Come-First-Served, Processor Sharing) if they have the same priority. Policy SLO
favors local jobs over remote jobs by assigning a higher priority (.e., it is a selfish policy).
Consequently, remote jobs from other nodes experience, on the average, longer delays than
local jobs. We can have different priority assignment rules in order to obtain different
performance characteristics and to meet different design goals. These topics are discussed
in [11]. Policy SLO uses the number of local jobs as a workload indicator. Policies using

other workload indicators are discussed in [4] [5] [12].

Policy SLO is a highly decentralized control policy in the sense that the job transfer
decision is solely based on the local state information. Hence it is possible that an arriving
job from other node may find a busy destination node. In this case, this job transfer
probably does not improve the response time performance of the job. However, this is

the price one pays for using a decentralized algorithm that makes use only of local state



information. In order to avoid this undesirable situation, the source node may probe
possible destination nodes to see whether they are busy or not. It then sends the job to
a node which is not busy. This class of policies requiring nonlocal state information has
been studied in [4] [5] [12] [13]. However, it has been shown that the peformance gain
obtained by using probes diminishes either when the communication delay is large (in this
case probing information is outdated) [13] or when each node provides sufficient concurrent

processing and allows multiprogra.mming [12].



III. Analysis of the SLO Policy

In this section we analyze the behavior of the system under Policy SLO. This is
done by assuming that the remote jobs arrive at each node according to Poisson processes.
Thus the model of the system can be decomposed into independent models of each node
and the communication network. We then obtain the mean response time of a job in the
system by mapping the behavior of each node into the framework of queueing systems
subject to breakdown. The Poisson assumption on remote job arrivals will be shown to be

exact under certain limiting conditions in the next section.

When the communication delay is negligible, one means of describing the behavior
of the system is to use a Markov chain with a state defined as (Lg), ((,'), Lgl), Lg'),...,

L%), Lg)). More variables are required in the state when the communication delay is not
negligible. In either case, the Markov chains are not amenable to simple, efficient solution.
To circumvent this problem, we make the assumption that the remote jobs arrive at each
node according to Poisson processes. Using this assumption, we can now view each node
as a queueing system having two kinds of Poisson arrivals; namely, external job arrivals
with rate ¢; and remote job arrivals from other nodes with rate ~;. Figure 3 illustrates the

Markov chain describing the behavior of node 7 under Policy SLO when T; = 4. The state

is defined as (L,m, LE')). Note that we cannot use this decomposition technique to obtain
joint statistics for two or more nodes since the remote job arrivals at each node may not

be independent of each other.

External job arrivals are subject to remote processing according to the threshold-
based decisions. Since local jobs are given a higher priority than remote jobs, they do not
experience any delay by remote jobs. Hence jobs overflow at node ¢ for remote processing

in the same way as they do in M/M/1/T; queueing systems. Consequently we have

¢,'(1 - ug)u?‘

A; = ¢,P[L£l) 2 Z] = (1 — u?‘-‘+1) s

(1)

where u; = ¢;/p;. This overflow process has been proven to be a renewal process by Cinlar



and Disney [2]. Remote job arrivals at each node are related to the job overflows according

to

N
%= ) ApPu. (2)
k=0, ki

Let D be a random variable denoting the response time of a job in the system. From

Little’s results [9] we obtain the mean response time of a job as follows.

N .

where E[.] is the expectation operator and L.;, is the random variable denoting the number
of jobs in transition in the communication network. E|[L.;] can be readily obtained from
the M/M/1 formula [9) as,

2 2@1\;1 ¥
en — 25N~

E[Lch] =2 (4)
where the factor 2 is due to the round trip delays of a job processed remotely. On the
other hand, E[L;] can be obtained by solving the Markov chain shown in Figure 3. We can
use either a matrix-geometric formulation [14] [15] or a partial generating function method
(complex variable analysis) to solve this Markov chain. However, neither method provides

a simple closed-form solution for the mean response time of a job.

