SCHEDULING GROUPS OF TASKS
IN DISTRIBUTED HARD REAL-TIME SYSTEMS

Sheng-Chang Cheng
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

John A. Stankovic and Krithivasan Ramamritham
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 87-121
November 9, 1987

Scheduling Groups of Tasks
in Distributed Hard Real-Time Systems *

Sheng-Chang Cheng !
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

John A. Stankovic
Krithivasan Ramamritham
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

November 9, 1987

“This work was supported, in part, by the Office of Naval Research under Grant 048-716/3-2285 and by
National Science Foundation under Grant DCR-8500332.

tThis work was performed as part of the Spring project at the University of Massachusetts. The first
author is now with IBM, Yorktown Heights.

1 Introduction

In th? next generation hard real-time systems, it is anticipated that many applications will
contain collections of tasks running on a distributed system, and that many of these tasks
must be executed according to certain precedence and real-time constraints. The Space
station, new process control applications integrated with expert systems software, other
real-time Al applications such as an autonomous land rover, and SDI are some examples of
such future applications. In these next generation, large-scale, hard real-time systems, one
will find tasks with differing functional complexity and multiple levels of timing constraints.
For example, processing data from a sensor is sometimes functionally simple, and might
need to occur in the microsecond range, while consistent updates of replicated files is more
complex and might need to occur in the seconds range. At even higher levels, control and
coordination tasks might be quite intricate and need to occur in the seconds or minutes
range, and movement of material in an automated factory might be based on complicated
coordination algorithms, but have deadlines in the range of minutes or even hours. The work
presented in this paper is applicable to the groups of tasks where their deadlines are in the
one half second range or greater, and, thus, does not address tight timing constraints such as
those that occur in sensor processing. We assume that the system under consideration has
lower level schedulers and mechanisms (such as dedicated processors) to handle tasks with
very tight time constraints. Hence, a complex system will have multiple levels of scheduling
based on the granularity of the timing constraint. This paper deals only with collections of
high level tasks that have precedence constraints and relatively long deadlines.

Scheduling such task groups is more complicated than scheduling individual, indepen-
dent tasks. To determine an optimal schedule for a group of tasks with arbitrary precedence
constraints on multiple processors has been shown to be NP-hard (UN76]. In this paper, we
develop heuristics for dynamically scheduling such groups in a distributed hard real-time
system. Each group has a single deadline and tasks in a given group have user-specified
precedence constraints among themselves. We assume that the task groups are invoked
dynamically and that the system is too complicated to statically precompute schedules for
all possible combinations of such task groups.

The primary contributions of this paper are:

* An atomic guarantee algorithm that can handle arbitrary types of precedence con-
straints among tasks: This algorithm is based on a partition scheme. To reduce
scheduling delays, the algorithm divides tasks in a group into subgroups and dis-
tributes the subgroups across nodes to be scheduled. This scheme allows the system
to schedule tasks in a group in parallel and increases the chance of scheduling a dis-

tribnted group.

e Performance evaluation of the algorithm and comparison with two alternative algo-
rithms via simulation: The simulation results show that:

— The algorithm is very effective for a wide range of system conditions, and for
groups of different types of precedence constraints and different sizes.

- The algorithm performs better than alternative algorithms in the majority of the
system conditions and for different types of groups.

— Dynamic and distributed scheduling of task groups is practical for applications
with a wide range of characteristics.

— A distributed hard real-time system can benefit substantially from distributing
tasks in groups across the network.

The remainder of the paper is organized as follows: Section 2 provides background
information to point out that the problem addressed in this paper has not been adequately
dealt with before. Section 3 presents a model of the system under consideration, the nature
of task groups in this system, and describes the scheduling problem in depth. Section
4 discusses two simple atomic guarantee algorithms to serve as a basis for performance
comparison and to motivate a more sophisticated algorithm called the partition atomic
guarantee algorithm. Section 5 describes the partition atomic guarantee algorithm in detail.
Section 6 describes the evaluation approach used to analyze the guarantee algorithms. It
presents the simulation model, the baseline algorithms, and the performance metrics. The
simulation results themselves are reported in Section 7. A summary is given in Section 8.

2 Background

A large body of research results exist in the area of scheduling in hard real-time systems.
For a survey see [CSR87|. Here we examine previous work on scheduling in the presence of
precedence constraints.

Most research on scheduling nonpreemptive tasks with precedence constraints is re-
stricted to special cases and is limited to centralized systems. For example, Lawler [Law73]
developed an O(n?) algorithm to schedule tasks on uniprocessor systems. Garey and John-
son [GJ76] developed an O(n?) algorithm to schedule tasks with unit computation times
on two-processor systems. Hu [Hu61] developed an O(n logn) algorithm to schedule tasks
with unit computation times and with tree-like precedence constraints on multiprocessor
systems. For more general cases, the scheduling problem becomes NP-hard and hence com-
putationally intractable.

Many researchers have attempted to solve the general case by using an exhaustive search
approach. For example, Ramamoorthy et. al. [RCG72] used a dynamic programming
method to find the optimal schedule for tasks with arbitrary precedence constraints on
multiprocessor systems. Also, Ma et. al. [MLT82] developed an integer programming
model to allocate time-critical application tasks on multiprocessor systems. More recently,
Kasahara and Marita [KN85| have used a heuristic driven depth first algorithm for static
scheduling of tasks with arbitrary precedence constraints in a multiprocessor. Because of
the exponential computational cost in the worst case, these approaches cannot be used for
dynamic scheduling.

Leinbaugh and Yamini [LY82] derived the worst case finish time for a set of tasks which
run on a dedicated network. Each task consists of multiple segments. By assuming that
each task is blocked by every other possible task due to both resource sharing and inter-task
communication, they compute the maximum blocking time for each task. Their approach
requires complete knowledge of tasks present in the entire system. Their results are intended
to serve as a upper bound on task response time for static systems.

Dynamic schednling of task groups in distributed systems is much more complicated
than that in a centralized system or a static distributed system. Also, due to communica-
tion delays, nodes must make scheduling decisions based on out-of-date state information
about other nodes. Because of these complications, scheduling algorithms for such systems
often consist of two components: a local scheduling component for dynamically deciding
whether tasks arriving at a node can be scheduled on that node and a distributed schedul-
ing algorithm for dynamically deciding where, in the network, tasks not scheduled locally
should be assigned. For distributed scheduling, Ramamritham and Stankovic [RS84] devel-
oped an algorithm for scheduling independent tasks in distributed hard real-time systems.
Their approach combines focussed addressing and bidding. Here, we extend this algorithm
to handle distributed scheduling of task groups.

3 System and Task Models

In this section, we describe the group scheduling problem in detail. We describe the model
of a distributed real-time system and the nature of task groups.

3.1 System Model

A system consists of a number of geographically distributed nodes interconnected by a com-
munication network. The nodes dynamically interact with the external environment. Each
node contains a processor for executing application tasks and a co-processor for executing
system scheduling tasks. The co-processor is utilized to off-load scheduling overhead and to
simplify the scheduling process. We expect each node to have considerable multiprocessing
power and hence believe that in future hard real-time systems the cost of the co-processor
will be negligible. This approach offers huge dividends because it will enable the use of on-
line scheduling algorithms which have the potential to improve flexibility and lower testing
costs. Note that spare cycles on the co-processor could also be used to run application tasks;
this involves a simple extension to the local scheduling strategy discussed in this paper.

Because scheduling groups of tasks with precedence constraints in a distributed system
is a difficult problem by itself, we confine ourselves to the case where each node has only
one processor for executing application tasks, i.e., we do not consider the situation where
multiple processors are available for executing application tasks on a node. We also assume
that nodes in the network are homogeneous in the sense that they have the same capability
to execute tasks, so that a task can be executed on any node in the system.

3.2 Nature of Task Groups

Task groups are nonperiodic and may exist at any node in the network. Tasks in each
group are interrelated by arbitrary precedence constraints and the precedence graph of a
task group is assumed to be an acyclic directed graph. All tasks in a group have to. be
executed or no tasks should be started. Each group must finish by a specified deadline.
Tasks are nonpreemptable. For simplicity, we assume that all resources required by tasks
except the CPU are always available.

Each task in a group is specified by its precedence constraints and its worst case comp-
tation time. Each task may have multiple predecessors and multiple successors. A group has
one or more beginning tasks and ending tasks. A beginning task is one with no predecessors
and an ending task is one with no successors. The node where a task group originally arrives
is called the originating node. This node decides whether the group can be guaranteed or
not. If a group is guaranteed, the originating node sends a message to each node where
a beginning task is scheduled to activate the group. The time required for guaranteeing a
group followed by its activation is accounted for by the scheduling algorithm. 1

Once a group begins execution, tasks in the group must communicate with each other
in real-time. When a predecessor task finishes, it sends an enabling message, as well as
output data, to each of its successors. A successor is enabled, i.e., can begin execution, only
after the enabling messages from its predecessors have been received. In hard real-time
systems, the time spent in communication between tasks must be accounted for explicitly
in scheduling a group. We assume that the communication network is designed in such
a way that the communication time for messages exchanged between tasks executed on
different nodes are bounded. The communication time between tasks executed on the same
node is assumed to be zero.

As an example, a sample task group is shown in Figure 1. The group contains five tasks
and is specified by a precedence graph. In this group, the computation time of different
tasks is the same, which is 10 time units. The worst case communication time between tasks
executed at different nodes are marked on the edge of each pair of communicating tasks.
This example task group will be used throughout the paper. For purpose of the running
example, the deadline of the sample group is assumed to be 300.

