Learning to Predict Noise Level
for PWB Layout

Paul E. Utgoff
Peter Stephen Heitman

COINS Technical Report 87-118

November 5, 1987

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

Telephone: 413-545-4843

Abstract

This paper describes an algorithm for learning to predict noise levels for candidate
transmission line networks in printed-wire-board layout. The algorithm, implemented
in the program SURVEYOR, incrementally refines n-dimensional interpolating surfaces
for specified locations of interest in a network. The program includes an experiment
management strategy that automatically picks new points for which it is advantageous to
obtain the noise level via circuit simulation. This is important for refining each surface
near the maximum acceptable noise level, and not refining each surface where accuracy is

not needed. Empirical results are presented that illustrate building of a noise level surface
and refinement near the noise margin.

o~

Contents

1. The Problem

2. A Solution

2.1 Initializing the Surface
2.2 Refiningthe Surface
2.3 Picking Points for Refining Near the Noise Threshhold

3. An Experiment: Refining a Contour in 2 Dimensions

4. Summary

1. The Problem

The problem addressed here is that of building a computer program that quickly and ac-
curately predicts whether the maximum noise level for any given transmission line of a can-
didate network exceeds its fixed acceptable noise threshhold. Here, network refers to a con-
nected set of transmission lines, terminated at devices. The devices, lengths of transmission
lines, and other parameters of the network impact the noise level at various points in a net-
work. The issue here is to determine which combinations of parameters for a given network
produce specific noise levels at points of interest in the network(Ginzburg and Shen, 1986).
Throughout the discussion, the term specific network refers to a network with a specific set
of parameters. The principal methods for predicting noise levels either simulate a specific
network or interpolate from previously performed simulations. By constructing a contour
map, hereafter called a noise surface, it is possible to interpolate noise level for specific
networks that have not been simulated. Until now, the noise surface has been constructed
manually. There are two important subproblems. First, there is need of an algorithm that
refines a noise surface incrementally. Second, given that network simulations are necessary
for determining noise levels and that such simulations are expensive! there is need of an
orderly automatic strategy for deciding which specific networks should be simulated. The
SURVEYOR program was built to address these needs.

The rest of the paper addresses the generic problem of how to automatically construct
an individual noise surface for a specified point of interest in a network. The problem is
stated as follows:

Given:

o The ability to represent each specific network entirely as a set of numeric parameters.

o A circuit simulator that returns the maximum noise level at specified points of
interest?

¢ A fixed noise threshhold below which the network is acceptable.
Find:

o A fast predictor of noise level that is accurate with respect to the noise threshhold.

2. A Solution

The approach taken here is to model the noise level by an n-dimensional interpolating
function. A specific requirement is that the model be updated incrementally whenever
the noise level is determined for the network parameters. Being given the noise level
(function value) at for a set of network parameters (point) should require refinement of
the interpolation surface, not generation of a new surface. A second important reason for

lrequiring from half to several minutes each
2The noise level for the other points of interest would also be used to refine the corresponding noise

surfaces.

requiring an incremental algorithm is that the decision strategy for choosing which point
(specific network) to simulate depends upon the way in which the surface develops. Each
new point reveals some part of the noise surface. Given that accuracy is needed only near
each noise threshhold contour but not far from each one, it is not possible to decide a
priori which points should be simulated. It was considered unacceptable to simply request
simulations at each grid point of a sufficiently fine grid. One wants to use the expensive
simulator sparingly, only where necessary to achieve the desired accuracy.

A new interpolation algorithm was devised. There are two reasons for inventing yet
another interpolation algorithm. First, no existing algorithm was uncovered that permits
incremental refinement of the interpolating function in a localized region. For example,
a version of Shepard’s Method was ruled out because each new point has a global effect
on the entire surface(Schumaker, 1976). Furthermore, uneven density of known points
induces inaccuracy in areas with fewer known points. Second, polynomial functions were
ruled out due to the inaccuracy of the high degree expressions. It was decided to try linear
interpolation in n dimensions. Such a surface can be refined incrementally in a localized
area of interest, leaving the rest of the surface unaffected.