In order to obtain E[L;] in closed-form, we obtain E [L,w | and E [LE')] in turn where,
E|L) = E|L{"] + B[L{"). ()

The behavior of local jobs at node ¢ is identical to that in M/M/1/T; queueing systems
since local jobs do not experience any delay by remote jobs. From the M/M/1/T; formula

[9], we obtain,

wifl — (T + 1) + Tl ™'}

E(L{) = (1 - w)(1 - w*)

(6)



To study the behavior of remote jobs, we use results from Avi-Itzhak and Naor [1] which
deals with a single-server queueing system subject to breakdown. They considered a queue-
ing station in which the server can be in one of two states, active or inoperative. Upon
breaking down, the server becomes inoperative for a random period of time (repair time)
after which it returns to its normal state of activity. They derived a closed-form expression
for the mean queue length of this queueing system under the following assumptions: 1)
jobs arrive to the system according to a Poisson process, 2) the service time of a job is
an arbitrarily distributed random variable having a finite second moment, 3) the time be-
tween the repair of a breakdown and the subsequent breakdown is an exponential random
variable, and 4) the repair time is an arbitrarily distributed random variable having a finite

second moment.

In order to map our problem into the framework of queueing system subject to

breakdown, we make the following observations.

e A remote job sees an inoperative server whenever there is at least one local job, since

local jobs are given a higher priority than remote jobs.

e Remote jobs arrive at each node according to a Poisson process with rate v;, ¢ =

0,1,2,...,N.

e The duration of uninterrupted availability experienced by remote jobs is determined
by the interarrival time of external jobs which is an exponentially distributed random

variable with mean 1/¢;,¢=0,1,2,...,N.

o The repair time is the same as the busy period of node by local jobs (:.e., busy period

of M/M/1/T; queueing system).

We define Br, as a random variable denoting the busy period of M/M/1/T; queue.
The following expression for the mean remote job queue length can be taken from [1] after

allowing for exponential service times,

©
. mE[Br)(C}, +1)POPY + 2(v/w)?/ P,
E|LY) = 2 [Bz)(Cs,

, (7)
u: P 2(P — /i)



where
1-— Uy

(0) _ M _ a1 —
P = P[L; —0]—1__u;rm,

PN =pLP >1]=1- PO,

. _ E[B%]- E’|Br)]
CBT,. = E?[Br,] 2

Note that C3_ is the coefficient of variation for By,. The following expressions for E[Br,]

and E[B%.],
E[BT.'] = %ﬁ'ﬁl,
' . — bl 11 )2Ts . NITAYS
E[B%l.] — 2{ p; (““ﬁt—(‘z‘/)l;t) } _ 2(1 '*('::Zi)fzi{ﬂt): :

have been derived in the Appendix.
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IV. Limit Theorems

In this section we show that the Poisson assumption on remote job arrivals made
in the previous section becomes exact under certain limiting conditions. In order to show

this we use limit results regarding the independent thinning and superposition of random

processes in the literature.

Independent thinning of a point process with probability p, 0 < p < 1, is defined as
follows; a point is retained with probability p and deleted with probability 1 — p, indepen-
dently for each point. Note that job transfers from node k to node 7 is a thinned process of
job overflows at node k with probability P;. In peer systems, remote job arrivals at each
node are a superposition of thinned processes of job overflows from other nodes whose rate
is determined by equation (2). On the other hand, in star systems, remote job arrivals at
the central node is a superposition of job overflows from the leaf nodes whereas remote job

arrivals at each leaf node are a thinned process of job overflows from the central node.

We have the following lemma regarding the superposition of renewal processes [7].

A more general statement can be found in [8].

Lemma 1: Suppose a random process represents the superposition of N independent
renewal processes. Let A; denote the rate of the :th stream. Then the superposition
process becomes a Poisson process with rate A = Ef;l A; in the limit as N — oo and A;’s,

t=1,2,...,N, all tend to zero while Z,-’il A; remains constant.

This result is similar, in spirit, to the central limit theorem. Discussions on the statistical

properties of superposition of a finite number of renewal processes can be found in (3].

In addition to this, we have the following lemma regarding the independent thinning

of a point process [16].

Lemma 2: Let A be the rate of a point process which undergoes an independent thinning

with p. As A — oo, p — 0 and p) remains constant, the thinned process becomes a Poisson

11



process with rate pA.
From these two lemmas, we derive the following theorems.

Theorem 1: In a peer system, remote job arrivals at node ¢ become a Poisson process
with rate ~; in the limit as N — oo and APy — 0, k # ¢, while Eﬁ;o'k# A Py; remains

constant.

Proof: Directly from Lemma 1.

Theorem 2: In a star system remote job arrivals at the central node become a Poisson
process with rate «g in the limit as N — o0 and A; — 0, ¢+ = 1,2,..., N, while E,-N=1 A;

remains constant.

Proof: Directly from Lemma 1.

Theorem 3: In a star system remote job arrivals at leaf node ¢ become a Poisson process

with rate 4; in the limit as N — oo, Ay — 00, and Py; — 0 while AgPy; remains constant.

