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ABSTRACT

A queucing network model to analyze the performance of a distributed database testbed sys-
tem with a transaction workload is developed and validated against empirical measurements.
The model includes the effects of the concurrency control protocol (two-phase locking with dis-
tributed deadlock detection), the transaction recovery protocol (write-ahcad-logging of before-
images), and the commit protocol (centralized two-phase commit) used in the testbed system.

The quencing model differs from previous analytical models in three major aspects. FFirst, it isa
model for a distributed transaction processing system. Second, it. is more general and integrated
than previous analytical models. Finally, it reflects a functioning distributed database testbed
system and s validated against performance measurements.
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1 INTRODUCTION _ ' 1
1 Introduction

This paper describes an analytical model of a distributed database testbed system with a
transaction workload and the validation of the model using performance measurements. The
objective of this paper is to show that an analytical model that takes into account the effects
of the concurrency control, journaling, and two-phase commit protocols can be developed for a
real distributed system execuling a variety of transaction workloads. The workloads consisted
of both lecal and distributed, read and write transactions.

Performance modeling studies of some aspects of distributed database systems have been re-
ported previously. For example, Ries was among the first to do a simulation study on the
effects of concurrency control on the performance of a distributed data management system
[RIES79a]. Garcia-Molina [GARCTY| used both simulation and analytical models to study per-
formance of several concurrency control algorithms for fully-replicated distributed databases.
ialler [GALL82| analyzed distributed concurrency control algorithms using a simulation model
and showed that the performance of basic timestamp ordering is better than that of two-phase
locking. Nakanishi and Menasce [NAKAB2| used an iterative procedure to analyze a two-phase
commit based concurrency control algorithm for a distributed database system. In addition
here has been extensive work done on modeling concurrency control algorithms in central-
ized database systems |RIES77, RIES79b, IRAN79, POTI80, MENAS2, THOMS82, CHESS3,
FRANS5, TAY85]. However, the modeling results have frequently been contradictory. In order
to explain these differences, Agrawal, Carey, and Livny [AGRA85a] performed a number of
concurrency control performance studies using a queucing network simulator. They concluded
that many of the differences can be attributed to modeling assumptions that have no clear
physical meaning.

There are several important topics that have received little consideration in previous perfor-
mance modeling studies:

e The resource requirements (CPU, 1/0, memory) for the basic components of different
concurrency control and recovery algorithms are not. well known. Consequently, model-
ing studies have often neglected the resource requirements when studying or comparing
algorithms. Stonebraker [STON823] provided some data on experiments with a prototype
distributed INGRES system, but the experiments were not designed to investigate the re-
source requirements of the concurrency control and recovery mechanisms. Kronenberg et
al. recently described the basic performance of the VAX/VMS Distributed Lock Manager
in [KRONSG|.

e Although concurrency control and recovery mechanisms are intimately related, except
for the modeling work of Agrawal and DeWitt [AGRABSD], they have been treated as
two separate problems. When studying concurrency control, the costs of journaling and
rolling, back transactions is nsually ignored. Agrawal and DeWitt establish a good case
for why they must be stadied topether when investigating their influence on database
.\')’S'.('nl p(‘rfnrln:m(‘(‘.
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e The impact and validity of the various assumptions made in the models have not been
carefully examined. For example, most of the analytical models for locking assumed that
only exclusive locks were requested, while the majority of locks are shared locks in real
applications. In addition, most of the studies cither ignored the effects of deadlocks or
assumed a static locking scheme to prevent deadlocks. Dynamic locking and deadlock
detection are employed by most locking schemes in commercial database systems.

We have studied the performance of integrated concurrency control and recovery algorithms
using both a distributed database testbed system and an analytical model. This paper con-
centrates on our analytical modeling results and the comparison of those results to our testbed
measurements. Our modeling assumptions were made to match the testbed system implemen-
tation and synthetic workload, but they can be changed to model other systems. An overview
of the distributed testbed system and transaction workload is given in Section 2. Section 3
presents the framework of the queneing network model and its assumptions. The Site Process-
ing Model is described in Section 4. Section 5 presents the derivation of the resource demands
for each transaction type in the workload. Section 6 describes a solution procedure for the over-
all model, illustrates some of the modeling results, and validates the model by comparing its
predictions with our testbed performance measurements. Finally, a summary of our conclusions
is given in Scction 7.

2 CARAT: A Distributed Database Testbed System

A distributed testbed system, called CARAT, has been designed and implemented as a tool
for empirical performance studies in database and distributed systems. In this section, we
provide an overview of the process and communication structures of CARAT. A morc detailed

description of the testhed system and the results of our performance experiments can be found
in other publications [JENQ86, KOIL86a, KOHL86b).