3.3 Main Features Of Approach

The main features of the distributed scheduling approach described in this paper are:

e When a new task group is invoked, the system immediately attempts to determine
whether it can guarantee that all tasks in the group will execute within the specified
timing constraints. This feature gives the system more leeway in applying compen-
sating actions if the task group cannot be guaranteed.

e Either all tasks in the group are guaranteed to execute or none execute. This feature
is termed atomic guarantee.

e Timing constraints are explicitly addressed. This is in contrast with the standard
approach of translating timing constraints into task priorities and using priority-based
scheduling.

e The scheduling algorithm itself operates in parallel to reduce the delay in scheduling,
thereby increasing the probability of guaranteeing a group. Scheduling and commu-
nication overheads are taken into consideration.

!This can be accomplished in the following way: Each group is guaranteed with a dummy task scheduled
on the originating node to run before the beginning tasks. The dummy task sends enabling messages to
activate the beginning tasks. The communication time between the dummy task and the beginning tasks is
included in the precedence graph of the group.

10

/\
\/
2

o ®

Figure 1: A sample task group.

1

¢ Certain subsets of tasks in a group are clustered, i.e., forced to be scheduled on a
single node, as a function of communication requirements, the deadline of the group,
and the current state of the network.

o Clusters of tasks are sometimes distributed across nodes in the network thereby uti-
lizing the inherent parallelism of the distributed system. Decisions concerning this
distribution are made as a function of the current estimated surplus processing power
of nodes in the network.

4 Atomic Guarantee Algorithms

When a task group arrives at a node, the node needs to decide whether tasks in the group
can be guaranteed locally. If the entire group can be guaranteed locally, the group is
assigned to the node. Otherwise, the node needs to decide how to distribute tasks in the
group among nodes in the network such that the group can be guaranteed to complete
before its deadline.

In this section, we present two heuristic gnarantee algorithms. The first one is called the
sequential algorithm which attempts to schedule tasks on one node at a time. The second
one is called the polling algorithm which attempts to poll multiple nodes to schedule tasks.
The discussions of these atomic guarantee algorithms is included to serve as a basis for
performance comparisons and to reveal the need for developing a more effective algorithm.
Such an algorithm is developed in section 5. Problems with the simple algorithms presented
in this section are highlighted.

4.1 The Local Scheduling Scheme

Determining the schedule for a set of nonpreemptable tasks on a node is a NP-hard problem
[UN176]. Given that we are interested in dynamic scheduling, we use a heuristic approach to
solve this problem. : o

To guarantee a task group on a node, the node selects tasks of the group one at a time In
a reverse topological order and invokes a local scheduler routine to compute the latest start
time of each task taking into account its precedence constraints as well as the constraints
imposed by all other previously guaranteed tasks at this node. If all tasks of the group
can be guaranteed then the entire group is guaranteed in an atomic fashion and activated.
Otherwise, distributed scheduling is invoked.

Since the local scheduling algorithm is a simple extension to previously published work
[RS84,SRC85| and since this paper concentrates on distributed scheduling we do not provide
the details on the local scheduler itself. See [SRC85] for details. However, note that in all
subsequent discussions of the distributed algorithms, the local scheduler is invoked both
initially when a task group arrives and later on the remote node when members of a task
group are transmitted to that remote node.

4.2 Simple Distributed Guarantee Algorithms

Since tasks do not have individual deadlines, a potential approach to performing distributed
scheduling is for the originating node to perform the following:

1. Sort tasks in the group in reverse topological order. Send information about the first
task, i, to selected nodes.

2. Assign a pseudo deadline to task i for each selected node as follows:

D; = min(LST; — Comm(1, 7))
i

where LST; is the latest start fime of a successor 4 and Comm(t,) is the com-
munication time between ¢ and j. If tasks ¢ and j are sent to the same node, the
communication time is zero. If i is an ending task, D; equals the deadline of the
group.

3. Determine the latest start time (LST) of task i on each selected node with respect
to the complete set of tasks already scheduled on that node. If the latest start time
of the task being scheduled is greater than the current time, the task is tentatively
scheduled on the node. Reserve processing power on the node for the scheduled task.
LST; is the largest of such LSTs.

4. Repeat steps 1 to 3 until every task in the group is scheduled or an unschedulable task
is found. Guarantee the group if every task is scheduled and make the reservation
permanent. Otherwise, abort the group and release the reserved processing power.

4.2.1 The Sequential Algorithm

The first atomic guarantee algorithm, called the sequential algorithm, is straightforward. To
distribute a group of tasks, the originating node first attempts to schedule the tasks locally,
one at a time and in a reverse topological order. It attempts to schedule as many tasks
as possible until it determines that a task in the task group is not schedulable. At that
time, it keeps the tasks which are tentatively scheduled and sends the unscheduled tasks
to another node whose surplus processing power is greater than a threshold, NSF (Node
Surplus Fraction), a system tunable parameter. The same scenario is then repeated at the
recipient node: After the recipient node has attempted to schedule the tasks sent to it, any
remnant of the group is sent to yet another node until either all the tasks are scheduled
or the group has visited all the nodes with surplus greater than NSF. If all the tasks in
the group have been scheduled, the originating node guarantees and activates the group.
Otherwise, the node aborts the group.

To estimate each other’s surplus processing power, each node in the network transmits
surplus information to other nodes periodically; each node maintains the information in a
surplus window, which is an interval between the current time and a future time. The size
of the surplus window is a tunable parameter of the system.

In the sequential algorithm, transmission of tasks is sequential. Tasks remaining to be
scheduled are sent to one node at a time. No attempt is made to distribute tasks in parallel.
The advantage of this algorithm is its simplicity and its low processing overhead. However,
if a task is scheduled on a busy node, its LST may be so close to the current time that
the time left for its predecessors is small and it therefore becomes difficult to guarantee the
group. Another disadvantage is the delay involved in processing a group, since tasks in the
group are processed sequentially one at a time and on a node at a time. Hence, we now
hypothesize (and later show) that this simple approach will perform poorly.

4.2.2 The Polling Algorithm

The second atomic guarantee algorithm is based on a polling scheme: The originating node
sends information about a single task to a number of nodes with surplus processing power
greater than NSF, and requests the set of nodes to attempt to schedule the task. Tasks are
chosen one at a time and in a reverse topological order. Each node reserves processing power
for each scheduled task and returns the information about the task’s latest start time to
the originating node. For each task, the originating node selects the node that returns the
greatest LST and sends the task to the selected node. Other responding nodes are told to
release the reserved processing power. If, when a task arrives at a selected node, the latest
start time of the task is still greater than the current time, the node sends a confirmation
back to the originating node. The originating node guarantees a gronp if every Lask is
scheduled and confirmed. :

The advantage of this algorithm is its relative simplicity since one task at a time is
considered. Another advantage is that, if a large number of nodes are polled, the node
offering the best LST can be determined, thereby increasing the schedulability of the group.
However, this algorithm has several weaknesses: (1) Because a polled node needs to reserve
processing power for tasks, if a large number of nodes are polled, the attempt to schedule
different tasks (either from the same group or different groups) on the same node may have

severe conflicts, (2) The acheduling costs and the communication costs are large, because
the attempt to schedule tasks is replicated at multiple nodes, and (3) The scheduling delay
is large because tasks are scheduled sequentially and because, for each task, the originating
node waits for response from multiple nodes. 1t is difficult to hypothesize just how well the
polling algorithm will perform. The evaluation shows that it sometimes performs well and
at the other times performs poorly.

To overcome the weaknesses of the two simple algorithms mentioned so far, we have
developed a sophisticated atomic guarantee algorithm, called the partition algorithm. This
algorithm is described in the next section and we later show its superior performance.

5 The Partition Guarantee Algorithm

The partition guarantee algorithm is invoked when all tasks in a group cannot be guaranteed
locally. To reduce scheduling delay and to utilize the inherent parallelism of a distributed
system, the algorithm processes tasks in a group in parallel (instead of in a reverse topologi-
cal order). Since tasks must be executed according to precedence constraints, it is necessary
to assign a pseudo time frame to each task wherein that task can be scheduled to run so
that a parallel scheduling effort can proceed. This time frame is called the scheduling win-
dow and it is only an initial approximation. Since we assume that tasks executing on the
same node have zero communication costs, the algorithm attempts to cluster highly com-
municating tasks and then treats the cluster as a single entity in attemps to send parts
of a group to other nodes. To determine how to distribute the clusters in the network, a
scheme that combines focussed addressing and bidding is used. Decisions concerning this
distribution are made as a function of the current surplus processing power of nodes in
the network. If a node involved in scheduling any cluster of the original group determines
that it is impossible to schedule it within the initially determined scheduling windows, it
communicates with other nodes in order to adjust the scheduling windows since they were
only approximations. Once the originating node determines that, for every cluster, there
exists a node that guarantees the execution of all the tasks in the cluster within their last
assigned windows, it guarantees the execution of the group and activates the group.

We now describe the details of the main components of the partition algorithm: assigning
scheduling windows, task clustering, distributing clusters and adjusting the windows.

5.1 Assigning Scheduling Windows

The scheduling window of a particular task in a group is a time interval in which we estimate
that a task should execute in order to ensure the correct precedence needed among group
members and to allow parallel scheduling. The beginning point and the ending point. of
the interval are called the pseudo ready time and the pseudo deadline, respectively. The
pseudo ready time is the earliest time that a task can start and the pseudo deadline is the
latest time by which the task should finish. It does not matter where in the interval it is
scheduled to start as long as it starts after the pseudo ready time and finishes before the
pseudo deadline. To assign scheduling windows to tasks in a group, the originating node
estimates a group ready time and uses a time-slicing scheme, in conjunction with a number
of heuristic rules, to calculate a pseudo ready time and a pseudo deadline for each task. The

calculation of these pseudo time constraints takes into account the precedence constraints,
the computation time requirements of tasks, as well as the current state of the network.

