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Abstract

In this paper we study the problem of how to efficiently determine the load balanc-
ing parameters on-line for a class of threshold load balancing policies in distributed
computer systems. We formulate the optimal load balancing problem for each policy,
in a static environment, as an integer optimization problem with the mean response
time of a job as a performance metric. This kind of problem is inherently difficult
to solve exactly (strictly speaking, integer programming problems are NP-complete).
We develop heuristic distributed integer optimization algorithms by which each node
computes its own load balancing parameters on-line. These algorithms are iterative in
nature and each iteration requires a simple computation at each node. In time-varying
systems these algorithms can be executed in the background so that they track system
variations in a quasi-static manner. Numerical experiments show that the algorithms
adapt well in such environments.
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1 Introduction

In this paper we study the problem of how to determine the load balancing parameters
efficiently on-line for a class of threshold load balancing policies in distributed computer
systems that have been proposed in the literature [7,8,18,19,22]. We consider systems
of autonomous host computers interconnected by a communication network. Each node
executes a threshold policy that obeys the following rules. At the time of a job arrival, each
node compares a workload indicator to a threshold. If the workload indicator lies below the
threshold, the node processes the job locally; otherwise the job is a candidate for transfer
to another node for remote processing. This remote node may be chosen. according to some
probability distribution or as a result of state information obtained from that node. It is
important to carefully choose the thresholds and the distribution rule by which to select
remote nodes in order for a.threshold policy to provide good performance. We propose and
evaluate several distributed on-line algorithms whose objectives are to choose values for
the load balancing parameters that will provide good performance. These algorithms are
derived from a class of distributed algorithms developed to solve nonlinear optimization
problems (2,3,9,12].

Although there is a large class of threshold policies, we will focus on those policies
that use the number of jobs in the node as a workload indicator and that choose remote
nodes for job transfer according to a probability distribution. These policies have been
shown to perform as well as more sophisticated policies (e.g., policies that probe other
nodes) when each node provides sufficient concurrent processing and allows multiprogram-
ming [19]. Also such policies are appropriate for systems that have large communication

delay, thus making probing information outdated [22].

For such policies, we formulate the optimal load balancing problem, in a static en-
vironment, as an integer optimization problem with the mean response time of a job as
a performance metric. This kind of problem is known to be inherently difficult to solve

exactly (mathematically speaking, integer programming problem is NP-complete [23]).

"Hence a heuristic algorithm is required for its solution. For time-varying systems, this



optimization computation can be invoked every time there is a change in the system envi-
ronment (e.g., job arrival statistics vary over time or a node is temporarily disconnected
from the network). Two approaches exist for obtaining the load balancing parameters
on-line. The first approach is to require one of the nodes (or all nodes) to solve the static
optimization problem to obtain the load balancing parameters. This process is repeated
whenever there is a change in the system environment. If a centralized algorithm is used
to solve this optimization problem, it may incur a large amount of overhead in terms of
CPU processing. An additional problem with the centralized approach is that the system

is vulnerable to the failure of the node executing the algorithm.

We consider a second approach in this paper where all of the nodes in the system
execute a distributed algorithm in order to obtain a near optimal solution to the load
balancing problem. The motivation behind the use of a distributed algorithm is that it re-
quires simple computation at each node and that it more naturally adapts to a time-varying
environment. Specifically, we use techniques developed in decentralized optimization for
the minimum delay routing in communication networks [9]. The resulting algorithm is
iterative in nature and the load balancing parameters are updated at each iteration. Each
node executes the load balancing policy with these new parameters until the next iteration,
and during this period estimates its throughput and incremental delay (first derivative of
queue length with respect to throughput). These quantities are then exchanged and used
to update the load balancing parameters at the next iteration. The algorithm executes
in the background at each node and requires little computational resources. It modifies
the load balancing parameters as the system workload changes over time. To illustrate
the behavior of the algorithm, we consider numerical examples where each node and the
communication network are modeled by single-server queueing systems. The results show
that the mean response time of a job stabilizes within a neighborhood of the optimal per-
formance in a static environment after a finite number of algorithm iterations. We also
study the adaptivity of the algorithm in systems that change slowly over time (quasi-static

systems) and observe that the algorithm behaves well in such environments.

