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Abstract

While there exist many techniques for finding the parameters that minimize an
error function, only those methods that solely perform local computations are used
in connectionist networks. The most popular learning algorithm for connectionist
networks is the back-propagation procedure [13], which can be used to update the
weights by the method of steepest descent. In this paper, we examine steepest descent
and analyze why it can be slow to converge. We then propose four heuristics for
achieving faster rates of convergence while adhering to the locality constraint. These
heuristics suggest that every weight of a network should be given its own learning rate
and that these rates should be allowed to vary over time. Additionally, the heuristics
suggest how the learning rates should be adjusted. Two implementations of these
heuristics, namely momentum and an algorithm called the delta-bar-delta rule, are
studied and simulation results are presented.
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1. Introduction

From the optimization literature, we know that there exist many iterative techniques for
finding the parameters that minimize a function. For example, steepest descent, Newton’s
Method, recursive least squares, and conjugate-gradient methods are all procedures for
solving such a problem. For purposes that will shortly be apparent, we can categorize
these procedures according to how they adjust their estimates of the parameter values
that minimize a function. Those methods that modify each estimate of a parameter value
based solely on information about that parameter perform local computations and are
classified as local techniques. All other methods are classified as non-local techniques.

Despite the fact that non-local techniques frequently possess good convergence proper-
ties, these procedures are not used to update the weights of connectionist networks. This
is because the connectionist paradigm seeks to discover the information processing capa-
bilites of networks that rely on local computations. The desire to use only local techniques
is referred to as the locality constraint. This restriction is justified on several grounds.
First, networks that perform local computations are frequently viewed as metaphors for
biological neural networks. Second, such networks are thought to be easier to implement
in parallel architectures.

In this paper, we investigate several connectionist learning algorithms. Our study is
restricted to methods that adhere to the locality constraint. Recent years have seen the
development of reasonably successful learning algorithms for multi-layer networks. The
most popular such algorithm, called the back-propagation procedure [13], can be used
to update weights by the method of steepest descent. Despite its effectiveness, many
researchers still find this algorithm’s rate of convergence too slow for the technique to be
used in many practical situations. Therefore, investigations of new, and hopefully faster,
algorithms continue to be pursued. The main theoretical contribution of this paper consists
of four heuristics for achieving faster rates of convergence than steepest descent techniques.
These heuristics suggest that every weight of a network should be given its own learning
rate and that these learning rates should be allowed to vary over time. Additionally, the
heuristics suggest how the learning rates should be adjusted.

In Section 2, we describe the method of steepest descent. Section 3 details why steepest
descent procedures can be slow to converge. Section 4 presents relevant results from the
field of Adaptive Filter Theory. Section 5 surveys previous research. Section 6 lists the
four heuristics. In Sections 7 and 8, we study a common implementation of these heuristics
called momentum. In Sections 9 - 12, we introduce an alternative method of implementing



these heuristics, called the delta-bar-delta learning rule. Section 13 presents simulation
results comparing the steepest descent, momentum, and delta-bar-delta procedures.

2. Steepest Descent

As mentioned above, the method of steepest descent is an iterative procedure for ob-
taining the values of parameters that minimize a function. As applied in learning rules
for connectionist networks, the function’s parameters are the weights of a network and its
value is an error measure. Geometrically, the function specifies an error surface defined
over weight space. At each iteration of the steepest descent procedure, the values of the
weights are modified in the direction in which the error function decreases most rapidly.
This direction is given by the gradient of the error surface at the current point in weight
space. The magnitude of the modification is a constant proportion of the magnitude of
the gradient. Specifically, each weight is adjusted by a constant proportion of the partial
derivative of the error with respect to the weight. This proportion is commonly referred
to as the learning rate or step size. The procedure can be written

w(t+1) = w(t) — eVJI(2), (1)

where w(t) is the vector of weights at time ¢, ¢ is the learning rate parameter, J is the
error function to be minimized, J(t) is the error value at time ¢, VJ(t) is the vector of
first partial derivatives
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and N is the number of weights. Since the gradient vector points in the direction of
maximum increasing error, in order to minimize the error, it is necessary to multiply the
gradient vector by negative one.