Proof: Directly from Lemma 2.

Hence the Poisson remote job arrival assumption is good in large systems. Simulation
results given in the next section reveal that this is a reasonable assumption even in small
systems (e.g., five nodes in the system) when we are interested in obtaining the mean job

response time of the system.

The reason why it is easy to prove such limit theorems for our policy but not for
others is that under Policy SLO the job overflow processes at each node are independent of
each other. This allows us to apply Lemmas 1 and 2 directly. However, for other threshold
policies studied in the literature [4] [5] [10] [11] [12] [13], the job overflow processes at
each node are not independent of each other. We believe stronger results regarding the
superposition of dependent renewal processes are required before asymptotic results will be

developed for these other policies. Furthermore, we have observed that under Policy SLO

12



the mean response time of a job obtained by analysis converges to the simulation results
faster than that under other policies [12] as the number of nodes increases. We believe

that this is also due to the independence of the overflow processes.

Before we end this section, we present an application of the limit theorems.

Example: Consider a system that contains M distinct classes of nodes, m = 1,---, M. We
assume that there are N, nodes in class m, and that all nodes in this class are identical
t.e., nodes in class m have the same job arrival rate ¢,,, service rate u,,, and transfer
probabilities @,,, Where Q,, , is the probability that a job is transferred to a class n node
given that it is transferred from a class m node. We assume that if a job is transferred
to a class n node, then it is equally likely to be transferred to any class n node. In other

words, if ¢ is a class m node and j is a class n node, then P;; = Qmun/(Nn — bmpn).!

If we allow N,, — oo such that N,,/N, remains unchanged, n,m = 1,---, M and the
parameters ¢, lm, and @, » are unchanged, then the hypothesis of Theorem 1 is satisfied.
Thus the decomposition technique yields accurate results for heterogeneous systems where

there are a large number of each type of node.

We conclude this section with the following conjecture. In the previous section we
pointed out that the decomposition technique used in the analysis cannot be used to obtain
joint statistics for two or more nodes since the remote job arrivals at each node may not be
independent of each other. However, as the system becomes large, the correlation among

remote job arrivals becomes weak.

Conjecture: In the limit as N — oo and APy — 0, k # ¢, while 2{:’:0,,;# A P; remains
constant, the joint queue length distribution of the system can be expressed as the product
of the marginal queue length distributions of all the nodes, t.e., for m; = 0,1,---,T;,

n;=0,1,---,and § =1,---, N,

A}ingoP[Lg) = mo, L§) = no, -+, L) = my, L{) = na]

1Here 6 p is the Kronecker delta which takes on value 1 if n = m and 0 otherwise.

13
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V. Numerical Results

In this section we consider numerical examples to evaluate the performance gain
obtained by Policy SLO over no load balancing. We also validate our Poisson remote job
arrival assumption by comparing the mean response time of a job obtained analytically

with that obtained by simulation.

We first consider a peer system consisting of five nodes where each node has the
same external job arrival ra.te“(qS) and job processing rate (u). We define v = ¢/u. We
obtain the values of the thresholds and transfer probabilities that yields the minimum
mean response time of a job through an exhaustive search. In this homogeneous system
where all nodes are identical, however, each node has the same threshold (denoted T') and
P;; = 0.25 for + # j at the optimal solution. Hence we can search only over T in order to

obtain the optimal solution.

Figure 4 shows the mean response time of a job under Policy SLO (denoted Case
1) as a function of T when 1/u = 1.0, 1/u., = 0.01 and u = 0.8. It also shows the mean
response time of a job under no load balancing (denoted NLB). As T increases, the mean
response time under approaches that of no load balancing. The optimal mean response
time is obtained when T = 2. Case 2 corresponds to the mean response time when the
communication network is slow (1/u., = 1.0). In this case the optimal threshold is large

(T = 6) and the corresponding mean response time increases.

In Table 1 we compare the optimal mean response time under Policy SLO (denoted
S LO) with that under no load balancing. Corresponding optimal thresholds are given in
the parentheses. Simulation results for the mean response time of a job (denoted SIM)
are also provided (point estimates along with 80% confidence intervals). The percentage
error of the analytical predictions with respect to simulation results are given (denoted %).
As we can see, the analytical predictions are slightly larger than the simulation results for
a wide range of utilization. This is due to the fact that for this small system the actual
remote job arrivals are burstier than Poisson process. As the number of nodes increases,

this difference decreases. In all cases the percentage error is negligibly small. Note that the

15



performance under Policy SLO is increasingly better than that under no load balancing

as the utilization of each node increases.