The following section describes the system model and the class of decentralized
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threshold load balancing policies under study. Section 3 formulates the optimal load bal-
ancing problem as an integer optimization problem and presents heuristic distributed inte-
ger optimization algorithms by which each node obtains its own load balancing parameters
on-line. Section 4 contains numerical examples that show the behavior of the algorithm.
Section 5 discusses another approach to the problem considered in this paper where soft

threshold policies are used. Finally, section 6 summarizes the paper.

2 System Model and Load Balancing Policies

In this section we describe the system model and the class of decentralized threshold load

balancing policies under study.

2.1 Model Description

The system model consists of N autonomous host computers interconnected by a com-
munication network (see Figure 1). The communication network can be either a local
area network or a store-and-forward network. Jobs arrive at each node according to some
arrival process with rate &i, t = 1,2,...,N. Jobs arriving at node 7 can be processed at
any one of the nodes in the set S; where S; = {k| node k can process jobs originating at
node 7} which may be due to hardware/software requirements of different jobs. In order to
simplify the problem we assume that this subset depends on the node that the job arrived
at and that jobs originating at node ¢ can always be processed locally (i.e., 1 € S;). f a
Job is chosen for remote processing, it is transferred from the source node to a processing
node and the results are returned to the source node. Communication delays are incurred
during both transfers (e.g., packetization, unpacketization, transmission and queueing de-
lays). We assume that each node has a separate processor (communication server) that
handles job transfers between computers. Consequently, the node processor is not affected
by the job transfer between nodes. Nodes in the system may have different processing
rates and/or job arrival processes. An example of this kind of system is an interactive

transaction processing system consisting of multiple computers (e.g., collection of Service



Control Points for database query processing in a Common Channel Signaling network

[11]).

2.2 Load Balancing Policies

We consider a class of threshold load balancing policies that only use local state information
in making decisions for job transfer. These are referred to as sender-tnitiated policies. We

define this class of decentralized threshold policies as follows.

Decentralized Threshold Policies

o If a node receives a job from the external world when its workload indicator (e.g.,
queue length) is above a threshold, it sends the job to other node for remote pro-
cessing. The choice of a destination node is made according to some probability

distribution. Otherwise, it processes the job locally.

e Jobs arriving from other nodes are always accepted at the destination nodes.

This class of policies has been studied in the literature [7,8,22,18,19]. Policies in this class
may use different workload indicators and/or use different processor scheduling policies.
Figure 2 shows job flows at node i. In Figure 2, A; denotes the rate at which jobs are
transferred from node ¢ for remote processing, v; denotes the rate at which jobs arrive

from other nodes, and §; denotes the rate at which jobs are accepted for local execution.

One reason why we are interested in this class of load balancing policies is the
simplicity of implementation. However, since the job transfer decision is independent of
the state of other nodes, it is possible that an arriving job from other nodes may find
a busy destination node. In order to avoid this undesirable situation, the source node
may probe possible destination nodes to see whether they are busy or not. It then sends
the job to a node which is not busy. Such policies have been studied in [7,8,22,19]. The
benefit of probes has been shown to be negligible in systems where each node provides
sufficient concurrent processing and allows multiprogramming [19] and/or in systems with

large communication delay where probing information may be out of date [22].



Load balancing policies divide jobs within the system into two classes; namely local
Jobs and remote jobs. Local jobs are those processed at the origination node and remote
Jjobs are those processed at some other node after being transferred through the commu-
nication network. We denote the number of local jobs, the number of remote Jobs and the
number of jobs at node ¢ as L,(‘), L,(') and L; respectively (L; = L,m + L,(')). Among the

class of decentralized threshold policies, the following two policies are typical examples.
Policy SLO (Sender-initiated LOcal) [18]

¢ If node ¢ receives a job from the external world with L,(‘) 2> T;, the node sends the job
to node j in the set S; for remote processing with probability P;; where Y ics. P = 1

(Pi = 0). Otherwise, it processes the job locally.
e Jobs arriving from other nodes are always accepted at the destination node.

 Each node schedules jobs to the processor according to a preemptive priority disci-

pline where local jobs are given a higher priority than remote jobs.
Policy SR (Sender-initiated Random) 7]

e If node 1 receives a job from the external world with L; > T:, the node sends the job
to node j in the set S; for remote processing with probability P;; where 5. Pir =1

(Pi = 0). Otherwise, it processes the job locally.

e Jobs arriving from other nodes are always accepted at the destination node.