5.1.1 Estimating Group Ready Time

The group ready time of a group is the time at which the entire group is guaranteed and
activated. Tasks will be scheduled to run between an estimated group ready time and the
group deadline. The group ready time is not known until the algorithm completes, but
some estimate of it is required to begin the algorithm. The estimated group ready time
equals the current time plus an estimated scheduling delay which, for each new group, is
calculated as a function of the size of the group and the delay observed for groups that
arrived in a recent window, :

EST(Scheduling_delay) = New_size x M
Acc_stze

where New_size is the size of the new group; Acc.delay and Acc_size are the accumulated
delay for groups that arrived in the recent window and the accumulated size of the groups,
respectively.

If the estimated group ready time elapses before the algorithm completes, the algorithm
invokes an adjustment phase to adjust the group ready time and the scheduling windows of
tasks in the group, if possible. The adjustment algorithm is discussed in Section 5.4.

5.1.2 The Time-Slicing Scheme

The scheme for assigning scheduling windows is complicated and involves two notions:
pseudo deadlines and time slices.

First, the pseudo ready time of all beginning tasks is set to be the estimated group ready
time. The pseudo ready time of a descendant task 7 is then computed to be

PR; = max|PD; + Comm(i, 7))
L

where PD; is the pseudo deadline of a predecessor ¢; and Comm(t, 7) is the communication
time between tasks ¢ and 7.

To calculate pseudo deadlines for tasks, the scheme we use considers a set of parallel
tasks at a time. Parallel tasks are those whose pseudo ready times have been determined and
can potentially run in parallel. The beginning tasks form the first set of parallel tasks to be
considered. The calculation of pseudo deadlines are based on the following considerations:

1. If the computation time of a task is large (small), the schednling window for the task
should be large (small),

2. If parallel tasks have the same scheduling window and if the tasks are sent to the same
node, they will compete for the processing power on the node within the window. If
the window of the tasks is small, then it would be difficult to schedule all the tasks
in the window on the node. Therefore, to reduce the potential scheduling conflicts
that may occur in distributed scheduling, we assign a large window to a task, if the
number of tasks that may run in parallel with the task is large, and vice versa.

10

3. If the surplus processing power of a node to which a task is sent is small, the scheduling
window of the task should be large, and vice versa. However, because of the uncer-
tainty about the destination node at this point in the algorithm, instead of the surplus
of a specific node, we use the average surplus among all nodes with sufficient surplus
to take part in distributed scheduling. A node is considered to have sufficient surplus
to take part in distributed scheduling if its estimated surplus between the estimated
group ready time and the group deadline is greater than the threshold NSF.

Each task in a group that can execute in parallel can have a different pseudo ready time
and computation time. Therefore, the number of tasks that can potentially run in parallel
at different points in time can vary. To calculate pseudo deadlines which incorporate the
above heuristics, we consider a single time slice at a time. Since the general scheme for
determining these time slices, and subsequently the pseudo deadlines, is complicated, we
present a step by step example using the sample group.

We assume that, for the sample group, the estimated group ready time and the average
surplus among nodes with sufficient surplus are 100 and 0.5, respectively. The precedence
graph of the sample group and the scheduling windows calculated for the group are shown
in Figure 2. Each scheduling window is delineated by a pseudo ready time PR; and a
pseudo deadline PD;. The scheduling windows are constructed from six time slices, Sy =
(100,120), S, = (120,125),Ss = (125,155),54 = (155,160),Ss = (165,185), and Sg =
(185, 205). Now we explain how these time slices were determined.

In the sample group, initially, only T can run, so the pseudo deadline of T} is calculated
as, PD; = PR, + PTN x C;/Ave.Node_Surplus = 100 + 1 x 10/0.5 = 120, where PTN
is the number of tasks that can potentially run in the slice and the Ave_Node.Surplus is
the average surplus among all nodes with sufficient surplus. The scheduling window of T)
is considered as the first time slice, S;. This slice accounts for the total amount of the
computation time of 7). After T, both T; and Ts can potentially run in parallel. However,
according to the policies of task clustering (see Section 5.2), T; is clustered with Ty, but T
is not. Therefore, PR, = PD; = 120 and PR3 = PD;+Comm(1,3) = 120+5 = 125. Since
between PRy and PR3, only T; can run and because, after PR3, the number of parallel
tasks is different, we assign the time slice (PR3, PRs) to the scheduling window of T3. This
slice is denoted as S;. The size of this slice is AS; = PR3 — PR; = 5.

The interrelationship between the size of a time slice, AS;, and the amount of compu-
tation time accounted for by the slice, ACyg;, is determined by the following equation:

AS; = PTN x ACgs;/Ave_Node_Surplus.
According to this equation, the computation time accounted for T by this slice is,
ACgy = AS; x Ave_Node_Surplus/PTN =5x0.5/1=2.5

The remaining computation time of T is C; — ACs; = 10 — 2.5 = 7.5. After PRjs,
both T and T3 can potentially run in parallel. Since the remaining computation time
of T, is less than C3 = 10, T, can potentially finish before T5. Therefore, we assign a
time slice, Ss, to account for the remaining computation time of T;. So, ACs3 = 7.5.
We assign this slice to the scheduling window of both T; and T3. Since in this slice,
both T2 and T3 can potentially run (i.e., PTN = 2), the size of this slice is calculated as

11

AS3 = ACs3 X PTN/Ave_Node.Surplus = 7.5 x 2/0.5 = 30. Now the pseudn deadline of
T3 can be determined as

PDz=PR2+ASz+ASa=120+5+30=155

The size of slices 4, 5, and 6 as well as PDj, PDy, PDs are determined in the same way as
described above.

The computation of pseudo deadlines is the most expensive part in assigning scheduling
windows. The time complexity of this scheme is O(NSM?), where N is the number of
tasks in the group, S is the maximum number of slices that a task might have, and M is
the maximum number of tasks that may run in parallel. If S and M are small compared to
N, then the cost is linear in the size of the group. We are currently investigating a scheme
where the pseudo deadlines are computed a priori, and consequently, independently of the
current state of the network.

5.1.3 The Linear Modification Scheme

Since the scheme described above does not specifically take the group deadline into account,
the scheduling windows may extend beyond the group deadline or may be less than the group
deadline. If it is longer, the scheduling windows must be shortened to meet the deadline.
If it is shorter, to utilize the extra time, the scheduling windows should be expanded. To
keep the overhead low, we adopt a simple linear modification scheme described below.
The pseudo deadline of each task is extended (shortened) by an amount of time propor-
tional to the total amount of time to which the scheduling windows can be expanded (must

be shortened), GR
GD - E

Maz PD — EGR
where P D; is the original pseudo deadline for task ¢; Maz_PD is the largest pseudo deadline
among tasks in the group; and EGR and G D are the estimated group ready time and the

group deadline, respectively.
The pseudo ready time of a task ¢ is modified as follows:

PD; = EGR + (PD; - EGR) x

pR; = mgx[PD; + Comm(7,1)]
i

where PD; and Commy(j,1) are the modified deadline of a predecessor 5 and the commu-
nication time between tasks j and ¢, respectively.

The scheduling windows of the sample group are expanded as shown in Table 1.

Note that, for a group of tasks with specified characteristics (i.e., precedence relations,
computation time, and deadline), the estimated scheduling delay has strong impact. on the
scheduling windows. As the estimated delay increases, the size of the scheduling windows
decreases, and vice versa. Since scheduling tasks in small scheduling windows is difficult,
unnecessary scheduling overheads may be incurred if the windows are too small. To reduce
overheads, the originating node checks the size of the scheduling window before distributing
the tasks. If the size of the scheduling window for one or more tasks in the group is smaller
than the task’s computation time multiplied by a threshold SWF, the Scheduling Window
Fraction, a tunable parameter, the windows are regarded as being too small. When such

12

EGR

Ave. Node Surplus

GD
MCS

® "

10 @ @ 10 >

S4
10 5
10 55

l 10
S6
o @)

(2) Precedence graph

= 0.5
= 300
= 2
PR, =100 —
Ti1
PD, =120 _{_
PR; =120
o PR3 =125
PD, =155 L T3
PD3; =160
PRs =165 T
T4
PDy =185 |
PRy = 185
T5
PDy =205 —

(b) Scheduling windows.

Figure 2: The precedence graph and the scheduling windows of the sample group.

13

Task | PR | PD
Ty | 100 | 138
T, | 138|219
T3 | 143 | 224
Ty | 229 | 262
Ts | 262 | 300

Table 1: Expanded scheduling windows.

a situation occurs, the originating node aborts the group without attempting to distribute
the group. :

5.2 Clustering Tasks

To improve the schedulability of a task group, the originating node partitions a group into
clusters, where tasks within a cluster have large inter-task communication costs. Thus by
forcing tasks within a cluster to be scheduled to execute on the same node, these commu-
nication costs are eliminated. The originating node uses the following heuristics to extend
the basic scheme described in Section 5.1 to determine the pattern of clustering (and to
reduce the pseudo ready times):

o Let the constraining predecessor of a task be the predecessor whose enabling message
is the last to arrive at the task. If a task is to be clustered with one or more of its
predecessors, it must be clustered with the constraining predecessor. Otherwise, its
pseudo ready time may not decrease.