Following the distributed transaction processing model described in [BERN82|, each node in
CARAT consists of two levels of server processes. The top level server process, called the TM
server, is the Transaction Manager. At the next lower level there is a pool of Data Managers,
. designated as the DM servers. (The DM servers currently implement a simple CODASYL
database system.) The TM and DM servers work cooperatively to service transaction requests
issued by user application processes. There is one TM server at each node in CARAT, while the
number of the DM servers at each node is fixed and determined at system start-up time. This
architecture supports the eflicient, execntion of distributed transactions. (A general discussion
of transaction management. issues and architectures can be found in [CERI84].)

Figure 1 illustrates the process and message structure of CARAT for two nodes, but the ar-
chitecture generalizes to any number of nodes. The TM and DM servers work cooperatively
to service transaction requests from user application processes. Fach user process, labeled TR,
submits transaction requests sequentially. In our experiments, the processes at cach node were
run on a single processor.
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One function of the TM servers is Lo act as Lhe inter-process communication agent for user pro-
cosses. A user application process, TR, issues transaction requests only to its local ‘T'M server
process.  Moreover, to minimize connect and disconnect overhead associated with communi-
cation links, inter-node communication links are established at system start-up time and are
maintained only among the TM servers. Bach request to a remote DM server is routed through
a4 remote M server. A local request of a transaction is routed by the local TM server to a
local DM server while a remote request is sent to a remote TM server. The DM servers execute
the transaction requests and send response messages to their local ‘I'M server. For responses
to local requests, the ‘I'M server then routes the messages to the initiating user process, while
responses to remote requests are routed Lo the user process through the initiating TM server. A
DM server is dynamically allocated from the DM server pool by the TM server to a particular
transaction for the lifetime of the transaction. Consequently, for a distributed transaction there
is a DM server that acts as its agent at cach of the participating nodes. In the experiments
that we have conducted, only one server at a time can be active for each transaction.

CARAT contains the major functional components of a distributed transaction processing sys-
tem. In this study, a two-phase locking scheme with distributed deadlock detection was used
for concurrency control. Local deadlocks were detected by searching the transaction-wait-for
graph, while global deadlocks were detected using a variation of the probe algorithm proposed
by Chandy and Misra [CHAN83|. Database access, locking, and logging were done at the phys-
ical block level. Before-image journaling was used for transaction recovery and a two-phase
commit, protocol for global consistency of distributed transactions.

Transactions are composed of sequences of host language statements, including terminal in-
put/output statements, and database DML statements bounded by the transaction delimiters
TBEGIN and TEND. In a distributed database system based on message-passing, cach of these
DML commands may be carried by a message to a DM server which will interpret and then
execute the command. This approach requires one request/response message per DML com-
mand in addition to the processing overhead associated with the run-time interpretation of
the command. To reduce message overhead, several DML commands with parameters can be
grouped into a request and carried by a single message. This is sometimes called the “function
request. shipping approach” [CORNBSG|. To further reduce the run-time interpretation overhead,
the requests were pre-compiled into a small object module and stored with the DM server. Re-
quests are invoked at run time by a message that carries the request number and the actual
parameters used by the request. Requests are the basic units of execution and distribution
among participating nodes.

There are five basic message types issued by a transaction: TBEGIN, DBOPEN, TDO,
T_ABORT, and TEND. A user TR process initiates a transaction by sending a TBEGIN mes-
sage to its local TM server. This TM becomes the Coordinator ‘T'M for the transaction. A
TBEGIN message is followed by a DBOPEN message and a sequence of TDO messages, cach
of which contains a transaction request. A DBOPEN message carries the description of the
data objects (e.g., name of the database area or file) upon which the subsequent TDO messages
will operate. Upon receiving a DBOPEN message, the TM server determines the location of
the data object by consulting its local catalog. The catalog is replicated at each site. If the
data object resides lacally, it will allocate a local DM server to serve the transaction if one is



2 CARAT: A DISTRIBUTED DATABASE TESTBED SYSTEM ) 5

not. already allocated and then forward the DBOPEN request Lo the DM server. For remote
data objects, the 'I'M forwards the DBOPEN message to the TM server where the data object
resides. ‘The remote T'™™M server is called the Slave T™M. Transactions initiated at another node
are called foreign transactions for the Slave T'M server. When a Slave T'M receives a request
from a foreign transaction, it assigns it a DM server, if it does not have one already, and then
forwards the request. After processing the request, a DBOPEN_K acknowledgment is returned
to the transaction.® One of the parameters included in the DBOPEN.K message is the location
of the data object for use in subsequent. TDO requests. The use of a catalog by the TM coor-
dinator provides location transparency to transactions. This allows transparent file migration
and simplifies application programming.

The TDO message carries a request number, a location indicator, and the actual parameters for
the request. Fach TDO message is routed by the coordinating TM server to either a local DM
server, using a DOSTEP message, or a remote TM server, using a REMDO message. For TDO
messages which expect data to be returned to the requesting transaction, an acknowledgment
message, TDO_K, will carry the response data. Qur current implementation assumes that the
entire response sel. can fit into the a single message.