VJ(t) =

3. Steepest Descent Can Be Slow

While steepest descent can be an efficient method for obtaining the weight values
that minimize an error measure, error surfaces frequently possess properties that make
this procedure slow to converge. There are at least two reasons for this slow rate of
convergence. These reasons involve the magnitude of the components of the gradient
vector and the direction of the gradient vector.
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The magnitude of a partial derivative of the error with respect to a weight may be
such that modifing a weight by a constant proportion of that derivative will yield a minor
reduction in the error measure. This occurs in two situations. Where the error surface
is fairly flat along a weight dimension, the derivative of the weight is small in magnitude.
Thus, the value of the weight is adjusted by a small amount and many steps are required
to achieve a significant reduction in error. Alternatively, where the error surface is highly
curved along a weight dimension, the derivative of the weight is large in magnitude. Thus,
the value of the weight is adjusted by a large amount and the value may overshoot the
minimum of the error surface along that weight dimension.

A second reason for the slow rate of convergence of a steepest descent algorithm is that
the direction of the negative gradient vector may not point directly towards the minimum
of the error surface. This is illustrated in Figure 1 for a two-dimensional weight space.
The error surface is drawn topographically using contours to represent regions of equal



error. The minimum of the error surface is represented by the black dot in the center of
the contours. The current weight vector is given by w(t). Since at the current point in
weight space the error surface is steeper along the w; dimension than the w; dimension,
the derivative of w, is greater than the derivative of w;. In general, for the direction of the
negative gradient vector to equal the direction of the minimum of the error surface for all
points in weight space, the contours that represent regions of equal error must be circular.

4. Adaptive Filter Theory

In this section, the relevant results from Adaptive Filter Theory are introduced. This
material is included because it provides an analytic framework within which we can study
the reasons for the slow rate of convergence of the steepest descent procedure. The following
analysis can be found in many texts on Adaptive Filter Theory (e.g., see [6], [7], or [19]).

The system to be analyzed is a single linear processing element. Let w(¢) be the weight
vector of the element at time ¢, z(t) be the input vector at time ¢, and d(¢) be the desired
response of the system at time ¢. Let p denote the expectation E[z(t)d(t)], which is the
cross-correlation vector between the input vector and the desired response. Let R denote
the expectation E[z(t)z(t)], which is the auto-correlation matrix of the input vector. As
is commonly the case, the performance measure to be minimized is the mean-squared error.
The value of this performance measure at time ¢ can be written

J(8) = (d(t) — w” (t)=(2))".
It is a fact (which will not be derived here) that this value can be re-written
J(t) = E[d(t)d(t)] — wT (¢)p — pTw(t) + wT (t) Rw(t).

This performance measure specifies a quadratic error surface defined over weight space.
The orientation and shape of the error surface is a function of R. In addition, the error
surface possesses a unique minimum.

By examining how the eigenvalues of R determine the shape of the error surface, we
illustrate two reasons why steepest descent search can be slow. The matrix R can be
written

R =QAQ7,
where A is a diagonal matrix whose diagonal components are the eigenvalues of R, and
@ is a matrix whose columns are the orthogonal set of eigenvectors associated with the



eigenvalues. Denote the N eigenvalues of R as A;,...,Ay. The largest eigenvalue is labelled
Ama: and the smallest eigenvalue is labelled \,,. The principal axes of the error surface
are in the direction of the eigenvectors of R. The mean-squared error increases most
rapidly in the direction of the eigenvector corresponding to the eigenvalue ),,,, and most
slowly in the direction of the eigenvector corresponding to the eigenvalue A,,. Define
the eigenvalues spread to be %\'"'ﬁ': This spread has a minimum value of one and can be
arbitrarily large.

Recall that one reason why a steepest descent procedure may be slow to converge is
that the negative gradient vector may not point towards the minimum of the error surface.
When the eigenvalues spread equals one, contours of equal error are circular. In this case,
the negative gradient is in the direction of the minimum error. When the eigenvalues
spread is larger than one, contours of equal error are elliptical. In this case, the direction
of the negative gradient is not necessarily equal to the direction of the minimum error.

A second reason why a steepest descent procedure may be slow to converge is that the
learning rate may not be appropriate for all portions of the error surface. The length of
the gradient vector is smaller in the direction of the eigenvector corresponding to Amin (the
major axis of the ellipse) than in the direction of the eigenvector corresponding to Aaz (the
minor axis of the ellipse). Thus, a value for the learning rate that yields moderate steps in
weight space along the major axis of the ellipse may result in large steps in weight space
along the minor axis. In this event, the error measure may show only a slight reduction at
each time step because in the direction of the minor axis, the weight vector may oscillate
across the minimum of the error surface instead of approaching this minimum. Similarly, a
value for the learning rate that yields moderate steps in weight space along the minor axis
of the ellipse may result in small steps in weight space along the major axis of the ellipse.
This will also result in only a slight reduction of the error at each time step. In practice,
the value of the learning rate parameter is usually set so that successive steps in weight
space do not overshoot the minimum of the error surface. Therefore, it is frequently the
case that the value of the learning rate is limited by the value of Az, and only small steps
in weight space are made in the direction of the major axis of the ellipse.