We next consider a star system where five leaf nodes have the same external workload
(¢s) and the same processing power (i,). We consider the case where 1/uo = 0.2, 1 Jps =
1.0 and 1/p. = 0.01. We define ug = ¢o/po and u, = @,/u, respectively. In such
a homogeneous system leaf nodes have the same threshold (denoted T,) and Py = 0.2
for 7 = 1,2,..,5 at the optimal solution. Hence the optimal mean response time can be
obtained by searching over Ty and T,. Table 2 compares the optimal mean response time
under Policy SLO with that under no load balancing. It also presents simulation results
along with percentage errors of analytical predictions. Simulation results show that the
Poisson assumption is still good although the percentage errors are slightly larger than
those in peer system case. Note that Policy SLO achieves a significant improvement in

performance over no load balancing especially when the central node is lightly loaded.

In the above two examples we consider homogeneous systems only; all nodes are
identical in peer systems and all leaf nodes are identical in star systems. This makes the
determination of optimal load balancing parameters relatively simple. However, when the
system is not homogeneous, we have to solve a nonlinear integer optimization problem in
order to obtain the optimal mean response time of a job. This problem is much more

difficult and is studied in [12].
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V1. Conclusions

In this paper we studied a specific threshold load balancing policy in distributed
computer systems that favors local jobs over remote jobs. A queueing model for the
system was developed and an approximate analysis was carried out to obtain a closed-
form expression for the mean response time of a job. In the analysis we assumed that
the remote job arrivals at each node are Poisson processes. This allowed us to decompose
the behavior of the system into the behavior of each of the nodes and the communication
network. The mean response time of a job is then obtained by mapping the behavior of
each node into the framework of queueing systems subject to breakdown. We showed that
the Poisson assumption is exact and hence the performance predictions of the model is
exact as the number of nodes in the system increases. Simulation results indicate that this
assumption is good even for small systems containing several nodes when we are interested
in obtaining the response time performance of the system. Numerical examples show that
the load balancing policy achieves a significant improvement in performance over no load

balancing.

17



Appendix

In this appendix we compute the mean and the coefficient of variation of the busy
period of M/M/1/: queueing system that has job arrival rate ¢ and service rate u. Let
us define B; as a random variable denoting the busy period of M/M/1/: queueing system
and let Fp,(s) be the Laplace transform of the probability density function of B; i.e.,
Fp (s) = Ele~*5).

A busy period begins with an arrival of a job to an idle system. Once a busy period
starts, the system can transit to one of two states as shown in Figure A.1. One possibility
is completion of this busy period by the service completion of the job which initiates the
busy period. This event occurs with probability x/(¢ + x). In this case the busy period is
an exponentially distributed random variable with mean 1/(¢ + ) since this period is the
minimum of two exponentially distibuted random variables with rates ¢ and u respectively.
The other possibility is an arrival of another job before this job completes its service. This
newly arrived job actually initiates another busy period of an M/M/1/(i—1) system. After
this new busy period (t.e., B;_;) ends, only one job remains in the original system. Since
the system is memoryless (Markovian arrivals and Markovian server), the remaining job
is considered to start a new busy period of M/M/1/¢ system. Therefore in this case the
busy period is a summation of three random variables i.e., an exponentially distributed
random variable with mean 1/(¢ + u), busy period of M/M/1/(z — 1) system, and busy
period of M/M/1/i system. This event occurs with probability ¢/(¢ + w).

Hence we can write down the following recursive relation for the busy period of

M/M/1/7 system.

Fa,(s) = (ﬁ_ﬂ) (sf;i“) 4 (¢iu) (sf;iu) Fo.()Fsi(s) (A1)

Therefore,

Fs,(s) £ (4.2)

18



Using the moment generating property of Laplace transform of a probability density func-
tion, we obtain the following recursive relation for the first and second moments.
1+ ¢E|B;_]

E[B] = — . (4.3)

2{1 + ¢E[B;4]}? n ¢E[B? ]

I p (4-4)

E[BY) =

with initial conditions E[Bo] = 0 and E[B}] = 0. These first-order difference equations are

easily solved to yield the following expressions.