The user process issues a TEND message to commit a transaction. To coordinate execution
of distributed transactions, the cooperating TM and DM servers execute a commit protocol.
The conventional centralized two-phase commit protocol [GRAY79| has been implemented in
CARAT. For each transaction, the Coordinator TM is the the controller. The coordinator
conununicates with the participating slave TM’s to reach unanimous agrecment on the outcome
(commit, or abort. and rollback) ol the transaction. During exccution of the commit protocol,
log records with recovery information are written to the stable storage so that the effects of

the transactions can be correctly recovered from system failures in which the volatile memory
1s lost,.

In order to perforin performance measurement and modeling studies, we developed a param-
eterized set of synthetic transactions. ‘Transactions are classified into four basic types: local
read-only transactions (LRO), local update transactions (LU), distributed read-only transac-
tions (DRO), and distributed update transactions (DU). A transaction is further parameterized
by the number of database requests, i.c., the number of TDO inessages, that it issues and the
number of database records accessed per request. Each request accesses a fixed number of
database records. The records are chosen randomly from among all the database records lo-
cated at the site. To simplify our tests, we also assumed that the database was partitioned
equally among the sites. For the experiments reported here, cach request randomly accesses
four database records and the number of requests per transaction (called the transaction size
and denoted as n) is the same for each transaction in the workload.

Based on these synthetic transactions, several standard workloads were specified. The workloads
were chosen to investigate the sensitivity of the results Lo Lransaction characteristies. The four
workloads used i the two-node Lests are:

o LB8: a local-only workload with eight users and a mix of read and write transactions.

Phe “K” onoa message name is nsed toindicate an acknowledgment message.
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Four users run local read-only (LRO) transactions and the other four users run local
update (LU) transactions.

o MB4: a distributed workload with four users at cach node and a mix of both local and
distributed and read and write transactions. There is exactly one user for cach transaction
of type local read-only (LRO), local update (LU), distributed read-only (DRO), and
distributed update (DU).

e MB8: a distributed workload like MB4, but with a total of eight users at each node
consisting of two users of cach transaction type.

e UBG: a local-intensive, distributed workload with six users at each node. Two users run
local read-only (LRO) transactions, two run local update (LU) transactions, the fifth
runs a distributed read-only (DRO) transaction, and the sixth a distributed update (DU)
transaction.

Numerous experiments were carried out using these workloads. Mcasurements from these ex-
peritnents were then used both to parameterize the models and validate the model predictions.
The hardware configuration used in the experiments consisted of two VAX 11/780s, referred to
as Node A and Node B, each of which had 6 megabytes of main memory. They were connected
by a 10 Mbits/sccond Ethernet. The size of the database file at each node was 3,000 disk blocks.
Each disk block contained 512 bytes and stored six database records. The disk block was the
unit. of transfer between the CPU and disk. The database disk on Node A was a DEC RMO05
and on Node B a DEC RP06. Each node had a separate system disk, but space on this disk was
not available for our files. Conscquently, the recovery log file had to be on the same disk as the
database. (This would not be done in practice, because a single disk becomes a performance
bottleneck and a single disk failure could destroy the database and the recovery log.)

3 The Queueing Network Model Framework and Assumptions

In the following sections, we present a queucing network model for CARAT using two-phase
locking for concurrency control and before-image journaling for recovery. The model extends
the centralized model used in [IRAN79| and [THOMS2] to a distributed transaction processing
system and includes the effects of journaling and rolling back transactions due to detected dead-
locks. It also takes into account both shared and exclusive locks. Although the model closely
reflects the CARAT testbed architecture and transaction execution, the modeling approach can
he adapted to model other architectures. The choices made here should not. be considered as a
limitation of the general modeling approach.

The queueing network model contains two levels. The high-level model, called the Site Process-
ing Model, represents transaction exceution at a single site of the distributed CARAT system.
The site model represents a single site as a product. form queuneing network with multiple rout-
ing chains [BASK75]. A distributed CARAT system is represented as a set of interacting Site
Processing Models. The interactions of the Site Processing Models for distributed transactions
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are accounted for by including delay servers at which distributed transactions wait for messages
from other sites. The remote requests associated with distributed transactions are modeled as
a separate type of transaction, called a distributed slave.

Since the communication delay for inter-site message passing depends on the characteristics of
the underlying network and the loads from each site in the system, we employ a low-level model,
called the Communication Network Model, to calculate average communication delay, a, for
inter-site messages. For example, in an Ethernet network with high contention, the Ethernet
model proposed by Almes and Lazowska [ALMET9] can be used.

In developing the model, a number of assumptions have been made to match the CARAT
testbed implementation, the test database, and the transaction workloads. These assumptions
are sumimarized below:

¢ The database is partitioned among the sites with no data replication. Each site con-
tains N, granules where each granule contains Ny records. Transactions access records
randomly and uniformly.

¢ There is at. most. one request, being executed per transaction at any point in time. That
is, excepl. for the exeention of the commit protocol, concurrent executions of requests
for a single transaction at multiple sites are not possible. Also, only a single message is
ne('.('ssar_v fnr a T(‘qll(‘st or resp()nso.