5. Previous Research

After considering the reasons for the possible slow rate of convergence of a steepest
descent procedure, we can appreciate why researchers continue to study a variety of tech-



niques for finding the parameters that minimize the value of an error function. In this
section, we briefly review several of these techniques. For a more complete survey of
learning algorithms for connectionist networks, see [1].

This paper is largely a follow-up of techniques developed by Kesten (8], Saridis [14], and
Sutton (2] [16]. Kesten proposes that if consecutive changes of a weight (i.e., Aw;(t—1) and
Aw;(t)) possess opposite signs, then the weight value is oscillating. Hence, the learning rate
for that weight should be decremented. Saridis uses this basic notion to both increase and
decrease learning rates. Thus, if consecutive derivatives of a weight possess the same sign,
then the learning rate for the weight should be incremented. If consecutive derivatives of a
weight possess opposite signs, then the learning rate for the weight should be decremented.
In this scheme, the sum of all learning rates for all weights is maintained at a constant.
Thus, weights are effectively competing for this fixed quantity. Sutton [16] discusses why
these techniques are particularly pertinent to connectionist networks and makes several
alternative suggestions for increasing rates of convergence. In [2], Sutton introduces a
learning rule which is very similar to the delta-delta rule discussed below. The logic
behind the Kesten, Saridis, and Sutton proposals are explained at length later in this
paper. First, we briefly survey alternative ideas.

Some researchers advocate utilizing traditional techniques from the function optimiza-
tion literature to train connectionist networks. In order to adhere to the locality constraint,
Scalettar and Zee [15] have employed a variation of Newton’s Method. This algorithm,
which is a modification of a recommendation by Sutton [16], can be written

_ . 9J(t)/ow(t)
Al =I5 /du2 0]

Extensive results of the performance of this algorithm are not reported. Parker [11] has

developed an algorithm, called the second-order LMS rule, that uses both first and second

derivatives in the update of weights. Parker maintains that this rule shows “nearly optimal
performance.”

Derthick [3] has made several recommendations for learning procedures. For example,
he suggests that each weight be updated by a fixed amount depending only on the sign of
the weight’s derivative. Alternatively, he proposes that at each weight update, the current
point in weight space always be moved by a constant distance in the gradient direction.

Another approach towards developing learning algorithms with fast rates of conver-
gence is to notice what inputs are most predictive of the correct ouput. The principal



behind this approach is that faster rates of convergence can be achieved if the search for
good weight values is confined to the most relevant weight dimensions. For example, a
technique proposed by Hampson and Volper (5] iteratively approximates several condi-
tional probabilities involving the inputs and outputs and uses these approximations to
update the weights. Similarly, Littlestone [9] has a scheme that detects irrelevant inputs.
Mjolsness [10] suggests a method for networks with symmetric weights that shows quali-
ties resembling the approaches that detect irrelevant features and the approaches that are
variations of Newton’s Method.

6. Heuristics for Increasing the Rate of Convergence

Based on the above discussion and following the recommendations of Kesten, Saridis,
and Sutton, four heuristics can be proposed that provide guidelines for how to achieve
faster rates of convergence than steepest descent techniques.

First, every parameter of the performance measure to be minimized should have its
own individual learning rate. As mentioned above, the step size appropriate for any one
parameter dimension is not necessarily appropriate for other parameter dimensions.

Second, every learning rate should be allowed to vary over time. It is common for
error surfaces to possess different properties along different regions of a single parameter
dimension. In order to take appropriate step sizes as the parameter varies over its possible
values, the learning rate will also need to vary.

Third, when the derivative of a parameter possesses the same sign for several consecu-
tive time steps, the learning rate for that parameter should be increased. When the sign of
the derivative behaves in this manner, it is frequently the case that the error surface at the
current point in parameter space along that parameter dimension possesses a small curva-
ture, and therefore, continues to slope in the same direction for some significant distance.
By increasing the learning rate for this parameter, the number of time steps required for
the value of this parameter to traverse this distance can be reduced.

Fourth, when the sign of the derivative of a parameter alternates for several consecutive
time steps, the learning rate for that parameter should be decreased. When the sign of
the derivative behaves in this manner, it is frequently the case that the error surface at
the current point in parameter space along that parameter dimension possesses a high
curvature, and therefore, the slope of this area of the error surface may quickly change



sign. In order to prevent the value of the parameter from oscillating, this value should be
adjusted by a smaller amount.