The interpolation algorithm devised for SURVEYOR is called the Simplex Interpolation
Algorithm. The rest of this section is organized as three parts. The first part discusses the
initialization of. the surface. The second discusses incremental refinement of the surface.
The last part describes the strategy for deciding which points should be simulated so that
the surface is refined where necessary.

2.1 Initializing the Surface

The domain of an n-variable function, with each variable restricted to a value within a
closed interval, defines a hypercube, where hypercube is a cube in any dimensionality. The
extent of the hypercube in a given dimension is limited by the minimum and maximum
possible values of the variable that defines that dimension. The surface is always defined
as a set of simplexes (and function value at each vertex) whose union is equal to the
hypercube. The initialization problem is to generate the initial set of simplexes, also called
a simplicial-complez. '

A simplez is the set of points bounded by a simplest polyhedron in the dimensionality
(Aleksandrov et al, 1956). For example, a 1-dimensional simplex is a line segment, a 2-
dimensional simplex is a triangle, and a 3-dimensional simplex is a tetrahedron. A simplex
in n 4 1 dimensions is the set of points bounded by a simplest polyhedron that contains
a simplex in n-dimensions and a point not contained in the n-dimensional simplex. It is
this contructive method that forms the basis of the initialization algorithm.

The initialization algorithm generates the initial simplicial-complex in n dimensions
by extending the initial simplicial-complex from n — 1 dimensions. In the case of n =1
dimension, the simplicial-complex is {((0)(2))}. The syntax for describing a simplicial-
complex is {simplezes}, with each simplex given as (vertices), with each vertex given as
(indez,, ...,index,). In the initialization, each index has the value 0, 1, or 2, indicating
minimum, mid-value, and maximum of a variable respectively. After the initial simplicial-

complex is constructed, the values 0, 1, and 2 are replaced by the actual minimum, mid-
value, and maximum of the corresponding variable. The correspondence is defined only
after the initial simplicial-complex has been built. The final step in the initialization is to
simulate each distinct vertex, the variable values defining a specific network.

The initialization algorithm is:
1. Set m to 1. Set the initial simplicial-complex SC to {((0)(2))}.
2. If n is equal to the number of variables (number of dimensions), goto 6.

3. For each simplex (a face in n + 1 space), compute the other faces in the n + 1-
dimensional hypercube by performing all parallel insertions of 0 and 2. A parallel

insertion is the inserting of a value at the same insertion point in each and every
vertex. Define FACES to be the set of such faces.

4. Construct the midpoint of the n + 1 hypercube as (1,1,...,1). Set SC to contain the
set of simplexes obtained by adding the midpoint to each face in FACES.

5. Increment n. Goto 2.

6. Pick an order of the n variables. For every vertex of every simplex, replace the 0,
1, and 2 indexes, from left to right, with the minimum, mid-value, and maximum of
the corresponding variable.

7. Simulate each specific network that corresponds to a distinct vertex in any simplex
in the simplicial-complex.

An example illustrates the algorithm. Assume two variables, z € [10,20] and y €
[30,40]. Step 1 of the initialization algorithm defines SC to be:

{((0)(2))}
Step 3 defines FACES to be

{ ((0,0)(0,2)),((0,0)(2,0)),
((2,0)(2,2)),((0,2)(2,2)) }

This is done by inserting 0 at the left of each vertex in ((0)(2)), and by inserting 0 at
the right of each vertex, 2 at the left of each vertex, and 2 at the right of each vertex.
Geometrically, the initial simplex, a line segment, is converted to the four faces of the
rectangle. Step 4 defines the midpoint (11). By adding the midpoint to each face in
FACES, SC becomes

{ ((0,0)(0,2)(1,1)),((0,0)(2,0)(1,1)),
((2,0)(2,2)(1,1)),((0,2)(2,2)(1,1)) }

3

Geometrically, the midpoint of the rectangle is added as a new vertex to each face, con-
verting each face to a triangle. Next, step 6 substitutes the corresponding variable values,
producing the simplicial-complex

{ ((10,30)(10,40)(15,35)),((10,30)(20,30)(15,35)),
((20,30)(20,40)(15,35)), (10, 40)(20,40)(15,35)) }

Finally, the specific network corresponding to each distinct vertex is simulated. The dis-
tinct verteces are (10, 30), (10,40), (15,35), (20,30), and (20, 40).