1—(¢/u)

E(Bi| = -9 (A.5)
o _ 2{u—(o/w)*}  2(1 + 21)(¢/n)
E(B/] = = 9)° PRV (A.6)
. _ E[B}| - E’[Bj]
Ch = =g (A.7)

19



References

[1] B. Avi-Itzhak and P. Naor, “Some queueing problems with the service station subject

to breakdown,” Operations Research, pp. 303-320, May-June 1963

[2] E. Cinlar and R.L. Disney, “Stream of overflows from a finite queue”, Operations
Research, pp.131-134, Feb. 1967

[3] D.R. Cox and W.L. Smith, “On the superposition of renewal processes”, Biometrika,
vol. 41, pp. 91-99, 1954

[4] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adaptive load sharing in homogeneous
distributed systems,” IEEE Trans. Software Eng. vol. SE-12, pp. 662-675, May 1986

[5] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “A comparison of receiver-initiated and
sender-initiated adaptive load sharing,” Performance Eval., vol. 6, pp. 53-68, March
1986

[6] R. Hass and R. Robrock, “The intelligent network of the future,” Proceedings of
Globecom, pp. 1311-1315, 1986

[7] S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, Second Edition,
Academic Press, 1975

[8] A.Y.Khinchine, Mathematical Methods in the Theory of Queueing, New York: Hafner
Publishing Co., 1960

[9] L. Kleinrock, Queueing Systems, Vol. I: Theory, Wiley, 1975

[10] J.F. Kurose, S. Singh and R. Chipalcatti, “A study of quasi-dynamic load sharing
in soft real-time distributed computer systems,” Proceedings of Real-Time Systems

Symposium, New Oreans, Lousiana, 1986

[11] K.J. Lee and D.F. Towsley, “A comparison of priority-based decentralized load bal-
ancing policies,” Proceedings of Performance’86 and ACM Sigmetrics 1986 Joint Con-

ference, Raleigh, North Carolina, 1986

20



[12] K.J. Lee, Load Balancing in Distributed Computer Systems, Ph.D Dissertation, Dept.

of Electrical and Computer Engineering, University of Massachusetts, 1987

[13] R. Mirchandaney and D. Towsley, “The effects of delays on the performance of load
balancing policies, Proceedings of 2nd Intnl. Workshop on Appl. Math. and Per-
form./Reliab. Models of Comp./Comm. Syst., pp. 213-228, May 1987.

[14] M.F. Neuts, “Markov chains with applications in queueing theory, which have a
matrix-geometric invariant probability vector,” Adv. Appl. Prob., vol. 10, pp. 185-
212, 1978

[15] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models - an Algorithmic Ap-
proach, Johns Hopkins University Press, 1981

[16] M. Westcott,“Simple proof of a result on thinned point process,” The Annals of Prob.,
vol. 4, No. 1, pp. 89-90, 1976

21



- Communication
© Network.

Figure 1. System model
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To other nodes (Pij's)

Figure 2. Job flows at node i
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Figure 3. Markov chain describing the behavior of node i
under Policy SLO when T, = 4,

24



€ Case 1
- Case?2
< NLB
2..
1_
0 1§ 1 L | L T
0 5 10 15 20

Figure 4 Behavior of the mean response time of a job as a function of threshold
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Busy period starts

(a) —» Time
Busy period ends

Busy period of M/M/1/i-1
queue ends
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Figure A.1 Busy period analysis
(a) Busy period consisting of a single job
(b) Busy period consisting of at least two jobs
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N4

u SLO (T) SIM (%) NLB
0.3 1.16 (1) 1.17+0.01 (0.8 %) 1.43
0.5 1.49 (1) 1.52£0.01 (1.9 %) 2.00

0.7 2.24 (2) 2.28 +0.05 (1.7 %) 3.33

0.9 5.48 (3) 5.59+0.21 (1.9 %) 10.0
Table 1 Mean response time of a job in a peer system

N=4,1/p=1.0 and 1/p.; = 0.01

o, U, SLO (To, T,) SIM (%) NLB
04,0.7 0.76 (3,1) 0.77+£0.01 (1.3 %) 2.24
0.4,0.9 0.95 (2,1) 1.00 £ 0.03 (5.0 %) 7.03
04,1.1 1.23 (3,2) 1.29+0.02 (4.7 %) oo
0.8,0.7 1.32 (4,2) 1.39£0.03 (5.0 %) 2.09
08,09 2.00 (4,3) 2.14£0.05 (6.5 %) 5.76
0.8,1.1 4.68 (5,5) 5.05 + 0.27 (7.3 %) oo

Table 2 Mean response time of a job in a star system

N=5,1/u=02,1/p, =1.0 and 1/ps = 0.01
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