Note that by providing different learning rates for each parameter dimension, the cur-
rent point in weight space is not modified in the direction of the negative gradient. Thus,
such a system is not performing steepest descent search. Instead, parameters are updated
based on both the partial derivatives of the error with respect to the parameters and on
an estimate of the curvatures of the error surface at the current point in parameter space
along each parameter dimension.

While the above heuristics provide guidelines for how faster rates of convergence can
generally be achieved, certain caveats must be included in order to provide a balanced
presentation. Most importantly, there exist error surfaces where use of these heuristics
may not result in the desired effects. For example, consider an error surface defined
over a two-dimensional weight space where the surface possesses a valley that is at a 45
degree angle to both weight axes. In the vicinity of this valley, the surface possesses a
high curvature along both weight dimensions. Thus, when the current point in weight
space is in the valley, these heuristics would cause the learning rate for each weight to be
decreased. Ideally, in order to decrease the error measure the fastest, the learning rates
for both weights should be increased.

The failure of the heuristics in this circumstance can be attributed to the fact that
they satisfy the locality constraint. As a further example of how this constraint limits the
utility of the heuristics, consider the quadratic error surface described in the section on
Adaptive Filter Theory. Ideally, in this situation, we would like heuristics that govern the
step size in each eigendirection of the matrix R. Unfortunately, the heuristics can only be
used to control the step size in each weight dimension.

Despite their limitations, we believe that the remainder of this paper demonstrates the
merits of the heuristics. ‘

7. Momentum

There exist several possible implementations of the heuristics described above. One
frequently used method is called momentum. In this technique, the heuristics are imple-
mented through the addition of a new term to the weight update equation. At time step



t, each weight w(t) of a network is updated according to the following rule:

Aw(t) = —(1- a)eg% + aAw(t — 1) (2)
= —(1- a)egaig—j)—(é:—g,

where a is the momentum factor that determines the relative contribution of the current
and past partial derivatives to the current weight change. This contribution is the expo-
nentially weighted sum of the weight’s current and past partial derivatives where « is the
base and the time from the current time step is the exponent. Note that without the use
of momentum (when a is set to zero), the update rule performs steepest descent.

Momentum is considered an implementation of the heuristics for the following reasons.
When consecutive derivatives of a weight possess the same sign, the exponentially weighted
sum grows large in magnitude and the weight is adjusted by a large amount. Similarly,
when consecutive derivatives of a weight possess opposite signs, this sum becomes small
in magnitude and the weight is adjusted by a small amount.

In order to analyze the advantages of momentum, we examined its effect on the opti-
mization of a one dimensional quadratic error surface. The error surface is defined by the

following function: _
T() = Skut(),

where k is the curvature of the surface. This specifies a quadratic error surface whose
minimum is at w equals zero. Four experiments were performed corresponding to four
values for momentum. These values are 0.0, 0.25, 0.5, and 0.9. Within each experiment,
several simulations were executed. In order to test the performance of a particular value of
momentum over a wide range of curvatures, the curvature of the error surface was varied
logarithmically between 0.00001 and 2.0 across simulations. For each experiment, a value
for the learning rate was selected that resulted in good performance over the entire range of
curvatures. For the four experiments, the values of the learning rate are 1.0, 1.67, 3.0, and
19.0 respectively. At the start of each simulation, w was initialized to 1000. Solution of
the problem is reached at the first of ten consecutive time steps during which the absolute
value of w is below 10.

The results of the experiments are displayed in Figure 2. The x-axis of the graph
logarithmically represents the curvature of the error surface. The y-axis logarithmically

10
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represents the number of steps until solution. Two important properties should be noted.
First, the width of the range of curvatures over which performance is best for the given
values of the learning rate and momentum dramatically increases with increases in mo-
mentum. Second, there exists a range of curvatures over which momentum decreases
performance of the learning algorithm. This latter result suggests that there exists room
for improvement in the development of techniques to achieve faster rates of convergence.

8. Limitations of Momentum

There are at least two limitations to momentum that restrict its effectiveness. First,
there exists an upper bound on how large an adjustment momentum can make to a weight.
For example, if all derivatives of a weight over time are assumed to be equal to one, then
the exponentially weighted sum of the weight’s current and past derivatives converges to

—L as time goes to infinity. In this event, the maximum a weight can be modified by is

I~

the value of the learning rate. A second limitation of momentum is that this exponentially
weighted sum may have a sign opposite to the sign of the weight’s current derivative. Thus,
momentum can cause the weight to be adjusted up the slope of the error surface along the

weight dimension, instead of down the slope as is desired.