¢ Lock requests are uniformly distributed over the lifetime of a transaction and the granu-
larity of a lock request is one database granule, i.e., a database block. The processing of
a lock request, requires no disk 1/0, since the lock table is maintained in main memory.

® There is a finite population of transactions for each transaction type and each transaction
issues a fixed number of requests. Furthermore, cach request retrieves or retrieves and
then updates a fixed number of database records.

¢ Each database granule used by a transaction requires a disk 1/0 operation, i.e, a shared
database buffer is not used to reduce database 1/0.

4 Site Processing Model

The CARAT Site Processing Model, shown in Figure 2, describes the behavior of the trans-
actions at one site in the CARA'T system. ‘I'here are multiple service centers, represented by
circles, in the site model and at any point in time a transaction occupies one service center. The
two queueing centers, CPU and DISK represent the corresponding physical shared resources.
Multiple DISK queuncing centers can be used to represent, multiple disks for the database or
separate disks for the database and recovery log. Only one DISK service center is shown in
Figure 2, since this is the configuration used in onr cmpirical stadies. (The systein disk can be
trnored because no system 1/O was required during the test.) The Lock Wait (1.W), Remote
Wait, (RW), ‘Pwo-Phase Commit. Wait (CW), and TM Server Serialization ('TM) delay centers
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are introduced to model varions synchronization delays encountered during transaction execu-
tion. The User Think-time (UT) delay centers are introduced to incorporate the elfects of user
think time between successive transaction executions.

A transaction enters the LW delay center whenever one of its lock requests is queued, i.e., the
transaction is blocked due to lock conflicts. Similarly, as a transaction exccutes, it enters the RW
delay center whenever it waits for a response for a remote request issued by the TM server on its
behalf. Since a two-phase commit, protocol is executed at the end of a distributed transaction,
the CW delay time is used to capture the synchronization wait time for coordinator-slave
communications. In addition to the synchronization delays discussed above, a transaction may
experience a serialization delay due to contention for the TM server, since there are multiple
concurrent transactions to be serviced by the single server at cach site. The TM delay center
is introduced to represent this serialization delay.

4.1 Transaction Phases

For each of the service centers, we need Lo calculate the service demands required during the
execution of a transaction. Since at any point in time a transaction in the distributed CARAT
system is executed within the context of three types of processes, i.e., User TR, TM server, or
DM server, it is convenient to parlition a transaction execution into a sequence of transaction
phases. As it is executing, a transaction always resides in one of the following phases:

e ‘Iransaction initialization processing (INIT): processing requirements for transaction ini-
tialization.

e User application processing (U): the processing time required for a user application to
prepare and process a request.

e 'TM processing ('M): the time required for the TM server to process a request, including
the time needed to receive and send a local or remote message.

e DM processing (DM): the processing time consumed by the DM server (including 1/0
processing) between two lock requests.

e DM disk I/0 (DMIO): a burst of disk 1/0O operations.

e Lock request processing (LR): the processing time of a lock request, including local dead-
lock detection.

e Lock wait (LW): the blocking time for a blocked lock request..

e Remote request wail (RW): the time a coordinator transaction spends waiting for a re-
sponse Lo a remole request of a slave transaction spends waiting for the next request from
its coordinator.

e Transaction commit. processing (TC): the aggregate processing requirements of the two-
phase commit. protocol, i.c., PREPARE and COMMIT message processing.
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e ‘Pransaction comnit disk 1/0 (‘1C10): the disk 1/0 required to write the commit log

records

e Transaction abort processing (‘TA): the processing time required to roll back an aborted
transaction.

o Transaction abort disk 1/0 (TA10): the disk 1/O required to roll back a transaction.

e Two-phase commit wait for distributed transactions (CW): This can be further cate-
gorized into CWC and CWA phases representing the commit and abort waiting time
respectively.

e Unlock processing (UL): the processing time required to release all locks held by a trans-
acbion.

e User think wait (UT): the time between the completion of one transaction execution and
the initiation of the subsequent execution.

We let I? denote the set of phases, i.e., I? = { INIT, U, TM, DM, DMIO, LR, LW, RW, TC,
TCIO, TA, TAIO, CW, UL }.