¢ To reduce communication time between tasks, as many tasks as possible should be
clustered with their constraining predecessor. However, if the size of a cluster grows
too large, the probability of the cluster being scheduled at one node becomes low.
Therefore, the size of clusters is limited to a threshold, MCS, the Mazimum Cluster

Size, a tunable parameter.

e If two tasks have the same constraining predecessor and if the size limitation prevents
both tasks from being clustered with the predecessor, to reduce the effect of a long
path, the one with higher criticalness is clustered with the predecessor. The criti-
calness of a task ¢ is defined to be the length (in terms of time) of the longest path
between the task and an ending task, i.e.,

Criticalness(i) = MAX(> Cj;+ Comm(j,k))
J,k€Path P

where path P is any path between task ¢ and an ending task; C; is the compntation
time of any task j on the path; and Comm(7, k) is the worst case communication time
between any two tasks 7 and k on the path. For the sample group, the criticalness of
tasks is shown in Table 2.

14

Task |1 2 3 4 5
Criticalness [70 55 50 35 15

Table 2: The criticalness of tasks in the sample group.

e Let a simple successor be a successor with just one predecessor. If a task has a simple
successor and the communication time between the tasks is greater than that be-
tween the task and its predecessors, then clustering the task with the simple successor
is likely to reduce more communication time than clustering the task with its con-
straining predecessor. Therefore, the task should not be clustered with its constraining
predecessor unless the resulting cluster size is still less than MCS.

The information about the criticalness of tasks and whether tasks have simple successors
can be determined statically for a group by a straightforward topological search scheme. The
time complexity of such a scheme is O(N + E) time, where N are E are the number of
nodes and the edges in the precedence graph of the group.

For the sample group, we assume that MCS equals 2. In the sample group, two clusters
are formed, namely, {T1, T2} and {T4,Ts}. The constraining predecessor of both T, and
Ts is T;. Because the criticalness of T is greater than that of T and because we limit
the cluster size to 2, only T} is clustered with T}. Also, because the communication time
between T4 and T is greater than those between T4 and T; or T3, Ty is clustered with T5s.

5.3 Scheduling Clusters Across the Network

After the originating node partitions a group of tasks into clusters, it decides which clusters
can be scheduled locally and which clusters must be sent to other nodes. The node attempts
to schedule as many clusters as possible. This step potentially reduces the number of clusters
that must be sent out and hence reduces the overhead involved in the distributed scheduling.
The clusters are processed in a top-down order: clusters that contain the beginning tasks are
processed first; then, clusters that contain the descendants are processed. If a cluster cannot
be scheduled locally, the originating node immediately invokes a scheme that combines
focussed addressing and bidding [RS84] to decide where the cluster should be sent. This
combined scheme is described below.

5.3.1 Focussed Addressing

The originating node uses surplus information about ather nodes to decide which nades have
sufficient surplus to execute clusters that are not scheduled locally. Because the surplus
information is periodically exchanged between nodes, at the time this information is used
by a node, the amount of available surplus at each node is likely to be different. But if a
node has sufficient surplus (larger than a threshold FP) needed to execute a cluster, the
node should have a high probability of scheduling the cluster and so the originating node
can directly send the cluster to that node. Such a node is called a focussed node for the
cluster. More precisely, a node with surplus SR in the recent window is considered to be a

15

focussed node for a cluster, TC, if

SR X Yierc(PDi - PR;)
Window._size

>FPx Y C;

{€TC
where Window _size is the size of the moving window in which the surplus information is
maintained.

If multiple focussed nodes are available, the originating node sends the cluster to the one
with the greatest surplus. After the originating node sends a cluster to a node, it reduces
the surplus of the node in the recent window by the amount of computation time required
by the cluster. In this way, the originating node takes into account the clusters previously
sent to different nodes and avoids sending too many clusters to the same node unless the
node indeed has sufficient surplus for the clusters.

5.3.2 Bidding

For the clusters for which focussed nodes are not available, the originating node initiates a
bidding process by sending Request For Bid messages to remote nodes and attempts to find
a bidder node with sufficient surplus for each cluster. Each bidder node returns a bid to
the originating node indicating its overall surplus processing power between the estimated
group ready time and the group deadline. Based on this information, the originating node
can send more than one cluster to a bidding node if that node happens to have the necessary
surplus. More specifically, a bidder node with a surplus SR between the estimated group
ready time, EG R, and the group deadline, GD, is a good bidder node for a cluster TC if,

SBx Lierc(PDi=PR) 5 s~

GD - EGR isre
If multiple good bidder nodes are available, the originating node sends a cluster to the
one with the greatest surplus. It also reduces the surplus of the node by the amount of
computation time required by the cluster to reflect the fact that the cluster may be scheduled
on the node and the surplus of the node will decrease.

After the originating node finishes creating clusters, then local and distributed schedul-
ing are invoked in parallel. This step potentially reduces the delay involved in distributed
scheduling thereby increasing the probability of scheduling a group. If distributed schedul-
ing uses bidding for the cluster and that cluster is scheduled locally, then any returning
bids are discarded.

Response to Cluster Transfer. Transferred clusters may or may not be scheduled
at a receiving node. If a transferred cluster is scheduled on a node, the node sends a
confirmation message to the originating node. If the originating node receives confirmation
from all the nodes to which clusters in a group were sent, it guarantees and activates the
group. However, if a cluster is sent to a focussed node and is not scheduled, it is sent
to a node offering a good bid if one is available. To facilitate the latter decision and to
reduce the scheduling delay, when the originating node initiates the bidding process for a
cluster, the identity of focussed nodes for that cluster is sent to bidder nodes, and when a
bidder node issues a bid, it sends a copy of the message to the focussed node. If a cluster
is sent to a bidder node and is not scheduled, to reduce communication delay, the bidder

16

node invokes the adjustment algorithm (see next subsection) and attempts to reschedule
the cluster locally.

5.4 Adjusting Scheduling Windows for Improving Schedulability

The scheduling windows? of tasks in a group need to be adjusted if the estimated group
ready time elapses before the group is guaranteed or if a node finds that a cluster cannot
be scheduled locally and no other node is available to schedule the cluster.

In the former case, the originating node attempts to extend the group ready time by ad-
justing the scheduling windows (extending the pseudo ready time and the pseudo deadline)
of the beginning tasks as well as a suffici:nt number of their descendants. If the whole group
can be scheduled Eeiore the extended group ready time, the group can still be guaranteed.

In the latter case, for each task that cannot be scheduled, a node attempts to adjust the
scheduling windows (to extend the pseudo ready time and the pseudo deadline) on a range
of successors in order to extend the pseudo deadline of the task in question. If the tasks
can be scheduled with the extended pseudo deadlines, then the cluster is still schedulable.
Otherwise, the group is aborted. Details of this adjustment algorithm are given below. To
simplify the presentation, we assume that the adjustment algorithm is invoked to extend
the pseudo deadline of a task.

To extend the pseudo deadline of a task, a node sends an adjust request message to each
node processing a successor of the task. The request message carries an Adjustment Target
Time which specifies the range of successors whose scheduling windows are to be adjusted.
The request message is passed to the successors of each successor until it reaches a recipient
task whose pseudo deadline is greater that the target time. The adjustment target time is
computed as

Adjustment_Target Time = PD + ATTR x (GD — EGR)

where PD is the original pseudo deadline of the task which initiates the request and ATTR,
the Adjustment Target Time Ratio, is a fraction and a tunable parameter. If the adjustment
target time ratio is large, a task can request the adjustment of the scheduling windows on
a large number of descendants thereby extending its pseudo deadline to a later time and
increasing its own schedulability.

The adjustment of scheduling windows starts at the ending task of the specified range
and is carried out in an order opposite to that of passing the requests. Each node attempts
to extend the pseudo deadline and the pseudo ready time for each requested task that
resides locally: The extended pseudo deadline of a task ¢ is computed as,

EPD; = min| EPR; — Comm(i, 5)]
7

where EPR; and Comm(i, 7) are the extended pseudo ready time of a successor j and the
communication time between i and j, respectively. Note that the pseudo deadline of the
ending tasks in the specified adjustment range is not extended. Each task is scheduled with
respect to the extended pseudo deadline (or rescheduled if it has been previously scheduled).
If it is scheduled, the pseudo ready time of the task is extended to be the latest start time

2Recall that scheduling windows are just estimates used to facilitate parallel processing of the task group.

17

of the task and this information is sent to the (intermediate) requesting predecessor. The
predecessors are then scheduled with respect to their extended pseudo deadlines. The
information on the extended pseudo ready time of the predecessors is sent to the requesting
nodes where the predecessors of the predecessors exist. This process is repeated until the
pseudo deadline of the original requesting task is extended and the attempt of scheduling
the task with respect to the extended pseudo deadline is accomplished. If an intermediate
task cannot be scheduled, the node where the task resides initiates an adjustment request
for the task itself. Note that multiple adjustment requests may be initiated simultaneously
in a group. If a task receives two requests, it only passes the one with greater target time.
However, after its extended pseudo ready time is computed, it acknowledges both requests.