Jobs can be processed by any scheduling algorithm (e.g., First-Come-First-Served, Last-
Come-First-Served and Processor Sharing) if they have the same priority. Policy SLO is a
selfish policy in the sense that each node assigns higher priority to local jobs than to remote
jobs. Policy SLO uses the number of local jobs as a workload indicator whereas Policy
SR uses the total number of jobs. The parameters T;’s and F;;’s need to be determined so

that the system obtains a good performance. They should also be modified as the system



environment changes over time. The main focus of this paper is on how to determine these

parameters efficiently on-line in time-varying systems.

3 Distributed Parameter Selection Algorithms

In this section we formulate the optimal load balancing problem for each policy, in a static
environment, as an integer optimization problem. We then develop several distributed inte-
ger optimization algorithms by which each node obtains its own load balancing parameters

to the above problem.

3.1 Optimal Load Balancing Problem

Let f:(Bi,) and g(T') denote the mean queue length at node ¢ and the communication
network respectively where I' = 2.”:1 ~i- Let D be a random variable that denotes the
response time of a job. Using Little’s result [14] we obtain the mean response time of a

job in the system as follows.

Ny fi(Bisw) + 9(T) (1)

E[D] = 2

where E|.| denotes the expectation operator and ® = Y_}¥; ¢;. In general, it is difficult to
obtain an exact expression for E[D] even when simple models are used for nodes and the

communication network.

The optimal load balancing problem can be stated as follows.

MINIMIZE ED] ... (P1)
with respect to

Ti’s and Py’s,
subject to

T; > 0 and T; is an integer, t=1,2,...,N,



2okes; ki Pix = 1, t=1,2,...,N,

Ps'j > 09 1,] = 1727"°,N1

Fi;=0and P; =0, 1=1,2,.,Nand j ¢ S,.

This is an integer optimization problem with respect to integer and real variables. In
general, this kind of problem is inherently difficult to solve exactly and a heuristic algorithm

is required for its solution.

3.2 Distributed Integer Optimization Algorithms

One way of solving problem (P1) is to relax the integer constraints and to solve the problem
using any nonlinear optimization technique [21]. The mean response time of a job thus
obtained can be used as a lower bound to the solution to problem (P1). We can then
adjust the noninteger thresholds to obtain a feasible solution. Because the thresholds must
take integer values, it does not appear possible to develop a distributed algorithm that
performs this task. Instead, we present an algorithm that ensures that the thresholds take

integer values at all times.

We first reformulate problem (P1) by relaxing the integer constraints and develop
a distributed optimization algorithm for its solution. This algorithm is then modified
to deal with integer constraints. Finally, we show how these algorithms can be used in

time-varying systems.

3.2.1 Relaxation of Integer Constraints

For notational convenience, let the steady-state job flow from node ¢ to node j be z;( 7).
If node j cannot process jobs originating at node 1, z;(7) = 0. Note that z;({) = §; and
):ﬁ"':l,k# zi(¢) = 4;. For given values of T;’s and P,;’s, the steady-state job flows z;(5)’s can
be obtained. However, it may not be possible to obtain integer-valued T;’s from a set of
feasible z;(5)’s. For the moment we ignore this problem and treat z;(7)’s as nonnegative

real variables. Problem (P1) can then be rewritten as follows.



MINIMIZE ED] ... (P2)
with respect to
z:(5)’s,
subject to
Tres; zi(k) = &, t1=1,2,...,N,
z;(7) > 0, t,7=12,..,N,

1:,'(].) = 0, 1= 1,2,...,N and j ¢ S,'.

Note that problem (P2) is very similar, in form, to the multicommodity flow problem in

networks [9].

Let §;; denote the Kronecker delta function (i.e., §;; = 1 for i = j, and §;; = 0
otherwise). Necessary conditions for the optimal solution of problem (P2) can be derived

from the Kuhn-Tucker conditions [21] as follows. For all j € S;,

df;(B;, ;) e dg(T) [= Ai, for z;(5) > 0;
dz;(7) +a 5'J)d$i(j) {2 Ai, for z;(5) =0, (2)

where J; is some constant (Lagrange multiplier). Note that the multiplicative term (1-; ;)
is introduced since local jobs do not experience communication delay. Relation (2) indicates
that from node ¢’s point of view the incremental delay incurred for jobs processed at node
J due to the job flow from node ¢ to node j should be equal for all j if there is a positive
job flow from node 1 to node j. On the other hand, if there is no job flow from node i
to node j, the incremental delay should be no less than the above value. Note that since
df;[dzi(7) = df;/dzi(5) for i # 5 # k, A = At if z;(5) > 0 and z,(5) > 0. This means that
if there are positive job flows from nodes ¢ and k to node j, the incremental delay at node

J seen by nodes ¢ and k should be equal.