In the remainder of this paper, we explore the use of adaptive learning rate algorithms
as a means of implementing the four heuristics listed above.

9. Delta-Delta Learning Rule

The delta-delta learning rule consists of both a weight update rule and a learning rate
update rule. The weight update rule is similar to the steepest descent algorithm with the
exception that each weight possesses its own learning rate parameter. This weight update

rule can be written 57(1)
t
t+1) =w(t) — et + 1) -t 3
we+1) = w(t) - et + 1) 3 (3
where w(t) is the value of a single weight at time ¢ and €(t) is the learning rate value
corresponding to w(t) at time ¢.

We now derive a learning rate update rule that performs steepest descent on an error
surface defined over learning rate parameter space. This rule and its derivation are a slight

12



variation from the rule and derivation presented by Sutton [2]. For simplicity, this rule
is for a single element whose weight update rule is based on the LMS rule (18]. First, we
define the input and output properties of the element. Let w(t) be the element’s weight

vector at time ¢ and z(t) be the input vector at time ¢. The element’s output at time ¢,
y(t), is defined as

y(t) = w’ (t)z(t).

Let €(t) be a diagonal matrix of learning rate values at time ¢ and d(t) be the desired
response at time £. In accordance with the LMS update rule, the weight update algorithm
for this element is

w(t + 1) = w(t) + €(t + 1)[d(t) — y(2)]=(¢).

Now, we define the error function to be minimized by the learning rate update rule. Note
that this error function is a different function from the one minimized by the weight update
rule. To distinguish these two functions, we denote the error function minimized by the
weight update rule as J and the error function minimized by the learning rate update rule
as G. As is commonly the case, let the value of G at time ¢t be defined as follows:

G(t) = 3(d(t) - y(®)*.

After some algebraic manipulation,

Gl) = 3(dl) - ' (1)z(t)?
= ()~ (w(t — 1) + ele)la(t ~ 1) ~ w7 (¢ — (t — D]a(t 1)) (1)’

Finally, we differentiate this error function with respect to each learning rate. Let ¢; be
the learning rate for the ¢th weight, w;. This value is also the (i,7)th component of the
diagonal matrix e¢. Let I; be a square matrix with all zero components except the (,)th
component which is set equal to one. Then,

oG(t)
d¢;(t)

(d(t) — y(E)((—d(t — 1) Lz(t — 1)T2(t) + (w” (¢ - 1)zt — 1)) Lzt — 1))72(t))

= —(d(t) — y(®))(((d(t - 1) = (wT(t - Va(t — 1)) Liz(t — 1))T=(t))
= —((d(t) - y(1)) Lz (t)T ((d(t — 1) — y(t ~ 1)) Liz(t - 1))

8J(t) 8J(t — 1)
 Aw;i(t) Bwi(t —1)°
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Thus, a learning rate update rule that performs steepest descent on an error surface
defined over parameter space is

__OJ(t) aJ(t —1)
Agi(t) = ’Yaw,'(t) Qw;(t — 1)’

where v is the step size parameter. Most important for our purposes is that this algorithm
for updating the learning rates implements the heuristics listed above. When the sign of
the derivative of a weight is the same on consecutive time steps, the algorithm increases
the learning rate for that weight. When the sign of the derivative of a weight alternates
on consecutive time steps, the algorithm decreases the learning rate for that weight.

10. Drawbacks Of The Delta-Delta Learning Rule

Unfortunately, the delta-delta rule is of only limited practical use. When the error
surface at the current point in weight space along a weight dimension possesses a shallow
slope and a small curvature, the derivatives of the weight at two consecutive time steps
will likely have the same sign and have a small magnitude. Thus, their product is a very
small positive number. In order to significantly increase the learning rate for this weight-
dimension, it is necessary to set « sufficiently high. However, the sign of the derivative is
likely to remain constant for many consecutive time steps and the learning rate may grow
very large. In this event, the weight may be adjusted by an extremely large amount, often
well beyond the minimum of the error surface along that weight dimension. Frequently,
a large value for v results in weights with huge magnitudes whose derivatives are equal
to zero. In addition, problems may also arise when the error surface at the current point
in weight space along a weight dimension possesses a high curvature. The derivatives of
the weight at two consecutive time steps will likely have opposite signs and have a large
magnitude. Thus, their product is a large negative number. If « is set to a large value, it
is frequently the case that the learning rate decreases until it is a negative number. In this
event, the weight is adjusted up the slope of the error surface along the weight dimension
instead of down it. To alleviate these problems, it is necessary to set v to a small positive
value. However, this results in only small changes to the learning rates and only a slight
increase in the rate of convergence over normal steepest descent. For these reasons, the
delta-delta rule is not used in the simulations reported in this paper. Instead, we introduce
a related algorithm called the delta-bar-delta learning rule.