- To demonstrate the use of the adjustment scheme, we describe a scenario of distributed
scheduling for the sample group. When reading this example, the readers should refer
to Figure 2 and Table 1. As mentioned before, the sample group has three clusters, ie.,
{Ty, T2}, {Ts}, and {T4, Ts}. Suppose the first cluster {T1, T3} is scheduled locally at node
1, the second cluster {Ts} is sent to a bidder node, node 2, and the third cluster {T, T5} is
sent to a focussed node, node 3. Suppose the second cluster is not scheduled, but the third
cluster is scheduled. Since node 2 is a bidder node, it invokes the adjustment scheme for
the cluster. Suppose ATTR = 0.25. Then, node 2 sends a request message to node 3. The
message specifies an adjustment target time which equals, PDj + ATTRx(GD - EGR) =
224+ 0.25 x (300 ~ 100) = 274. Since the target time is greater than PD, = 262, node
3 passes the request to T which is also on node 3. Because the adjustment target time is
less than PDjg = 300, node 3 starts the actual adjustment beginning with T5. Because T}
has been previously scheduled, its pseudo ready time is simply extended to its latest start
time which is 290. So, the pseudo deadline of T} is extended to 290 and Ty is rescheduled.
Suppose the new latest start time of Ty is 270. Then, the pseudo ready time of Ty is
extended to 270, and this information is sent to node 2. Finally, the pseudo deadline of T
is extended to EPDy — Comm(3,4) = 270 — 5 = 265 and the task is scheduled.

The cost of the adjustment scheme is analyzed as follows. First, we consider the com-
munication cost: When a task initiates an adjustment process, its request message is passed
to a subset of successors which form a tree in the group where the root of the tree is the
initiating task and the depth of the tree is specified by the adjustment target time. Also,
when a successor acknowledges an adjustment request, it only sends messages to its prede-
cessors in the tree. Therefore, the number of messages involved in an adjustment process
is proportional to the number of edges in the tree, O(FE). Second, we consider processing
cost: Clearly, in the worst case, except the leaves, all the other tasks in the tree have to be
rescheduled to find a new latest start time. Therefore, the additional processing cost due to
adjustment is proportional to the number of tasks in the tree, O(N). In summary, the cost
of the adjustment scheme is O(N + E). In Section 7 where we disenss simnlation results. we
will examine the impact on the system performance by using different adjustment ranges.

6 Evaluation Approach

In the previous sections, we have described three atomic guarantee algorithms for the group
scheduling problem, namely, the sequential algorithm, the polling algorithm, and the parti-
tion algorithm. It is very difficult (if not impossible) to develop a tractable analytical model

18

for hard real-time distributed scheduling problems. Therefore, we evalnate and compare
these distributed guarantee algorithms by simulation. However, the algorithms were imple-
mented, their execution times measured and this cost was then used as one of the inputs to
the simulation model. We evaluate these algorithms under a wide range of system condi-
tions and for different types of groups. For example, we test different communication delays
from O to 10 milliseconds per packet, different laxities from a few hundred milliseconds to a
few seconds, different sizes of groups from 1 to 30, different types of precedence constraints
(in¢luding precedence chains, precedence trees, and arbitrary precedence constraints), and
different mixtures (distributions) of group sizes. We believe that the range of the test con-
ditions is large enough to cover future applications of many real systems. In this section,
we describe a simulation model for the guarantee algorithms. We also present two baseline
algorithms and the performance metric for the analysis of these guarantee algorithms. The
results of the extensive simulation studies are described in Section 7.

6.1 The Simulation Model

The simulation program is written in GPSS.and Ada and it simulates a number of nodes
interconnected by a communication network. For a particular test, the nodes run either
the sequential, the polling, and the partition algorithm. The partition algorithm contains
a number of system tunable parameters. This makes the algorithm flexible, but causes
difficulty in choosing and maintaining good values for these parameters. In practice it was
not too difficult to tune this set of parameters, and the values chosen seem to be fairly
robust. In addition, the simulation model consists of a number of simulation parameters.
The nominal values for the major simulation parameters are shown in Table 3. In the
simulation studies described in the next section, unless otherwise mentioned, the parameters
are set according to the nominal values. All parameters of the model are easily changed
to facilitate evaluation of a particular guarantee algorithm and the comparison of different
algorithms. We now describe how to create groups as input to the simulation, how the
communication network is modeled, and how the scheduling cost is incorporated.

6.1.1 Group Generation

Task groups are nonperiodic and are generated randomly on each node in the network.
Because actual systems are not available, the arrival pattern of the task groups as well
as the characteristics of the groups are created based on a probablistic model instead of
actual workloads. The characteristics of each group is specified by a number of parameters.
The value of the parameters, the arrival rate and the precedence structure of groups are
generated from random number generators of the simulation model as described below.

The number of tasks in a group (called the group size) is generated [rom a probability
distribution with an average G. We test three distributions, namely, normal distribution,
exponential distribution, and uniform distribution. The standard deviation of the normal
distribution is set to be 20% of the average.

The following parameters of a task group are normally distributed: 1) The computation
time of each task, with an average C, 2) the communication time between tasks in a group,
with an average M, and 3) the size of each task (i.e., the number of packets), with an
average S. The standard deviation of each parameter is set to be 20% of the mean of the

19

Average group size 6

Task computation time 100 (milliseconds)
Execution time ratio 0.7

Task size 10 (packets)
Communication time ratio 0.1

Laxity 2 (seconds)
Network load 6

Balance factor 0.7

Layer size ratio 0.3

Message delay 4 (milliseconds/packet)
Guarantee unit cost 0.3 (millisecond)
Preprocessing unit cost 1.2 (milliseconds)
Number of nodes 5

Table 3: Nominal value of major simulation parameters.

parameter. C is set to be 100 milliseconds and is not changed between runs. It is used as
a normalization factor for other parameters of groups. M is set to be a fraction of C. The
fraction is called as the communication time ratio.

The deadline of a group is relative to the arrival time of the group. It is calculated as
follows:

D = arrival time+) _Ci+ Y _ Comm(i,5) + Lazity
] $,J
where C; is the computation time of any task ¢ in the group; Comm(i, j) is the communi-
cation time between any two tasks i and j on the longest path in the group; and Lazity is a
simulation parameter. Note that, even if the laxity is zero, it is still possible to guarantee
a group at the node where the group arrives.

The arrival rate of groups at a node is a function of a predetermined load factor of the
node. We define the load factor of a node to be the average group computation time divided
by the interarrival time of the groups arriving at the node. The average group computation
time equals the average task computation time multiplied by the average group size. The
load factor of different nodes is set to be increasing linearly from node 1 to 2, to 3, etc. Let
Load, and Load; denote the load of node 1 and load of node t, respectively. Then,

Load; = Load; x R*~!

where the proportionality constant. R is called the balance factar. The sum of Lhe load factors
of all the nodes is called the network load. The network load represents the demands on
the system imposed by the environment. The actual system load depends on the number
of groups guaranteed in the system.

The precedence graphs of task groups (for input to the simulation model) are constructed
as follows. Tasks in a group are divided into layers. Each layer is a subset of tasks which
interact only with those in the adjacent layers. A task in a layer ¢ can only be the predecessor
of tasks in layer ¢ + 1 (lower layer) and the successor of those in layer ¢ — 1 (upper layer).

20

Note that tasks in the top layer (layer 1) do not have predecessors and those in the bottom
layer do not have successors. The group is constructed starting from the top layer and
proceeding to the bottom layer. For each layer, the number of tasks is chosen randomly
according to a uniform distribution between one and a fraction of the group size. The
fraction, called as the layer size ratio, is a simulation parameter. The number of layers
in a group depends on the number of tasks actually chosen for each layer and the group
size. The number of predecessors (successors) of a task is chosen randomly according to a
uniform distribution between one and the number of tasks in the immediate upper (lower)
layer.

The above strategy is used in order to simplify the construction of the precedence
graph. However, it is general enough to generate most interesting types of precedence graph,
including chain graphs, tree graphs, serial-parallel graphs, as well as arbitrary precedence
graphs.

6.1.2 Communication Network

The network consists of five nodes interconnected by a shared-bus network as shown in
Figure 3. Each node is connected to the shared bus by a link. Messages sent from one node
to another pass through a sender’s link, the shared bus, and a receiver’s link. The links and
the shared bus are used to model the queueing delay within nodes and the access delay to
the shared bus. Only one message can occupy a link (the bus) at a time. When a message
is in a link (the bus), if there is another one that needs to be sent through the same link
(bus), the latter must wait until the first one relinquishes the link (bus). Messages to be
sent through the same link (bus) are sent on a FCFS basis.

The net cost of transmitting 2 message from one node to another without delay is called
the transmission time. We assume that the cost of processing messages within nodes is
comparable to the cost of transmitting messages. Therefore, the time spent by a message in
a sender’s link, the shared bus, and a receiver’s link is set to be one third of the total trans-
mission time. The transmission time of messages is set to be proportional to the message
gize. The control messages (e.g., RFB and bid) consist of just one packet. The transmission
time for such messages is called the message delay which is a simulation parameter. The
transmission time for a task equals the message delay times the size of the task.

The messages exchanged between application tasks are delivered within constant time
and are not subject to the delay described above. The worst case time for transmitting such
messages are prespecified for a group.

6.1.3 Scheduling Overhead

We assume that a co—processor is available for execnting system schednling tasks and the
scheduling cost can be off-loaded from the main processor. However, we do account for
scheduling delay. The delay in scheduling a single task on a node is proportional to the
number of tasks prescheduled on the node. The proportionality constant is called the
guarantee unit cost which is a simulation parameter. In each guarantee algorithm, multiple
attempts may be made to schedule a task on a node. The delay of every attempt is included
in the simulation model. For different guarantee algorithms, the guarantee unit cost is the
same. However, the total delay for scheduling each distributed group is different.

21

Node Node Node

Figure 3: Communication network.

For the partition algorithm, the cost of partitioning a group and assigning scheduling
windows is set to be proportional to the size of a group. The proportionality constant is
called as the preprocessing unit cost.

In the simulation model, both the guarantee unit cost and the preprocessing unit cost
are set by measuring the actual algorithm executing on a VAX-11/780 system.