To illustrate how a transaction changes its phase during execution, consider an example
transaction execution. A transaction begins in the initialization (INIT) phase in which
TBEGIN/TBEGIN.K and DBOPEN/DBOPEN._K messages are processed. After the INIT
phase, a transaction enters the user application (U) phase which represents an execution of
the user application process. During the U phase, some amount of the CPU resources are con-
sumed by the user TR process to prepare and send a request to the TM server. The transaction
changes to the TM processing phase (TM) when the TM server receives the transaction request
and sends cither a message to a remote site (REMDO message) or a message to a local DM
seever (DOSTEP message). In the case of a remote message, the transaction transits to the
remote request wait. (RW) phase as it is waiting for a response from the remote site. A message
sent Lo a remote site is processed by the TM server at the remote site. This is modeled by a
slave transaction at the remote site that makes a transition directly from the user think (UT)
phase to the I'M processing phase (‘TM). On the other hand, a DOSTEP message signals the
beginning of the DM server processing (DM) phase at the local site. To model the locking
activities of the DM server, a transaction in the DM phase may change into the lock request
(LR) phase whenever the DM server issues a lock request on its behalf. Depending on whether
there .is a lock conflict or not, it may enter cither the lock wait (LW) phase to wait for the
lock or the DM disk 1/0 (DMIO) phase to access data. Since a transaction in the lock wait
phase may become a deadlock victim, it may switch into the transaction abort processing (TA)
phase and then transaction abort disk 1/0 phase Lo begin a sequence of CPU and 1/0O opera-
tions to roll the transaction back. When a transaction ends normally, it enters the transaction
commit processing ('TC) phase and begins the execution of the two-phase commit protocol.
The two-phase commit wail and abort (CWC and CWA respectively) phases are used Lo repre-
sent. the two-phase synchronization time required to commit or abort a distributed transaction.
‘I'wo-phase commit processing requires CPU time as well as 1/0. The CPU time required to
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commit or roll back a transaction is represented in the TC (for commit) and TA (for abort)
phases respectively, while the 1/0 time is represented in the transaction commit disk (TCIO)
and transaction abort disk (TA1O) phases. A transaction ends in the unlock processing (VL)
phase where all its locks are released. After all locks are released, the transaction changes to
the user think (U'T) phase and waits until the next transaction is initiated.

4.2 Transaction Types

As discussed earlier, transactions in the workload are categorized into four transaction types.
It is assumed that there is a finite population of transactions of each type. Local read-only
(LRO) and local update (LU) transactions never enter the remote wait (RW) and two-phase
commit wait (CW) delay centers, since they do not request remote operations. However, dis-
tributed read-only (DRO) and distributed update (DU) transactions perform requests at the
coordinator site as well as al the participating slave sites. Therefore, we represent a distributed
transaction as a collection of single-site transactions. Local operations of a distributed transac-
tion are executed by a coordinator transaction at the coordinator site, while remote operations
are exccuted by a slave transaction at cach slave site. In the Site Processing Model, dis-
tributed read-only (DRO) and distributed update (DU) transactions are decomposed into one
coordinator transaction, referred to as DROC or DUC respectively, and one or more slave trans-
action, referred to as DROS or DUS transactions respectively. Thus, we have six transaction
types in the model: local read-only (LRO) transactions, local update (LU) transactions, dis-
tributed read-only coordinator (DROC) transactions, distributed update coordinator (DUC)
transactions, distributed read-only slave (DROS) transactions, and distributed update slave
(DUS) transactions. Within the model, we let T denote the set of transaction types, i.e.,
T = {LRO, LU, DROC, DUC,DROS, DU S}, and define N(t,t) as the number of type ¢ trans-
actions, t € T, at site 1. For example, if site ¢ has four local read-only transactions and is the
slave site for two distributed update transactions, then N(LRO,{i) = 4 and N(DUS,i) = 2.

Since distributed read-only slave (DROS) and distributed update slave (DUS) transactions
execute remote requests for slave sites that are entered through the network, these transactions
have no user think time associated with them. Consequently, the delay incurred at the UT
center corresponds Lo the time that they lie dormant between the completion of one execution
and the initiation of the subsequent execution. Furthermore, to a DROS or DUS transaction the
remote wait (RW) phase corresponds to waiting for either a subsequent remote request or for
a two-phase commit Prepare request. from its coordinator. On the other hand, to a distributed
read-only coordinator (DROC) or distributed update coordinator (DUC) transaction, the RW
phase corresponds to waiting for the completion of a remote request at a slave site,

5 Transaction Service Demands

In this section we concern ourselves with determining the pariuneters for the gueneing network
in Figure 2. We first caleulate the visit connts, V.(¢,7), ¢« I, the average number of times that
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a type £ Lransaction on site 1 enters phase e, Following this, we determine the service demands

for cach transaction type and site.

5.1  Calculation of Visit Counts

Let pe, o,(1,7), called the phase transition probability, denote the probability that a transaction
of type 1 on site ¢ enters phase eg at completion of phase ¢y. We introduce the following notation:

e [(t): number of local requests by a type { transaction,;

e r(t): number of remote requests by a type ¢ transaction; (Note that r(t) = 0 for t
¢ {LRO, LU});

o n(t): total number of requests by a type ¢ transaction, i.e., n(t) = {(t) -+ r(t);

e ¢(t) mean number of disk 1/0 operations for a request by a type transaction;

e C(t):total number of transitions out of the TM phase, i.e.,,C(t) = 2n(t) 4 1,;

o Pb(t,1): probability that a lock request is not granted to a type t transaction at site ;

e Pd(t,i): probability that a blocked type t transaction at site i is chosen as deadlock
victim;

o Pra(t,{): probability that a type t transaction at a remote wait center at site ¢ is aborted
due to a deadlock detected at the remote site.