Before discussing refinement of the surface and the strategy for picking points at which
to simulate the layout, consider how the surface is used to interpolate at a point.

To interpolate at a point, find a smallest simplex that contains the point. Next, con-
struct a linear interpolating surface from the vertices of the simplex. Because each simplex
in an n-dimensional surface has n + 1 vertices, and each vertex with its function value
represents a point in n + 1-dimensional space, it is possible to construct an n dimensional
planar surface passing through those n + 1 points. It is then a simple matter to determine
the function value of the given point by determining the intersection of a line passing
through the point (parallel to the function value axis) and the planar surface. Notice that
the surface defined by simplexes (and function value at each vertex) provides a continuous
interpolating surface. If the given point lies on the boundary of two simplexes, it does
not matter which of the simplexes is used for the interpolation. This is because using
linear interpolation, the function value at any point on the boundary is determined by the
function values of the vertices defining the boundary.

2.2 Refining the Surface

The surface can be refined by obtaining the function value at a given point, and decom-
posing the smallest simplex containing the point into a set of smaller simplexes, using the
given point as a new vertex. This works? for any face of the containing simplex that does
not also contain the new point, because combining a face which spans n — 1 dimensions
with a distinct point again forms an n-dimensional simplex.

The algorithm for refining the surface at a point is:

1. First, the simplexes containing the point are identified. Note that there may be more
than one if the point is contained in a face of a simplex.

2. Construct new simplexes by combining the new point with each face of the containing
simplex, excluding any face that contains the new point.

3. Record each new simplex as a refinement of the containing simplex. This is for the
sake of efficiency. By storing simplexes in a containment hierarchy, the computational
complexity of locating a smallest containing simplex is reduced significantly.

Swhen the new point is truly new and is not at an existing vertex. This is always the case for the Simplex
Interpolation Algorithm.

Figure 1: Initial simplexes for 2D Hypercube

A G B
F
E
D H C

1

Figure 2: Hypercube Circumscribing Simplex

Consider an example for a 2-dimensional surface. As shown in figure 1, the simplexes of
the initial surface consist of 4 triangles. The initial set of simplexes is a linear list because

no refinement has yet occurred. Observe the refinement process when the value at point
F on BE is obtained.

First, the refinement algorithm identifies those simplexes that contain the point F.
Each simplex in the initial surface needs to be tested to determine if it contains F. For
efficiency reasons, the test for containment has two parts. The first test determines whether
the point lies within the hypercube that circumscribes the simplex. As shown in figure 2,
AADE cannot contain point F since it is not even contained in OAGHD. If the point
lies within the containing hypercube, a second, more accurate, test is employed. This test
uses vector cross products to determine whether the point lies within the simplex. Cross
products are used to determine, for each face of the simplex, whether the point is on the
same side of the face that the other points of the simplex are on. The point’s position
relative to each face must be checked before it is known whether the simplex contains the
point. The algorithm used by the second test is shown in figure 3.

Second, if the point is contained in a simplex, check to see if there are any simplexes
embedded hierarchically within this one. If there are, then it must be further determined
which of the embedded simplexes contain the point. Continue the search down the contain-
ment hierarchy for the set of atomic (not decomposed) simplexes that contain the point.
For this example, the set of simplexes is AABE, ABEC.