It should be mentioned here that it is possible to off-load the preprocessing cost by
performing the preprocessing scheme on each possible task group statically with respect
to various possible system states, i.e., different combinations of node surplus and system
scheduling delay, and keeping the partition information together with the group. When it
becomes necessary to distribute a group, based on the current system state, a node selects
a precalculated partition pattern for the group. In the simulation studies, we assume that
the preprocessing is done on-line, and hence, include these costs in the scheduling overheads
of every group. '

6.2 Baseline Algorithms

To validate the performance of the three guarantee algorithms discussed in this paper, we
compare these algorithms with two baseline algorithms: the perfect-information algorithm
and the noncooperative algorithm.

6.2.1 Perfect-Information Algorithm

The first baseline algorithm is called the perfect-information algorithm. It assumes that each
node has perfect state information about other nodes and incurs no delay to distribute and
schedule tasks. This algorithm is similar to the polling algorithm without overheads: Both
the communication delay and the processing delay are assumed to be zero. To gnarantee a
group, a node polls every node in the network and attempts to determine the latest start
time for every task in the group. Because the network-wide latest start times of tasks are
determined without delay, this algorithm should produce better results than the guarantee
algorithms and provides an upper bound to the performance of the various atomic guarantee
algorithms.

22

6.2.2 Non-Cooperative Algorithm

The second baseline algorithm is called the non-cooperative algorithm. It models worst case
performance. This algorithm requires that each group be completely guaranteed at the
node where the group originally arrives. If a group cannot be scheduled, it is aborted. No
attemnpt is made to distribute the group. The local scheduling delay is accounted for in this
algorithm.

6.3 Performance Metric and Statistics

We are particularly interested in the performance metric, referred to as the system guarantee
ratio. The system guarantee ratio is defined as the total number of groups guaranteed versus
the total number of groups that have arrived in the network.

Each simulation runs for 2,000,000 time units (milliseconds). It is long enough for
the simulation model to approximately reach equilibrium state (i.e., the fluctuation in the
guarantee ratio is less than 2%). To show the statistical validity of the simulation results,
in next section, we calculate the 90% confidence interval for the tests shown in Sections
7.2 and 7.3. Given that these intervals are small and given simulation cost constraints, we
do not calculate the confidence interval for all the tests. The results of the other tests are
obtained from single, but sufficiently long runs.

7 Simulation Results

In this section, we describe the simulation results for the three atomic guarantee algorithms
described in Sections 4 and 5. We compare the partition algorithm with the sequential algo-
rithm and the polling algorithm under a wide range of system conditions and for groups of
different characteristics. The results are validated against the baseline algorithms. Specific
experiments were run to show need for the various components of the partition algorithm.
We show that all components of the algorithm contribute to its overall better performance.
Due to space limitations these results are not shown here (see [Che87]. The experiments
we consider in this paper are:

1. Effect of different communication costs

Effect of different laxities

Effect of different inter-task communication times

Effect of different group sizes: arbitrary precedence graphs

Effect of different group sizes: precedence trees

o o s w N

Effect of different group sizes: precedence chains

23

O Perfect~Informauan
& Pertiton

© Polling
. O Sequential
100- O Nogcooperstive
L*e— — © —_

90 ~
E
2 M
2 t03— ——
4
e
2
3
o 704
-3
]
2
<

604

s T T T T T T

0 ' 2 3 4 S [}

Messege Delay (msec/packet)

Figure 4: Effect of different communication costs (laxity = 1 second, average group size =
6, network load = 6).

7.1 Effect of Different Communication Costs

In this subsection, we examine the effect of different communication costs. The message
delay is varied from 0 to 6 milliseconds, with increments of 1 millisecond. We test two cases
of laxities, namely, 1 and 1.5 seconds. The_average group size is set to 6. The simulation
results are shown in Figures 4 and 5. Note that the communication cost has no effect on
the perfect-information algorithm nor on the noncooperative algorithm.

From Figures 4 and 5, we observe the following:

® As the message delay increases, the guarantee ratio of the partition algorithm and
the alternative guarantee algorithms decreases. For example, for a laxity of 1 second,
as the message delay increases from 0 to 6 milliseconds, the partition, the polling,
and the sequential algorithm, degrade by 6.1%, 9.3%, and 1.4%, respectively. This
effect is obvious, because, as the communication cost increases, the delay involved in
distributed scheduling increases, so it is more difficult to guarantee distributed groups.

¢ The communication cost has slightly greater effect on the polling algorithm than
on the partition algorithm. For example, for a laxity of 1 second, as the message
delay increases from 0 to 6 milliseconds, the polling algorithm degrades hy 0.230%
but the partition algorithm degrades only by 6.1%; the difference in the guaranlee
ratio of the two algorithms increases from 1.6% to 4.8%. This result indicates that
the communication cost incurred by the polling algorithm is slightly greater than
that of the partition algorithm. Recall that, in the polling algorithm, most of the
communication occurs across the network, but in the partition algorithm, because of
task clustering, a significant amount of the communication occurs within nocdes.

¢ In the tested range of communication costs, the performance of the sequential algo-

24

¢ Pertect - luformstion
A Partittun

O Polling

) Sequenusl

0 Noncooperstive

1003 ..oy o o o 9
1’; —— - o r——a
”W)
—
904
Iy oo e -8 - - & a
o } < o
2 80
-
-]
c
H
3
o 70
(-3
]
2
S
604
50 T T T T T T
0 1 2 3 4 5 [}

Message Delay {msec/packet)

Figure 5: Effect of different communication costs (laxity = 1.5 second, average group size
= 6, network load = 6).

rithm and the noncooperative algorithm is about the same. For all the tested cases,
the difference between the two algorithms is less than 3%. Also, for all the tested
cases, the partition algorithm performs significantly better than the sequential algo-
rithm. For example, for a laxity of 1 second, as the message delay increases from 0
to 6 milliseconds, the difference in the guarantee ratio between the two algorithms
decreases only from 12.8% to 8.2%. Because of this result, we conclude that the parti-
tion algorithm performs much better than the sequential algorithm. Therefore, in-the

succeeding simulation studies, we show the result on the sequential algorithm without
discussion.

7.2 Effect of Different Laxities

In this subsection, we compare the performance of different guarantee algorithm under
different laxities. The laxity is increased from 0.5 to 3 seconds, with increments of 0.5

seconds. The average group size is set to be 6. The simulation results are shown in Figure
6. The confidence intervals are shown in Table 4.

From Figure 6, we observe the following:

e As the laxity increases, the performance of all the algorithms improves. For example,
as the laxity increases from 0.5 to 3 seconds, the guarantee ratio of the partition
algorithm and the polling algorithm improves by 18.4% and 12.2%, respectively. This
effect is obvious, because, as the laxity increases, it is easier to guarantee groups both
locally and across the network.

e When the laxity is small, the partition algorithm performs better than the polling
algorithm. For example, when the laxity is 0.5 second, the difference in the guarantee

25

C Perfect-Information
¢ Pertitton
< Polllag

0 Sequential
O Noncooperative
lw./""“‘ > 8 2
o
E o
2
2 soqy
¢ S
e g
-
3
o 704
a
3
2
<
804
0 T T 7 7 T
0.5 1.0 1.5 20 23 3.0

Laxity (seconds)

Figure 6: Effect of different laxities (average group size = 6, network load = 6).

ratio of the two algorithms is 4.6%. This result indicates that the overall scheduling
delay of the partition algorithm is smaller than that of the polling algorithm, so the
partition algorithm performs better than the polling algorithm for groups of moderate
sizes and small laxities.

e When the laxity is moderate, the partition algorithm still performs better than the
polling algorithm. For example, when the laxity is 1 second, the guarantee ratio of
the partition algorithm is greater than that of the polling algorithm by 4.3%. This
result indicates that the advantages of the partition algorithm are significant in a wide
range of laxities.

e When the laxity is large, the difference between the partition algorithm and the polling
algorithm is small. For example, when the laxity is greater than 2 seconds, the
difference between the two algorithms is less than 1%. This indicates that, for groups
with large laxities, both algorithms can perform well, and it is not essential to use a
sophisticated algorithm.

¢ In the tested range of laxities, the partition algorithm performs substantially better
than the noncooperative algorithm. For all the tested cases, the difference hetween
the two algorithms is abont. 12%. This indicates that, in a wide range of laxities, the
system can benefit substantially from distributed scheduling.

7.3 Effect of Different Inter-Task Communication Times

In this subsection, we examine the effect of different inter-task communication times on
the guarantee ratio of the partition algorithm and the polling algorithm. The partition

26

ey 1 Algorithm T —
(seconds) | Perfect-Info. Partition Polling Sequential =~ Noncoop.
0.5 061+ 044 800+ 196 775+ 121 75.6 % 0.67 74.3 + 0.62
1.0 08.0 4+ 0.25 95.34+ 0.40 91.2+ 096 820+ 072 80.6 + 1.23
1.5 996+ 0.13 979+ 048 96.2+ 065 84.6% 0.56 82.7 £ 1.01
2.0 090.8 +0.15 989+ 0.36 98.1+0.26 858+ 0.83 83.5 + 1.02
2.5 099+ 0.05 99.2+ 0.34 08.8+0.29 86.4+ 058 84.1 + 1.09
3.0 9990+ 001 99.5+ 0.15 989+ 053 86.6+ 043 843 £ 0.64

Table 4: The 90% confidence intervals for Figure 6.

algorithm explicitly clusters tasks with each other if the tasks have large inter-task commu-
nication time. On the other hand, the polling algorithm does not explicitly cluster tasks on
the same node, but it tends to schedule a task and its successors on the same node if such
an attempt improves the latest start time of the task. In other words, the communication
time between tasks is eliminated by implicit efforts. Note that, in the simulation model,
the laxity of a group includes the communication time between tasks on the critical path
in the group. Therefore, if tasks are scheduled on the same node, the leeway for scheduling
tasks will be greater than if tasks are scheduled on different nodes.