14



11. Delta-Bar-Delta Learning Rule

The delta-bar-delta learning rule, which was developed with the assistance of Rich
Sutton, also consists of a weight update rule and a learning rate update rule. The weight
update rule is the same as the delta-delta weight update rule and is given by equation 3.
We now introduce the delta-bar-delta learning rate update rule. Let w(t) denote the value
of a single weight at time ¢ and ¢(t) denote the learning rate value corresponding to w(t)
at time ¢t. The learning rate update rule is defined as follows:

K if 6(t —1)6(t) > 0
Ae(t) ={ —e(t) if 6(t - 1)6(t) <0 (4)
0 otherwise
where 5
5() = aw§i§
and

6(t) = (1 —0)6(t) +058(t —1).

In these equations, 6(t) is the partial derivative of the error with respect to w at time
t and 6(t) is an exponential average of the current and past derivatives with 8 as the base
and time as the exponent. Note how the delta-bar-delta rule uses a technique similar to
that of the delta-delta rule to implement the heuristics listed above. According to the
delta-bar-delta algorithm, if the current derivative of a weight and the exponential average
of the weight’s previous derivatives possess the same sign, then the learning rate for that
weight is incremented by a constant, k. If the current derivative of a weight and the
exponential average of the weight’s previous derivatives possess opposite signs, then the
learning rate for that weight is decremented by a proportion, ¢, of its current value.

Note that the delta-bar-delta rule increments learning rates linearly, but decrements
them exponentially. Incrementing learning rates linearly has the advantage that, during the
course of a simulation, the learning rates will hopefully not become too large. Decrementing
learning rates exponentially has the advantages that these rates always possess positive
values and that they can be decreased rapidly.
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12. Examples of the Benefits of the Delta-Bar-Delta Rule

Recall that in Section 3, we listed several reasons why steepest descent procedures
may be slow to converge. In this section, for each of these reasons, we illustrate why the
delta-bar-delta rule may show a faster rate of convergence than the method of steepest
descent. These illustrations consist of graphs of error surfaces. All error graphs plot data
from a single training period of a connectionist network. First, we discuss the nature of
the training period. Next, we discuss the data presented on the graphs.

The mapping that the network is being trained to perform is a binary-to-local task.
This problem and the network architecture are discussed below. For our current purposes,
the task and architecture are not important because the problems posed by the shapes
of error surfaces discussed in this section are believed to be common to a wide variety of
tasks and architectures. During the training period, each time step is called an epoch and
is defined to be a single sweep through all training patterns. At the end of each epoch,
the weights of the network are updated. At each update, we compute how to modify the
current point in weight space by two methods. One method is the method of steepest
descent and the second method is by the delta-bar-delta algorithm. Note that in the
case of the delta-bar-delta algorithm, the learning rate for each weight is allowed to vary.
However, at the start of the training period, these parameters are initialized to the value
of the learning rate that is used by the steepest descent rule. The partial derivative of the
error with respect to each weight is computed using the back-propagation procedure. After
calculating how to modify the weights by the two methods, the current point in weight
space is actually updated by the delta-bar-delta algorithm.

At the end of each epoch, a graph is produced. Above each graph is listed several
relevant pieces of information. The length of the steepest descent update vector is the
length of the vector of weight modifications if the modifications are determined by the
method of steepest descent. Similarly, the length of the delta-bar-delta update vector is
the length of the vector of weight modifications if the modifications are determined by
the delta-bar-delta method. The difference between the angle of the two update vectors
is given in radians. On each graph, the error surface is shown in two directions in weight
space. One direction is the gradient direction from the current point in weight space.
The second direction is the direction that the current point in weight space would be
moved if the weights are adjusted using the delta-bar-delta rule. The surface in each
direction is generated by changing the weights in the network by a weight change factor
times the normalized vector representing that direction and plotting the error produced by
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the network with the modified weight values. The x-axis is the weight change factor and
represents the distance in weight space that the current weight vector is adjusted by. The
y-axis is the error measure. This measure is the sum of squared errors which is defined as
the squared discrepancy between a desired output value and a given output value summed
over all output units of the network summed over all training patterns. The current point
in weight space is identified by a weight change factor of zero. The tick mark on the plot of
the error surface in the gradient direction indicates the new position in weight space if the
current point is modified by the steepest descent procedure. Similarly, the tick mark on
the plot of the error surface in the direction of the delta-bar-delta update vector indicates
the new position in weight space if the current point is modified by the delta-bar-delta
procedure.