When there is no confusion, we will omit the arguments denoting transaction type and site.
The phase transition probabilities for local and coordinator transactions are found in Table 1.

As an illustration for the phase transition probabilities, consider the entries for the TM phase.
The number of transitions into the TM phase for a type ¢ transaction is 2n(t) + 1 because, in
addition to the TEND message, there are n(t) database requests for a transaction and each
request, reguires two transitions to its local TM server. The first corresponds to the processing of
a 'TDO message from the user application process and the second corresponds to the processing
of a DOSTEP.K (or a REMDO_K) message from the local DM server (or from a remote site).
A transaction in TM phase may change its phase to U, DM, RW, or TC, depending on whether
the transaction is exccuted next by the user process, a local DM server, a remote server, or it
begins the two-phase commit. exeention. The relative probabilities of entering DM or RW are
based on the number of local requests or remole requests by the transaction. Thus, we have
praom = U(1)/(2n(t) V1) and pragrw  r(1)/(2n(1) 1 1). A transaction in phase TM changes
its phase to U and TC with probabilities of pprager n(t)/(2n(t) t 1) and ppagze = 1/(2n(1)4 1)
because an execulion of the two-phase commil protocol follows a sequence of n(f) requests.

From Table 1, we can caleulate the visit counts for an execution of a transaction, which may
be committed ar aborted. The visit counts satisly the [ollowing cquations

"’4'—_; }_: "',;' Pepar €20 1. ( l)

Cpt "
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UTINIT 11 TM DM LR DMIO LW RW TC TA PCIO TAIO CWG CWA UL

ny 0 1 0 0 0 0 0 0O 0 o0 o 0 0 0 6 o0
INIT Jo o 1 0 0 0 0 0o 0 o0 o 0 0 0 0 o
I 0O o 0 1 0 0 0 0o 0 o0 0 0 0 0 0 o0
™ [0 o0 nf¢c 0 e o 0 o0 rjeCje oo o 0 0 0 o0
DM 10 0 0 1/{¢q+1) 0 g/(grr1) 0 06 0 0 0 0 0 0 0 o
LR 0O o 0 0 0 0 1-PPL 0 0 o 0 0 0 0o o
DMIOf O 0 0 0 1 0 0 0O 0 0 o0 0 0 0 0 o0
LW 0o o0 o 0 0 0 1-Pd 0 0 0 Pd 0 ] 0 0 O
RW 0 0 0 1 Pra 0 0 0 0O 0 0 Pra 0 0 0 0 0
TC 0o 0 9 0 0 0 0 o 0 0 o 0 0 1 0 o0
TA 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 1 0
TCIO[0O 0 0 0 0 0 (] 0 0 0 o 0 0 0 o 1
TAIO O 0 0 0 0 0 0 0 0 0 o 0 0 0 0o 1
CWCelo o o0 0 0 0 0 0O 0 0 o 1 0 0 0 0
CWALlO 0o o0 0 0 0 0 0O 0 0 o0 0 1 0 0 o
iy, I 0 0 0 0 0 0 0O 0 0 o0 0 0 0 0 0

Table 1: Transaction Phase Transition Probabilities.

Similar expressions for the phase transition probabilities can be obtained for the two slave
transaction types.

5.2 Mecan Number of Disk I/0O Operations per Message Request

We assume that the nuber of database records accessed by transactions of type ¢, denoted by
N (t), t € T, is given as an input, parameter. We also assume that multiple database records
are grouped together and stored as a database granule and the number of database records per
granule, denoted by Ny, is given as an input parameter. The granule is the unit of 1/O transfer
between the stored database and the processor. If we assume that any database record is equally
likely to be accessed by a transaction of type t, then the mean number of granules accessed by
a transaction of type ¢, g(t), can be caleulated using the formula described in [YAO77|. (For
the workloads used in our performance experiments, g(t) is very close to N,(t).) Assuming that
one disk 1/0 operation is required for cach granule accessed and the mean number of disk 1/0
operations required for a request is the same for all sites, then the mean number of disk 1/0
operations required for a type 1 request, (1), can be calenlated as q(t) (1) /n(t).

5.3 Calculation of Service Demands

Caven Lthe visib connts to the different. phases during transaction execution, we can calculate the
mean Lobal service demand to cach serviee center between bwo snecessive transaction commits,
meluding the service demands of unsuccessful transaction executions. The mean total service
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demand is ealenlated as the product of the mean service demand of a transaction execution
and the mean number of transaction submissions for a transaction comnnt.

Let. Nig(t) denote the number of locks requested by a type ( transaction. Assuming that one
lock is requested for each granule accessed, we have

Ni(t) == 1(t) - q(t), tC T. (2)
We can now calculate P4(1,1), the probability that a type ¢ transaction al site ¢ is aborted due
to a deadlock detected either at that site or at one of the remote sites. We have
. 1= (1 Pb(n,6)d(t,d))Nu()] te {LRO,LUY},
Pa(’-)l) - . YN (t) r(t) (3)
Uo(1 - Ph(t,d)Pd(, )N - (1 - Pra()) ™, te {DROC,DUC}.