In the simulation study, the inter-task communication time ratio is increased from 0.1 to
0.9, with increments of 0.2. The average inter-task communication time equals the inter-task
communication time ratio multiplied by the average task computation time. For example, if
the inter-task communication time ratio is 0.5, then the average inter-task communication
time equals 50 milliseconds. We test two cases of network loads, namely, 6 and 7. The
average group size and laxity are set to 10 and 1 second, respectively. We compare the
algorithms under arbitrary precedence graphs, precedence (reverse) trees, and precedence
chains. The simulation results are shown in Figures 8, 9, and 10, respectively. An example
of a reverse tree is shown in Figure 7, where each task has multiple predecessors, but only
one successor. The group has multiple beginning tasks, but only one ending task. For the
arbitrary precedence graphs, we show the 80% confidence intervals of the results in Table
5.

From Figures 8, 9, and 10, we observe the following:

o Except for the case of the partition algorithm applied to precedence trees at network
load 6 (Figure 9), the guarantee ratio of both the partition and polling algorithms
increases significantly as the inter-task communication time ratio increases. For ex-
ample, as the inter-task communication time ratio increases from 0.1 to 0.9, when the
network load is 7, for arbitrary precedence graphs, the partition algorithm and the
polling algorithm improve by 7.7% and by 6.5%, respectively; for precedence trees, the
two algorithms improve by 9.9% and 4.5%, respectively; and for precedence chains, by
9.3% and 10.3%, respectively. These results are due to the extra leeway obtained by
scheduling tasks on the same node. In the exceptional case of the partition algorithm
indicated above, the improvement is only 1.8%. This occurs because the critical path
of a tree group is smaller than other types of groups and the laxities are relatively

27

O
v
Q O
\/
O

Figure 7: A reverse tree.

AN

O Parution (Network load = 6)
4 Polhing (Network toed = 6)
© Paryuon {Network load = 7)
U Polling {Network losd = 7)

i e O —
90+ e Y o
4 - a——
- 1 T
E e
: 0 T
i 80= o =S 4
H - e
t O
= i L mn@E
- =
E '
S 70-
- |
i
60+
\
'
s04 ey
0T T T 1 U
0.1 03 0.5 0.7 0.9

Task Communicstion Time Ralio

Figure 8: Effect of different inter-task communication times: arbitrary precedence graphs
(average group size = 10, laxity = 1 second).

Task Communication | Partition Algorithm Polling Algorithm
Time Ratio Network Load Network Load
6 U 6 7
0.1 88.2 £0.94 73.2 £0.67 | 83.3 £0.80 73.9 11.29 .
0.3 89.2 +£1.17 74.8 £0.66 | 85.1 £1.07 75.6 +1.17 l
0.5 90.5 +£0.86 76.7 £0.70 | 87.2 £0.81 77.7 £1.20 ;
0.7 92.1 £0.97 79.2 £0.69 | 88.3 £1.01 79.5 +1.32 .
0.9 92.6 +£0.89 81.4 +0.48 | 89.0 +£1.13 80.4 £1.31 |

Table 5: The 90% confidence intervals for Figure 8.

28

O Perlilon {Network toed = 8) .
4 Polhing (Network luad = 8)

© Partition {¥.teurk loed = 7)

0 Polling (Nelwark load = 7)

1001
Qe e,
$04
-
E /ﬂ_’_”-ﬁ”_’d_‘_-
g b
2 8o /
. _a—_’___e’,,/‘“
~ ﬁ
§ e
e
H
o 704
[
S
4
604 .
07— U T g
0.l 0.3 0.5 0.7 0.9

Task Communication Time Ralio

Figure 9: Effect of different inter-task communication times: precedence trees (average
group size = 10, laxity = 1 second).

O Partiton (Netwark load = 8)
4 Polling {Network losd = 8)
2 Partiion (Network load = 7)
L Polling (Network load = 7)

E
< "» — 70
E QT
3 po- —
P+ . ‘___—_,-e’/_/
¢ H . U
I
g
& 70
H
< .
< .
|
60~
i
1
!
90 - T T T
0.1 0.3 0.3 0.7 0y

Task Communication Time Ralio

Figure 10: Effect of different inter-task communication times: precedence chains (average
group size = 10, laxity = 1 second).

29

large for such groups and such network loads. In this case, the guarantee ratio is
high (between 92% and 94%), so the extra leeway does not significantly improve the
guarantee ratio.

¢ For moderate network loads, the improvement in the guarantee ratio for the case of
precedence chains is greater than those for the case of precedence trees and arbitrary
precedence graphs. For example, for network load 6 and for precedence chains, the
improvement for the partition algorithm is 9.7%, but it is only 1.8% and 3.9% for
arbitrary precedence graphs and precedence trees, respectively. This result occurs
because the critical path in a chain group is longer than those of a group with arbitrary
precedence graph or a precedence tree. Therefore, the effect of task clustering is larger
for chain groups.

e For heavy network loads, the improvement in the guarantee ratio of the partition
algorithm is about the same regardless of different types of precedence graphs. For
example, for network load 7, the improvement of the algorithm is 7.7%, 9.9%, and
9.3% for arbitrary precedence graphs, precedence trees, and precedence chains, re-
spectively. This is because, when the network load is heavy, the scheduling delay is
large. Therefore, the laxity of groups become tight, and the extra leeway due to task
clustering becomes important.

* Except for network load 6 and for arbitrary precedence graphs and precedence trees,
the improvement in the guarantee ratio for the partition algorithm is either about
the same or slightly greater than that of the polling algorithm. This result indicates
that the scheme of task clustering in the partition algorithm is either as effective as
or better than the implicit effort of the polling algorithm on clustering tasks. In the
partition algorithm, clustering tasks is done with local preprocessing cost which is low
compared to the polling cost in the polling algorithm.

7.4 Effect of Different Group Sizes: Arbitrary Precedence Graphs

In this subsection, we examine the effect of different sizes of groups. The purpose of this
and the following two simulation studies is to compare the various algorithms for groups of
different types of precedence structures. In this study, we test arbitrary precedence graphs
constructed as described in Section 6.1. The average group size is increased from 4 to
20, with increments of 4. We test two cases of laxities, namely, 1.5 and 2 seconds. The
simulation results are shown in Figure 11 and 12.

From Figures 11 and 12, we observe the following:

e When the group size increases, the guarantee ratio of all the algorithms decreases.
For example, for laxity of 1.5 seconds, as the average group size increases from 4
to 20, the guarantee ratio of the partition and the polling algorithm decreases from
98.5% to 76.5% and from 97.8% to 77.3%, respectively. This result is obviously due
to the following reasons: (1) As the average group size increases, the number of tasks
involved in atomic guarantee incrcases and the scheduling delay increases, so it is
more difficult to guarantee groups; (2) For a fixed laxity, as the average group size
increases, the leeway for scheduling a group decreases.

30

G Perfect=laformeton
& Pertition
O Palling
0 Sequenual
© Noncooperaive
100 4.

80+ \

704

Group Guarantee Ratic (%)

%0
30

Average Croup Size

Figure 11: Effect of different group sizes: arbitrary precedence graphs (laxity = 1.5 seconds,
network load = 6).

< Pul-cl-lﬂomndon
& Pertition
G Polling
O Sequestiad
G Noacooperative
1004 —
== '
(s
\\n" "‘\
00 \9_\ ~
- ' —— i \\\
: .[T it
= Ttk
') RS
s 8] \'______c
s
g
K .
3
[X] 70«1
3
2
£
' 1
'
!
60+
!
i
i
40 4 —— ; T r :
4 a 12 16 20

Aversge Group Size

Figure 12: Effect of different group sizes: arbitrary precedence graphs (laxity = 2 seconds,
network load = 6). .

31

* When the average gronp size is small, the partition algorithm and the polling algorithm
perform about the same. For example, for laxity of 1.5 seconds, when the average
group size is 4, the difference in the guarantee ratio of the two algorithms is less than
1%. This occurs because the laxity is relatively large for such groups.

e When the group size is moderate, the partition algorithm performs better than the
polling algorithm. For example, when the average group size is 12, for laxity of 1.5
and 2 seconds, the guarantee ratio of the partition algorithm is greater than that
of the polling algorithm by 6 %and 2.4%, respectively. This result indicates that,
for groups of moderate sizes and moderate or large laxities, the partition algorithm
performs better than the polling algorithm. '

e For large groups with moderate laxity, the partition algorithm performs about the
same as the polling algorithm. For example, for laxity of 1.5 seconds, when the
average group size is greater than 16, the difference in the guarantee ratio of the
two algorithms is only about 1%. The reason that the partition algorithm does not
perform better than the polling algorithm is because it generates small scheduling
windows due to the large group size and the moderate laxity.

o For large groups with large laxity, the partition algorithm performs better than the
polling algorithm. For example, for a laxity of 2 seconds, when the average group size
is 20, the partition algorithm performs better than the polling algorithm by 4.3%.
This result occurs because, as in the previous case, the scheduling windows are small.

The above observations for arbitrary precedence graphs are summarized in Table 6(a)
where we show which algorithm performs better under given conditions of laxity and group
size.