Using relation (2), we develop a distributed optimization algorithm that solves prob-
lem (P2). This algorithm is an extension of the work by Gallager [9] that developed a

distributed algorithm for solving the minimum delay routing problem in communication



networks. The algorithm is iterative in nature and, at each iteration, each node reroutes
a small amount of job flows from all other nodes to the node that has the minimum in-
cremental delay. The amount of rerouted job flow is proportional to the difference in the

incremental delays.

We define A; as,

Ai = min {dfe(Be,ve)/dz;(k) + dg(T)/dz;(k)}. (3)

kES k;e

Let h;(y) be the difference between the incremental delay of node j for 7 € S; and the

minimum incremental delay seen by node i including its own incremental delay and,

hti) = L2 + 0 - ) 20 - minga, L) “

Let Ai(5) = min{z;(5),nhi(j)} where 7 is a step size parameter. Note that zi(j) is the
maximum amount of job flow that can be rerouted from node i to node 7. Initially, each
node 1 sets a set of feasible z;(7)’s arbitrarily. Node i then executes the following algorithm

at each iteration.
Algorithm A

* Gathering the incremental delay information for all j € S;, node 1 computes z}(7)
where,
2() = { =(7) = Ada), for 5 # knin ) 5
Ti(7) + Zisrin(i) Bilk), for 5 = kpin(d),

and k., (7) denotes the site that yields the minimum incremental delay seen by node

¢ (s.e., min{4; M})

1 dz,(s)

¢ Perform a convergence test by checking T s.{zi(k) — z}(k)}? < € where ¢ is a given
positive constant. If the test is satisfied, terminate the iteration. Otherwise, go to

the next step.



e Redistribute the workload according to z}(j)’s for j € S;.

To implement Algorithm A, the incremental delay information is required along with a

protocol to exchange this information between nodes.

The choice of the parameter n affects the convergence rate of the algorithm [9,6].
A large value for 7 yields a fast convergence rate of the algorithm. However, we cannot
choose an arbitrarily large value for 5 since the algorithm may not converge in that case.
See [3] for a discussion on choosing step sizes. The convergence proof of this algorithm
can be found in Gallager [9] The algorithm converges linearly to the optimal solution
provided that the function, E|D], is a convex functionof the control parameters (linear
convergence means that the tail of the error sequence of intermediate solutions forms a
geometric sequence). Superlinear convergence can be obtained if one uses second derivative
information {2]. Convergence of an asynchronous implementation of this algorithm was

discussed by Tsitsiklis and Bertsekas [31].

A similar distributed optimization algorithm has been developed by Heal to solve the
economic planning problem [12] and extensions of this algorithm have been used to solve
static load balancing and file allocation problems in distributed computer systems [16,15].
In this algorithm, the average incremental delay (instead of the minimum incremental
delay) is compared with the incremental delay of each node in order to update z;(5)’s. We

define A} as,

o _ 5 Yi(Br, ) dzi(k) + (1 — 84)dg(T)/dz:(k)
4= 2 i ’ )

kES;

where |S;| denotes the cardinality of the set S;. Let A;(5)* = n”h;i(5)~ where n* is a step

size parameter and,

hi(3)" = d_f':ig%’;—’) +(1-6; %i% — A;. (7)

We denote the new algorithm as Algorithm B which is defined in the same way as Algorithm

10



A except for the rules to update z; (7)’s as,

() = Au(y)*, forje K;;

zi(7), otherwise.

z}(5) = { (8)

The set K; is determined iteratively so that the feasibility constraint is satisfied [12,16].

Unfortunately, the above algorithms cannot be used directly to solve problem (P1)
since we cannot control the steady-state job flows continuously using integer-valued T;’s.
If the cost functions are convex, the algorithms can be used off-line to obtain lower bounds
on the best achievable performa,nce. In the next subsection we develop heuristic algorithms
to account for the integer cdnstra.ints. They use ideas similar to those used in Algorithms
A and B.