The mean number of submissions required for a type ¢ transaction at site ¢ to commit, N4(t,1),

15
(43)
1

No(t,d) - DT k(1 - Put, ) Palt, i) = - (4)
k1

N
1 - Pu(t,1)
where k denotes the number of submissions required between two successive commits.

Let, Popy and Py denote the sets of all phases during which a transaction uses the CPU and
1/0 respectively. Let lt‘.(,‘:’"‘)(!,i) and R.(,'“"k)(l,i) denote the CPU and 1/O service requirements
respectively, when a type ¢ transaction is in phase c. Let Ryw(t,1), Rrw (t,7), Rew (t,1), and
Rut(t, ) denote the delay for cach visit to the LW, RW, and CW delay centers respectively.
The service demands at, the different service centers are

Depultyi) = Nu(t,5) Y. Ve(t,i) RE™)(t,4), CPU demands (5)
(1Y

Daisk(t,i) - Ne(t,) Y Ve(t, i) RE4™*)(e,i), 1/O demands (6)
eCPyink

l)l,w(l.,t') - N,(t,i)V,,w(t,i)R,,w(t,i), LW center detnands (7)

Drw(t,7) - N.(t,{))Vew(t,?) Rpw(t,7), RW center demands (8)

Dew(t,8) = N(1,1)Vew(t, 1) Rew(t, 1), CW center demands (9)

The total user think time between two successive transaction commits, excluding the think time
alter a successful transaction execution, is

Dug(t,1) = (N1, 1) -- 1) Rur(t,f). (10)

5.4 Lock Wait Delay

In order to caleulate the mean lock wait time, we first estimate 1?6(2,7), the probability that
a lock request of a type ! transaction at site ¢ is blocked. The approximation of Pb(¢,1) is
obtained by considering Ly(1,1), the time-average number of locks held by a type  transaction
at site i.. We also derive an approximation of P’d(t, 1), the probability that a blocked lock
request of the type t transaction at site 1 is chosen as a deadlock victim. We then show how
the mean lock wait time, Ry (1,1), is caleulated using the mean exeeution time of conflicting
transactions. Bquation (1) can then be used to determine the lock wait delay, Diw(t,?).
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Figure 3: Number of locks held by a transaction vs. time.

5.4.1 Approximation of Average Number of Locks Held

The following derivation of an expression for the time average number of locks held by a
transaction, Ly(f,7), is independent, of the transaction type and the site. Consequently, we
omit, the arguments ¢ and ¢ during the remainder of this section. The lock acquisition behavior
of a transaction is illustrated in Figure 3. From the time the transaction begins, 7o, until it
completes at time 7y, it performs several executions resulting in aborts followed by a successful
execution. Preceding each of these excentions, the transaction incurs a mean user think delay
ltur. The parameters 12y and IR, denote the average execution times for an aborted transaction
and a successfully completed transaction. R denotes the average transaction response time
including aborts and think times,

We are interested in the average number of locks held by a transaction, Ly, during its execution.
We assume that locks are requested uniformly during the execution of a transaction and that
they are released at the end whether it is aborted or completed successfully. That is, locks are
accumulated at a fixed rate for a period equal to the transaction execution time.

Let ¥ denote the number of locks held by a transaction at the end of an aborted execution.
The distribution of ¥ is

PIY - d) = (1 Ph-Pd)Ph-PdJ[L (0 Ph- PG 0 Ny
and the expected value of Y s
FIY] (0 b pd)/(Ph-rd)y (0 PPN I’b-l’«l)N'*I. (11)

Dehne o as the fraction of the mean number of locks held at the time the transaction is aborted
divided by the total number of lock requests. That is, @ IV |/Ny. Observe that R, can be
expressed as I8y o R, as a resalt of the uniform lock acquisition assumption.
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Lel ”5:” and I,r, denote the average number of locks held during a single failed execution and
cnceessiul execution respectively. As aconsequence of the uniform lock acquisition assumption,

these gquantities can be expressed as

« N I,
I,}‘) , y ‘ (12)
! 2 Ryr VR,
oY It N I,
T L BN A L P (13)
2 Ruq 1 13y 2 Rur + o R,

Finally, Ly is expressed in terms of 145:) and "3.” by removing the conditioning on whether the
transaction is successful or not. ‘This resnlts in

L |(Rer t R4 (Rur + RA)L)/[NBur 4 Ny~ 1) Ry + Ry
2\p
Nu‘ N || (l a )l.,]R_.. . (14)
2 ”,,lf[ b1 l’,,)lt’., + Ryt 7