Finally, refine each such simplex using F as the new vertex. Specifically, having deter-

5

Given a simplex S and a point P:

1. for each face T of S:

(a) select a vertex V of T to be the anchor-point

(b) form the set of vectors W by subtracting V from all of the other vertices of T'
(c) form the cross product C'P of all of the vectors in W

(d) form the vector VP by subtracting V from P

(e) f VR-CP =0
then P lies on T, go to 2
else

i. select a vertex N of the simplex that is not on T
ii. form the vector VNV by subtracting V from N
iii. if the sign of VN - CP is different from the sign of VP -CP
then P does not lie in S, go to 3 else P may lie in S, continue

(f) if more faces exist, go to 1
(g) if all of the faces have been tested, go to 2

2. P lies in S, return true

3. P does not lie in S, return false

Figure 3: Algorithm Used by Cross Product Test

D C

Figure 4: Surface After Adding Point F

mined that point F is contained by AABE, combine F with 4B to produce AABF, and
combine F with AE to produce AAEF. Note that ABEF is not constructed because
it would be empty. Because F is contained in BE, F is also contained in ABCE, so
two additional simplexes ABFC and AECF are also constructed. Figure 4 displays the
surface after the refinement from adding point F.

Each new simplex is recorded in the hierarchy as being contained within the simplex
from which it was constructed. The containing simplex is not discarded. Due to this hier-
archy, if a simplex contains a given point, then one of the contained simplexes must also
contain the point. If a simplex does not contain a given point, then none of its contained
simplexes can contain the point. This is very efficient when searching for the simplexes
containing a point. Rather than having to test every simplex for containment of the point,
only those simplexes of the initial surface and the simplexes stored hierarchically within the
simplexes containing the point need to be tested. For large numbers of simplexes, particu-
larly as the dimensionality of the surface increases, this leads to a dramatic improvement
in performance. The improvement seen will depend on the dimensionality of the surface
since in n dimensions each new point divides a simplex into n+1 simplexes (or n simplexes
if the point lies on a side of the simplex). In one particular test involving 4 dimensions, it
was 20 times faster to find the smallest containing simplex using the hierarchical storage
of simplexes rather than a linear storage of simplexes.

2.3 Picking Points for Refining Near the Noise Threshhold

Where the surface is well above or well below the nojse threshhold, the surface does not
need to be refined. At levels near the threshhold, accuracy is needed so that the surface can
be used with high reliability to determine whether a layout will be within an acceptable
noise margin.

Consider the threshhold as dividing the area into disjoint regions. Each region contains
only points that have function values either below or above the nojse threshhold, but not
both. Each region is bounded by the contour defined by the threshhold. The preliminary
phase of the algorithm is to use the circuit simulator to evaluate the noise level at each
point of an evenly-spaced grid layed across the surface. The goal of this step is to place
at least one point within each region. If the grid is too sparse and regions exist that do
not contain a point of the grid, the contours surrounding those regions may not be refined

7

in the subsequent processing. Conversely, if the grid is denser than required to identify a
point in each region, the work of determining the function value at the extra points was
unnecessary.

After the initial grid is laid, the primary phase is to make several passes through
the list of simplexes, refining those simplexes whose values straddle the threshhold, that
is, subdividing those simplexes that contain vertices whose function value is below the
threshhold and vertices whose function value is above the threshhold. The point used to
subdivide the simplex should be such that, over time, the length of the longest line segment
that straddles the threshhold could become arbitrarily small. If this were not the case we
could not guarantee that the desired accuracy of interpolation could be reached. The point
chosen by the Simplex Interpolation Algorithm at which to subdivide the simplex is the
midpoint of the longest edge.

During each pass, only those simplexes whose size is above a user-specified threshold
are considered for subdividing. Before each new pass, the threshold is set to be 75% of
the threshold used for the previous pass. Subdividing only those simplexes above a given
size results in an orderly growth of simplexes. The passes through the list of simplexes is
terminated when all of the simplexes are ‘small enough’, that is, when the resolution desired
for interpolating function values can be achieved. This is implemented by comparing the
current value of the size threshold against a user-specified value. After the size threshold
is less than or equal to the user’s desired value, then the refinement process halts.

3. An Experiment: Refining a Contour in 2 Dimensions

Figure 5 shows a contour map of a sample surface in 2 dimensions. For this experiment,
the circuit is imagined* to have 2 variable parameters, hence the surface in 2 dimensions.
Each parameter is measured in inches and is allowed to range between 0.0” and 10.0”.
The noise level for this network ranges from 0.0 to 1.0. The noise theshhold used for this
experiment was arbitrarily chosen to be 0.5. Note that the threshhold chosen divides the

area into 4 regions, two of which are below the threshhold, and two of which are above the
threshhold.