Steepest descent procedures may show slow progress where the error surface is fairly
flat along a weight dimension. An analogous situation is illustrated in Figure 3. Note how
the error surface at the current point in weight space possesses a fairly gentle slope. The
length of the gradient vector is relatively small. One reason why the delta-bar-delta rule
may increase the rate of convergence of the network is that the delta-bar-delta update
vector is significantly longer than the steepest descent update vector. Hence, use of the
delta-bar-delta rule causes the current point in weight space to traverse a greater portion
of the error surface than the use of steepest descent.

In addition, Figure 3 illustrates a case where modifying the current point in weight
space in the direction of the delta-bar-delta update vector is better than modifying this
point in the gradient direction. The error surface possesses a smaller curvature and is
generally lower in the direction of the delta-bar-delta update vector than in the gradient
direction. An intuitive interpretation is that the gradient vector is roughly perpendicular
to a valley in the error surface while the delta-bar-delta update vector is closer to being
parallel to this valley.

A second environment where steepest descent procedures may show slow progress is
where the error surface is highly curved along a weight dimension. An analagous situation
is illustrated in Figure 4. Note how the error surface at the current point in weight space
possesses a high curvature. The length of the gradient vector is relatively large. The delta-
bar-delta rule is beneficial in this circumstance because the length of the delta-bar-delta
update vector is less than the length of the steepest descent update vector. Therefore, use
of the delta-bar-delta method causes the current point in weight space to be modified by
a smaller amount than use of steepest descent, thereby curtailing movement of this point
across the curvature and promoting movement of the point down into the curvature. Once
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again, modifying the current point in weight space in the direction of the delta-bar-delta
update vector is better than modifying this point in the gradient direction.

13. Simulations

In order to evaluate the performance of the delta-bar-delta rule, we report simulation
results on four tasks. These tasks are the optimization of quadratic surfaces, and the
learning of the exclusive-or, multiplexer, and binary-to-local functions. These tasks were
chosen because, collectively, their error surfaces possess a wide variety of terrains. On each
task, four algorithms were simulated. These algorithms are the steepest descent procedure
(equation 1), momentum (equation 2), delta-bar-delta (weight update by equation 3 and
learning rate update by equation 4), and a hybrid algorithm that combines the momentum
and delta-bar-delta procedures. The hybrid algorithm uses the momentum weight update
rule (equation 2) with the exception that each weight possesses its own variable learning
rate parameter. The learning rate parameters are modified by the delta-bar-delta learning
rate update rule (equation 4). For each algorithm, parameter values were selected that
resulted in good performance.

Note that the last three tasks require the use of multi-layer networks. For all algorithms,
the back-propagation procedure was used to calculate the partial derivative of the error
with respect to each weight. At the start of each simulation, the weights of the network
were initialized to random values between -0.5 and 0.5. During training of the network,
each time step is called an epoch and is defined to be a single sweep through all training
patterns. At the end of each epoch, the weights of the network were updated. The inputs
to all networks are binary values. However, target values of 0.1 and 0.9 are used instead
of 0 and 1. The error measure is the sum of squared errors.

13.1 Quadratic Surfaces Task

The first task is the optimization of a one dimensional quadratic error surface. The
error surface is defined by the following function:

J(t) = %sz(t),

where k is the curvature of the surface. For each weight update algorithm, several simula-
tions were performed. In order to test each algorithm over a wide range of curvatures, the
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Initial € | « K| ¢ 0
Steepest Descent 1.0
Momentum 19.0 { 0.9
Delta-Bar-Delta 1.0 5.0 0.1 (0.7
Hybrid 10.0 |09 (3.75 | 0.1 | 0.7

Table 1: Parameter values used in quadratic surfaces task

curvature of the error surface was varied logarithmically between 0.00001 and 2.0 across
simulations. At the start of each simulation, w was initialized to 1000. Solution of the
problem is reached at the first of ten consecutive time steps during which the absolute
value of w is below 10. The parameter values used for each algorithm are listed in Table 1.

The results of the simulations are displayed in Figure 5. The x-axis logarithmically
represents the curvature of the error surface. The y-axis logarithmically represents the
number of steps until solution. Overall, the delta-bar-delta algorithm performs the best.