3.2.2 Heuristic Algorithms

One algorithm closely follows the idea of Algorithm A where each node compares its
own incremental delay to the minimum incremental delay of other nodes seen by itself
to determine whether to increase or decrease its local job throughput (i.e., increase or
decrease the threshold by one). This adjustment of thresholds may change the job flows
abruptly. The transfer probabilities are determined according to the slack processing power
of nodes where the slack processing power of a node is defined as the difference between

the maxmum processing capacity of the node and the local job throughput.

Initially, each node ¢ sets T; and P;j’s for 7 € S; (P; = 0) to some arbitrary values.

Node 7 then executes the following algorithm at each iteration.

Algorithm C

¢ After gathering the incremental delay information for all j € S;, node i computes

the value of A;.

o If df;/dzi(Y) > A;(1 + 0;) where 6; is a given positive constant, set T; := T} — 1.
Else if df;/dz;(¢) < A;(1 - 6;), then set T; := T; + 1. Otherwise, set T; := T;. (The

11



parameter #; must be tuned to prevent threshold change due to a slight imbalance

in incremental delays. Numerical experience indicates that ; = 0 works well.)

o Using the values of p; — z;(7), determine P;; for all j € S; (P; = 0) as,

#i — zi(7)
" Thesikzi{mn — zi(k)}
where p; denotes the maximum processing rate of node j. Note that u; — z;(7)

denotes the slack processing power of node j.

Note that in the above algorithm we do not route all incremental job flows from each
node to the node that has the minimum incremental delay as in Algorithm A. Numerical
results in the next section show that the use of slack processing power to determine the

transfer probabilities yields better mean response time performance.

In Algorithm C the minimum incremental delay is used to update the threshold
parameters. We next present another algorithm based on Algorithm B where average
incremental delay is used instead of the minimum incremental delay. We denote the new
algorithm as Algorithm D which is defined in the same way as Algorithm C except that
A; is replaced by A;].

In order to implement these algorithms, efficient estimators for incremental delay
and slack processing power are required. The incremental delay information at each node
can be obtained in one of several ways. One way is to measure the local job throughput and
the remote job throughput at each node, and use closed-form incremental delay formulas
if they are available. We assume that the incremental delays due to remote job flow are
not affected by the integer threshold constraints. However, incremental delays due to local
job flow are indeed affected by the integer threshold constraints since local job flow is
directly controlled by the threshold parameter. In this case we use the following backward

difference formula to approximate the incremental delay due to local job flow.

dfi/dz;(?) =~ [filr; = [filzi—1

7 z:(@))n, — (=)

i=1,2,..,N (10)

12



where [fi]r, and [z;(i)]r, denote the mean queue length and the local job throughput at
node ¢ when the threshold is 7;. This approximation, in fact, yields a smaller value than

the true incremental delay. Another option is to use a forward difference formula as follows.

[filzier = [filz,

[z = [2:(3))z,”

df,/d.’t,(l) ~ = 1,2, cony N (11)

This approximation, on the other hand, overestimates the true incremental delays. In the
next section we compare versions of Algorithm C that use the two formulas. Efficient
algorithms for obtaining the data required to compute equations (10) and (11) are found
in [5,28,24].

Incremental delays due to remote job flows can be computed using one of a number
of different techniques such as perturbation analysis [13] and likelihood ratio estimation
[10,25,24]). The slack processing power is easily obtained by measuring local job through-
put. The minimum number of events that is to be measured to obtain a good estimate
for incremental delays and slack processing power is dependent on the specific applica-
tions of the system and can be determined empirically (e.g., a window of at least 100 job

completions is required to make a good estimate).

Algorithms C' and D can be triggered either by specific events or periodically. In
the first case, each node measures its incremental delay and slack processing power, and
reports them to other nodes if they differ from previously reported values by a certain
margin. In the second case, each node measures and reports its incremental delay and
the slack processing power to other nodes periodically. In either case, the overhead of

exchanging this information is small.

In general, Algorithms C and D do not converge to the optimal solution. (Note
that there is no convergence test at each iteration.) However, we conjecture that after a
finite number of algorithm iterations, the mean response time of a job stabilizes within a
neighborhood of the optimal performance in a static environment. This kind of behavior
has been observed through many numerical examples some of which are shown in the next
section. When the system environment varies slowly over time, the above algorithms can

be executed in the background. In such a case, when there is an imbalance in incremental

13



delays due to a change in the system environment, the algorithm corrects the imbalance
properly so that system performance may improve. In the next section we study the
behavior of these algorithms where there are step changes in the system environment.