7.5 Effect of Different Group Sizes: Precedence Trees

In this subsection, the precedence graphs of groups are constructed such as a reverse tree
as described before in Section 7.3. Besides comparing with the polling algorithm and the
baseline algorithms, we compare the partition algorithm with a different version of the
sequential algorithm. When a node receives a tree group (subgroup), it attempts to schedule
as many tasks in the tree (subtree) as possible in a reverse topological order, but if it finds
a task that is not schedulable, instead of sending all the unscheduled tasks in the tree to
another node, it only sends a subtree rooted at the task to another node. It continues its
attempt to schedule tasks in other parts of the tree. In this way, the attempt to schedule
tasks in different subtrees can be carried out in parallel at multiple nodes. In order to
maintain the consistency of notation, we retain the name of sequential algorithm.

In the simulation study, the size of groups is normally distributed. The average group
size is increased from 4 to 20, with increments of 4. We test two cases of laxities, i.e., 1.5
and 2 seconds. The simulation results are shown in Figure 13 and 14.

From Figure 13 and 14, we observe the following:

o For small trees, the guarantee ratio of the partition algorithm and the polling algo-
rithm is about the same. This result is the same as that for arbitrary precedence

graphs.

32

O Perfect-Informstng

a Pertitton
O Polling
0 Sequential
O Noncooperative
100415‘_‘_
—_ " — .
r -
~ ~.
\\\ T~
uo . 'A\\ \\
-t
s T
2 80+ .
s T
RN :
s
a
3 704 \9‘
o
3
4
<
e e £
604
50 T T T T
4 8 12 18 20

Average Group Site

Figure 13: Effect of different group sizes: precedence trees (laxity = 1.5 seconds, network
load = 6).

O Perfect~laformation
& Partitton

O Polling

O Sequeatial

0 NoncoopersUre

-]
=3
ot

Group Guarsnlee Ratio (%)
-~
o

o
o
—

50

s) 12 16 20
Average Group Size

Figure 14: Effect of different group sizes: precedence trees (laxity = 2 seconds, network
load = 6).

33

O Perfect-laformaton
4 Partiton

© Polling

0O Seguential

O Noacooperative

1004

$0+4

o
<
i

Croup Guarsntee Ratio <)
3

o
o
I

N T T T T
¢ 8 12 18 20

Average Group Size

Figure 15: Effect of different group sizes: precedence chains (laxity = 1.5 seconds, network
load = 6).

 However, for trees of moderate and large sizes, the guarantee ratio of the partition
algorithm is significantly greater than that of the polling algdrithm. For example,
when the laxity is 1.5 seconds, for group sizes of 12 and 20, the partition algorithm
performs better than the polling algorithm by 6.8% and 4.2%, respectively. The reason
for the better performance of the partition algorithm for large trees is because the
depth of the trees is short (the number of leaves in the trees is large), and therefore,
the system can assign large scheduling windows to tasks. This result indicates that
the partition algorithm works very well for precedence trees.

e In all tested cases, the partition algorithm performs substantially better than the
sequential algorithm. This indicates that, for the sequential algorithm, even though

~ different subtrees in a group can be processed at different nodes in parallel, because
each task is scheduled on one node at a time, the same reason that causes poor
performance of the original sequential algorithm is still applicable.

7.6 Effect of Different Group Sizes: Precedence Chains

In this subsection, the precedence graph of groups is constructed as a chain. Each task in
a gronp has exactly one predecessor and one successor. We compare different gnarantee
algorithms for precedence chains of different sizes. The size of groups is normally distributed.
The average group size is increased from 4 to 20, with increments of 4. We test two cases
of laxities, namely, 1.5 and 2 seconds. The simulation results are shown in Figure 15 and
16.

From Figures 15 and 16, we observe the following:

e For small chains, the performance of the partition algorithm and the polling algorithm
is about the same. This is the same as that for arbitrary precedence graphs and trees.

34

O Perfect=information
4 Perdtion

O Polling

O Sequeatial

0 Noocooperative

w ~“L\==s§\'___q

704

Group Guarantee Ratio (%)

604

T
) 3 12 18 20

Aversge Croup Size

Figure 16: Effect of different group sizes: precedence chains (laxity = 2 seconds, network
load = 6).

o However, for chains of moderate sizes, the partition algorithm only performs slightly
better than the polling algorithm. For long chains with moderate laxity, the polling al-
gorithm performs better than the partition algorithm. For example, when the average
group size is 16, for laxity of 1.5 seconds, the guarantee ratio of the polling algorithm
is greater than that of the partition algorithm by 3.2%. These results occur because,
compared to other types of precedence graphs, the laxities for groups of chain-type
precedence graphs is tight, since every task is on the critical path. Therefore, the
scheduling windows for groups of moderate or large sizes are small and the perfor-
mance of the partition algorithm degrades. This result indicates that, for precedence
chains, the group size has a large effect on the partition algorithm.

8 Conclusions

We have developed an atomic guarantee algorithm that can handle arbitrary types of prece-
dence constraints among tasks. This algorithm is based on a partition scheme. To reduce
distributed scheduling delay, the algorithm divides tasks in a group into subgroups and
distributes the subgroups across nodes to he scheduled. This scheme allows the system to
schedule tasks in a group in parallel and increases the chance of scheduling a distributed
group.

The simulation studies have shown that, compared to the alternative algorithms, the
partition algorithm is effective under many conditions in dynamic hard real-time systems.
The major results of the studies on the partition algorithm and the alternative algorithms
are:

e The system substantially benefits from distributed scheduling in a wide range of laxi-

35

ties, group size, and commnnication cost. For example, for groups of size 6 and laxities
between 1 and 3 seconds, using the partition algorithm, distributed scheduling im-
proves the guarantee ratio by 15%.

¢ For most cases, the partition algorithm performs significantly better than the polling
algorithm under different communication costs, different laxities, different types of
precedence graphs (chains, trees, and general types), and different group sizes. For
precedence chains, the polling algorithm performs better than the partition algorithm
when the chain is long. When the group size is small, the performance of both
the partition and polling algorithms is about the same. The guidelines for selecting
between the partition algorithm and the polling algorithm under different laxities,
different group size, and different types of precedence graphs are shown in Table 6.

o The sequential algorithm does not work well in distributed scheduling. For most of
the tested cases, this algorithm performs only slightly better than the noncooperative
algorithm.

o The system guarantee ratio increases as the laxity of groups increases. For example, for
network load of 6 and groups of size 6, using the partition algorithm, the improvement
is 20% as the laxity increases from 0.5 to 3 seconds.

Recall that in all these simulations, the cost of preprocessing a group, i.e., assigning
scheduling windows to tasks was included in the scheduling overheads. As was pointed out
in section 6.1.3, it is possible to compute these windows statically for different system states
and dynamically use the appropriate window characteristics based on the existing state.
This should decrease the scheduling overheads and hence further enhance the performance
of the partition algorithm. In spite of the apparent complexity of the partition algorithm,
it offers better performance than simple alternative algorithms over a wide range of system
and application parameters. '

The algorithm described here considers all task groups to be of equal criticalness. It is a
straightforward extension to the presented algorithms to assign criticalness to task groups
and to account for criticalness in performing the atomic guarantees.

References

[Che87] S. Cheng. Dynamic Scheduling Algorithms for Distributed Hard Real-Time Sys-
tems. PhD thesis, University of Massachusetts, Amherst, 1987.

|[CSR87] S. Cheng, J. Stankovie, and K. Ramamritham. Scheduling algorithms for hard
real-time systems - a brief survey. IEEE Real Time Newsletter, 3(2), 1987.

[GJ76] M.R. Garey and D. S. Johnson. Scheduling tasks with nonuniform deadlines on
two processors. J. ACM, 23(3), 1976.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems. Operations Research,
|9, 1961.

36

[KN85]

[Law73]

[LY82)

[MLT82|
[RCGT2
[RS84]

[SRORS)

[UlIT6]

“Group size | Laxity

Small Moderate Large
Small | Partition | Partition/Polling | Partition/Polling

Moderate | Partition Partition Partition

Large " Polling Polling Partition

() Arbitrary precedence graphs

Group size Tree : Chain
Small Partition/Polling | Partition/Polling

Moderate Partition Partition/Polling
Large Partition Polling

(b) Precedence trees and chains (moderate and large laxities)

Table 6: Guidelines for selecting algorithms.

H. Kasahara and S. Narita. Parallel processing of robot-arm control computation
on a multiprocessor system. IEEE Journal of Robotics and Automation, 1(2),
1985.

E. L. Lawler. Optimal scheduling of a single machine subject to precedence con-
straints. Management Science, 19, 1973.

D. W. Leinbgugh and M. R. Yamini. Guaranteed response times in a distributed
hard real-time environment. In Proc. IEEE Real-Time Systems Symp., December
1982.

P-Y. R. Ma, E. Y. S. Lee, and M. Tsuchiya. A task allocation model for dis-
tributed computing systems. IEEE Trans. on Computer, C-31(1), 1982.

C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez. Optimal scheduling
strategies in a multiprocessor.system. IEEE Trans. on Computer, C-21(2), 1972.

K. Ramamritham and J. A. Stankovic. Dynamic task scheduling in distributed
hard real-time systems. IEEE Software, 1(3), 1984.

1. A. Stankovic, K. Ramamritham, and S. Cheng. Fvalnation of a flexible task
scheduling algorithm for distributed hard real-time systems. IEEE Trans. on
Computer, C-34(12), 1985. :

J. D. Ullman. Complexity of sequence problems. In E. G. Coffman, editor, Com-
puter and Job-Shop Scheduling Theory, J. Wiley, New York, 1976.

37