The goal is to build a fast and accurate predictor of whether the noise level at a point of
interest in the network would be below the threshhold. One method of achieving the desired
accuracy of prediction would be to measure the noise level everywhere in the domain of
the network’s parameters. The contour map shown was generated by laying a fine grid of
points everywhere across the domain and calling a circuit simulator to determine the noise
level at each of the 1089 points. The filled-in circles in the figure represent the points at
which the circuit simulator was called. For illustration, the contour lines were computed
by interpolating from nearby points.

Using fewer calls to the circuit simulator, the Simplex Interpolation Algorithm can
produce as accurate a predictor as that built by laying down a fine grid. Figures 6 and

*The experiment described here was performed using an implementation of SURVEYOR written in Com-
mon Lisp on a Texas Instruments Explorer workstation. The circuit and the circuit simulator were simulated
for this experiment.

w
o
~
~
>
w
H

-

N

yrysiesd|
T

l..://..'.

E-3
oooooouo/(ooooaooco

NG .
BN T
N e
RESTRISEIEERNE

.0 .1 .2 .3 .3 .3

~

Figure 5: Sample ‘Contour Map’ of Function in 2 Dimensions

7 show the surface after laying the initial, sparse, grid. Figure 6 displays the contour
line corresponding to the threshhold that is found by interpolating on the current surface.
Figure 7 displays the simplexes created during the process of laying the initial grid. Note
that the function value was needed at 25 points for this first step. The next step is to refine
the simplexes that contain vertices both below and above the threshhold. This process
is continued until the longest edge of each simplex is less than a specified value, in this
case a value of 0.25” was arbitrarily chosen. The final set of simplexes is shown in Figure
9 and the corresponding interpolated threshhold is shown in Figure 8. The noise level
at only 200 points were needed to achieve the desired resolution. Observe that calls to
the circuit simulator are denser near the threshhold where they contribute to achieving
the desired accuracy, but are relatively sparse farther away. This ability to choose points
that are useful for increasing the accuracy of the predictor enables the algorithm to make
10892200 = 82% fewer calls to the circuit simulator than were needed for the fine grid.
Problems with more dimensions or requiring greater accuracy will experience even greater
savings.

4. Summary

SURVEYOR is a computer program that automatically builds a predictor of noise-
level at points of interest in networks of transmission lines. Each noise level surface it
builds permits generalization to specific networks that have not been simulated. The
system learns by refining its noise level surfaces whenever the noise level at a point of

9

-~

Figure 6: Current Knowledge of Threshhold Contour After Initial Phase in 2 Dimensions

Figure 7: Current Simplex Model After Initial Phase in 2 Dimensions

10

~

Figure 8: Knowledge of Threshhold Contour After Refining Phase in 2 Dimensions

A\
Ul

Figure 9: Simplex Model After Refining Phase in 2 Dimensions

11

interest in a specific network becomes known. SURVEYOR includes a decision strategy
for determining which specific networks should be simulated so that a noise surface is
refined only where increased accuracy is needed. The net result is an entirely automatic
method for constructing noise-level predictors for networks. Such predictors play a critical
role within the larger decision making process of PWB layout.

Acknowledgements

This work was supported by a grant from the Digital Equipment Corporation and
by the Office of Naval Research through a University Research Initiative Program, under
contract number N00014-86-K-0764. Discussions with Olga Ginzburg, Bob Shen, Clay
Martin, and Jamie Callan helped immeasurably. Helpful comments and criticisms were
provided by Sharad Saxena and Margie Connell.

References

Alexsandrov, A. D., Kolmogorov, A. N. and Lavrent’ev, M. A. (eds) Mathematics: Iis
Content, Methods, and Meaning, vol. III, 1956, MIT Press translation 1977.

Ginzburg, O. and Shen, R. P. “Circuit Simulation and Layout Rules for PCB,” unpublished
manuscript, May 1986.

Schumaker, L. L. 1976. “Fitting Surfaces to Scattered Data,” Approzimation Theory I,
Academic Press, pp. 203-247.

12

L]