This study qualitatively reveals the algorithms’ adaptivity in time-varying systems.

4 Numerical Results

In this section we provide numerical examples. We first compare the performance of
Algorithms C and D, and study the effects of various parameters and the incremental
delay approximations used in the algorithm. We then look at examples where the system
environment changes over time. Although we provide numerical results for a small set of
system parameters, we have observed that the conclusions drawn in this section hold for

a wide range of system parameters.

We model each node 7,7 = 1,-.-, N, and the communication network as single-server
queueing systems that have exponential service time with mean 1 /ui and 1/u,, time units
respectively. Jobs arrive at node ¢ according to a Poisson process with rate ¢; and the
system executes Policy SLO. For this model, we use the results in [19] to obtain a closed-
form expression for the mean response time of a job. The analysis carried out in [19] is
based on the Poisson assumption on the remote job arrivals at each node. It has been shown
that this analysis becomes exact as the number of nodes in the system approaches infinity.
Simulation studies showed that this approximation is good even in systems containing ten
nodes when we are interested in obtaining the mean response time performance. Using

this closed-form expression, we can study the behavior of the algorithms analytically.

We consider a system that contains three equal size classes of nodes where nodes in
each class have the same external workload and job processing power. Let u(¥), ¢0) -and u()
denote the job processing rate, external job arrival rate and utilization of nodes in class ¢
without load balancing respectively (i.e., u(?) = ¢0)/ul)). These nodes are interconnected
by a communication network with mean service time of 1/pen = 0.01 time units. We

assume that there are no site constraints. We look at the following two examples.

14



o Example 1: p(V) = p® = 4 = 1,0, «® = 0.7, u® = 0.9 and «® = 1.1

o Example 2: (V) = 1.0, u® = 2.0, u® = 4.0, (! = 0.9, u? = 0.8 and v® = 0.9

Unless stated otherwise, the following parameters are used in the algorithms; initial thresh-
olds randomly drawn between 5 and 10, the parameter 8 equal to 0, and the backward

difference approximation for incremental delays.

In the following figures, NLB (No Load Balancing) denotes the mean response time
of a job in the system withqut load balancing. Similarly, SLB (Static Load Balancing)
denote the niean response time under the probabilistic static load balancing of Tantawi
and Towsley [29]. Briefly, under the static load balancing each node chooses a destination
node (including itself) for execution of external job arrivals according to some probabil-
ity distribution, regardless of its own workload. These probability parameters are then
adjusted to obtain the optimal performance. Finally, CLB (Conjectured Lower Bound)
denotes the mean response time obtained by solving problem (P1) with relaxed integer
constraints using Algorithm A. Since we were unable to prove the convexity of E|D], we
attempted different initial solutions in order to obtain the global optimal solution. In all
cases, the algorithm yields the same solution regardless of the initial solutions tried. This
provides circumstantial evidence that E[D] has single local minimum. We conjecture that

CLB provides a lower bound to the optimal system performance obtainable by Policy
SLO.

Figure 3 compares the performance of Algorithms C and D. The performance of
the system under both algorithms approaches the lower bound initially and then stabilizes
in a neighborhood of the lower bound. Algorithm C yields a lower mean response time
than Algorithm D in the stabilized region. In the figure Algorithm C* denotes the case
where all incremental job flows are routed to the node that has the minimum incremental
delay in Algorithm C (instead of using slack processing power). This yields a higher mean
response time than Algorithm C. In the following we focus on the behavior of Algorithm
C only. Figure 4 shows the effect of initial threshold values where case 1 corresponds

to initial thresholds drawn randomly between 5 and 10 and case 2 corresponds to initial
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thresholds drawn randomly between 10 to 20. When the initial thresholds are large, more
iterations are required for the algorithm to stabilize. This is due to the fact that the
optimal thresholds are usually small (e.g., less than six). Figure 5 shows the effect of the
parameter §. This parameter was introduced to prevent a change in the threshold due to
a slight imbalance between incremental delays. It shows that § = 0 works well. Figure 6
compares the effect of the backward and forward difference approximations for incremen-
tal delays. The backward approximation underestimates incremental delays whereas the
forward approximation overestimates them. Each node usually transfers more jobs when

the forward approximation is used, resulting in a performance degradation.