13.2 Exclusive-Or Task

The second task is the exclusive-or problem. The network architecture is shown in
Figure 6. Solution of the task occurs when the sum of squared errors for each epoch
averaged over the previous fifty epochs is below 0.04. The parameter values used for each
algorithm are listed in Table 2. Note that a non-zero value for & did not result in a
faster rate of convergence than o set equal to zero in either the momentum or hybrid
algorithms. When « is set equal to zero, momentum reduces to steepest descent and the
hybrid algorithm reduces to delta-bar-delta. Thus, the momentum and hybrid algorithms’
results on this task are not reported.

The results of the simulations are listed in Table 3. For each algorithm, twenty-five
simulations were attempted. Of those attempted, some may fail to reach the solution
criteria because they converge to local minima. The statistics on the number of epochs
required to reach solution only includes those simulations that achieve the solution criteria.
Again, the delta-bar-delta algorithm shows the best performance.
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Input Units

Hidden Units

Output Unit

Figure 6: Network architecture used in exclusive-or task

o Initial € | @ k| ¢ 0]
Steepest Descent 4.0
Delta-Bar-Delta 0.8 0.095 | 0.1 | 0.7

Table 2: Parameter values used in exclusive-or task

Simulations | Epochs Until Solution

Simulations Reached Standard

Attempted Solution | Mean Deviation

Steepest Descent 25 24 | 538.9 402.7
Delta-Bar-Delta 25 23 | 250.4 59.5

Table 3: Results for exclusive-or task
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Figure 7: Network architecture used in multiplexer task
13.3 Multiplexer Task

For the multiplexer task, the network architecture is shown in Figure 7. The input to
the network is four data lines and two address lines. The address lines indicate one of the
data lines using a binary code. The desired output of the system is the input to the data
line indicated by the address lines. Solution of the task occurs when the sum of squared
errors for each epoch averaged over the previous fifty epochs is below 0.64. The parameter
values used for each algorithm are listed in Table 4.

The results of the simulations are listed in Table 5. On this task, the hybrid algorithm
shows the fastest rate of convergence. All algorithms perform better than steepest descent.
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Initial ¢ | « K o 4@
Steepest Descent 1.0
Momentum 2.5/09
Delta-Bar-Delta 0.8 0.085 | 0.15 | 0.7
Hybrid 2.2510.9]0.045 | 0.01 | 0.7

Table 4: Parameter values used in multiplexer task

Simulations | Epochs Until Solution
Simulations Reached Standard
Attempted Solution | Mean Deviation

Steepest Descent 25 25 | 344.3 485.2 |
Momentum 25 25| 124.1 44 .4
Delta-Bar-Delta 25 25| 137.1 27.2
Hybrid 25 25 | 105.6 20.3

Table 5: Results for multiplexer task
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Initial ¢ | « K ¢ 0
Steepest Descent 0.1
Momentum 0.75 [ 0.9
Delta-Bar-Delta 0.8 0.035 | 0.333 | 0.7
Hybrid 0.75|0.9 | 0.075 | 0.2]0.7

Table 6: Parameter values used in binary-to-local task

13.4 Binary-vo-Local Task

The network architecture for the binary-to-local task is shown in Figure 8. The three
components of the input vector encode in binary a value between zero and seven. The
target output vector has all its components set to 0 except the component indicated by
the input vector which is set to 1. For example, if the input vector is [011]T (binary for
the value three), then the target output vector is [00100000]7. Thus, the desired mapping
translates a binary representation of a number into a local representation. Note that in
the network shown, the single hidden unit in layer one must learn to output eight different
activation values corresponding to the eight different input patterns in order for the net to
perform the desired mapping. This network was chosen because it is believed that such an
architecture produces an error surface with sharp ravines. Thus, it provides an interesting
test-bed for the learning algorithms. Solution of the task occurs when the sum of squared
errors for each epoch averaged over the previous fifty epochs is below 0.64. The parameter
values used for each algorithm are listed in Table 6.

The results of the simulations are listed in Table 7. Again, the hybrid algorithm shows
the fastest rate of convergence. Delta-bar-delta performs better than momentum and all
algorithms perform better than steepest descent.

13.5 Robustness of Algorithms

Ideally, we would like a learning algorithm using the same parameter values to exhibit
a fast rate of convergence in a variety of tasks and architectures. Such robust performance
would alleviate the need to conduct a search for good parameter values each time we change
tasks or architectures. In this section, we report simulation results of the four algorithms
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