We next study the behavior of Algorithm C subject to step changes in the system
environment. When there is a step change during the execution of the algorithm, the
situation is the same as in the static environment case except that Algorithm C now uses
the T;’s and P, ;s last calculated in the previous environment as initial values. If the change
is small, these may not be far from the optimal values in the new system environment. We

consider the following examples.

o Example 3: pV) = u® = u® =1.0.

Initially, nodes in all classes have the same utilization of 70%. Right after the 15tk
iteration, the utilization of nodes in class 2 changes to 90% (i.e., ¢(3/u(? = 0.9).
Right after the 25tk iteration, the utilization of nodes in class 2 returns to 70%.

e Example 4: pM) = (@ = 406 = 1.0,

Initially, nodes in all classes have the same utilization of 70%. Right after the 15th
iteration, the utilization of nodes in class 2 changes to 110%. Right after the 25th

iteration, the utilization of nodes in class 2 returns to 70%.
e Example 5: The same as Example 3 except that u(1) = 1.0, x(®) = 2.0 and u(® = 4.0.

e Example 6: The same as Example 4 except that p(!) = 1.0, u(®) = 2.0 and u(®) = 4.0.

In the figures to follow System shows the behavior of Algorithm C and C LB denotes
the conjectured lower bound. Due to the workload changes right after the 15th and 25th
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iterations, incremental delays and slack processing powers have been changed. This in-
formation is then used to update T}’s and F;j’s in the next iteration. For a change of
increasing workload, Figure 7 (a) and Figure 8 (a) show that the algorithm adapts to the
change smoothly. For a large amount of increasing workload, Figure 7 (b) and Figure 8
(b) show that the algorithm still adapts to the change quickly although it results in slow
response time performance in a transient period of two algorithm iterations. In both cases,

the algorithm adapts smoothly to changes in which the workload decreases.

5 Discussion

This paper has focused on the problem of how to determine the load balancing parameters
efficiently on-line for a class of decentralized threshold policies that have been proposed
in the literature. One difficulty with threshold policies is that the optimal load balancing

problem is an integer optimization problem which is difficult to solve exactly.

One way of avoiding integer optimization is to introduce new policies where the
control parameters can take on real values. For example Policy SR can be modified as

follows.

Policy SR*

e If node 7 receives a job from the external world with L; = T}, the node sends the job
to other node with probability g;. On the other hand, if node 7 receives a job from
the external world with L; > T; + 1, it sends the job to other node with probability
one. Otherwise, it processes the job locally. In case of job transfer, node j in the set

Si is chosen with probability P;; where Tpcs. P = 1 (P = 0).

e Jobs arriving from other nodes are always accepted at the destination node.

We refer to this as a soft threshold policy. Using this scheme, we can control the steady-
state job flows continuously by a proper choice of T}’s, ¢;’s, and P;;’s. Therefore the optimal

load balancing problem is just a nonlinear optimization problem and Algorithm A (or B)

17



can be used directly for its solution. However, Lazar [17] showed that, for a certain class of
queueing systems, the resulting mean queue length as a function of throughput is piecewise
concave between points corresponding to integer thresholds. Furthermore, the derivatives
at those points are discontinuous. Hence, problem (P2) is not a convex programming
problem. We have applied Algorithm A to this problem with poor results. Although our

preliminary work in this area is not promising, this approach requires further investigation.

6 Conclusions

In this paper, we studied the problem of how to determine the load balancing parameters
efficiently on-line for a class of threshold load balancing policies that only use local state
information in making job transfer decisions. We formulated the optimal load balancing
problem for each policy, in a static environment, as an integer optimization problem. We
then devised heuristic distributed integer optimization algorithms for its solution whose
underlying idea comes from a distributed algorithm developed for the minimum delay
routing in communication networks. The algorithm is iterative in nature and each iteration
requires simple computation from each node. All that is required for the implementation of
the algorithm are the measurement of incremental delay and slack processing power, and a
protocol for exchange of this information between nodes. To illustrate the behavior of the
algorithm, we considered numerical examples where each node and the communication are
modeled by single-server queueing systems. The results show that after a finite number of
algorithm iterations the performance of the system, in a static environment, is stabilized
within a neighborhood of the optimal performance. This algorithm also shows a good
adaptivity in a time-varying environment. Although not considered here, we believe that
the decentralized optimization algorithm approach may be applicable to threshold policies
that use probes to obtain nonlocal state information. This will be a topic for future
research. It also remains as a future project to implement the optimization algoriithm

with the necessary incremental delay estimators and study its performance.
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