5.4.2 Approximation of Blocking Probabilities

The calculation of Pb(1,1) proceeds in the following way. A request for a shared lock is blocked
if some transaction has an exclusive lock on that granule. A request for an exclusive lock
is blocked if the granule is locked by any other transaction. The mean number of granules
occupied by type t transactions at site 1 is given by N(1,1)Lx(t,7) and since a transaction is
not. blocked by the locks held by itsclf, we have,

Pb(t,i) I (1/N,) [Z:r-{w, prue, pros ) N{G 0 La(t,6) ~ Lh(t,i)] , te&{LRO, DROC, DROS },
UL (NG [ N(E ) La(t,5) - La(t,6), te {LU, DUC, DU(S ).
15)

The probability that a type t transaction at site i is blocked due to lock conflicts, Piu(t,t), can
be estimated as,

Pro(t,6) = 1 - (1= Pb(t,))Net). (16)
When Pb(1,1) is small, I7,,(t,i) can be approximated as Ny (t) - Pb(t,1).

Let PB(t,s,t) be the conditional probability that a type ¢ transaction is blocked by a type s
transaction at site 1, given that a lock request of the type ¢ transaction is blocked at site 1.
That is,

. , - . N(s.1) Ln(s,1)
PB(t,s,d) Pl is blocked by s at 1] 1 is blocked at. i - et (1T)
: Noer N(r, ) Lp(r,?) - Lp(t,1)
Lore? ' ) )

5.4.3 Approximation of Prohability of Deadlock

We want to estimate the conditional probability, I’d(1,1), that a transaction of type t is the
victim of a deadlock, given that a lock request of the transaction is blocked at . Since it
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has been observed that most deadlock cyeles are of length two |GRAYS81|, we approximate the
probability of deadlock by considering only two-cycle deadlocks. ‘Fherefore, our estimations
for the probabilities of local and global deadlocks are only first-order approximations. Note,
however, that by observing the relative frequencies of more-than-two-cycle vs. two-cycle dead-
locks in the experiments, we can determine an adjusting factor for cach workload. Both local
and global deadlocks are considered in our estimate of Pd(t,1). For a two-node system such as
our experimental environment,, the conditional probability of global deadlocks is approximated
by considering only two-cycle global deadlocks involving two distributed transactions. Obvi-
ously, this is rather restrictive considering that a global deadlock may involve both local and
distributed transactions. However, the probability of global deadlocks is comparatively smaller
than that of local deadlocks, the underestimation of P4(t,f) should not be a significant factor
for most. workloads. ‘The derivation, shown in [J ENQ86], is omitted here.

5.4.4  Approximation of Blocking Time

Let. RLT(2,1) denote the average time that a transaction at site ¢ is blocked by a type t

transaction. lock. Using renewal theory arguments, we have derived the following expression

for RLT(t,7) under the assumption that aborts occur rarely, i.c., Pd(t,1) = 0 (see [JENQS8)),
N 2le(t) 41

RLT(1,1) ~ 6N (1) R(t,1) (18)

We define the blocking ratio, BR(t,1), as the ratio of the mean time that a type ¢ transaction
blocks other transactions divided by the mean response xecution time of that transaction. That

(B

‘ INu(t) 11

BR(1,7) ENui)

(19)
Observe that BR(1,1) is independent. of the site. Consequently, we omit the argument . observe
also that BR(1) s approximately 1/3. This is in agreement with our experimental results where
BI(1) was in the range of 0.23 to 041, An analysis of blocking by Yu, et al. [YU85] reached
similar conclusions.

Let PB(1,5,1) be the conditional probability that a type ¢ transaction at site ¢ is blocked by a
type s transaction also at site £, given that a lock request of the type t transaction is blocked.
Then, the delay time at the LW delay center for a type ¢ transaction is

R (1,0) D" PBULs, i) RLT(s. 7). (20)
T

5.5 TM Serialization Delay

The TA server i the CARAT system is equivalent to a eritical seetion in manipulating the
shared bookkeeping dita structures. The serialization delay dne to contention for ‘I'M is a
factor i transaction response time. However, the processing by the ‘I'M server consists only
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Coordinator:
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I R R R B » Time
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$V: Service, RW: Remote Wait, UT: User Think

Figure 4: Coordinator remote wait vs. time.

of a burst of CPU time, except at the commit time. To commit a transaction, the TM server
at originating site must force-write a commit log record to the log file. If the force-write
disk 1/O time is small compared to the transaction response time, the net impact of ignoring
serialization delay should be very small. Thus, this serialization delay is not considered in the
implementation of the solution procedure for the model. However, the reduction technique for
analyzing serialization delay [JACO83| can be applied if the serialization delay is to be taken
into account..

5.6 Remote Request Wait Delay

The mean remote request wait time, Rpw(t,t), for a coordinator transaction of type t at
site i, £ ¢ {DROC, DUCY, corresponds to the mean response time of a remote request plus
the round trip network communication delay. The mean response time of a remote request

equals the mean slave request, response time of the corresponding slave transactions of type s,
se {DROS, DUSY, at the slave sites, S(1).

The mean slave request response Lime can be calculated from R(s, 7), the mean response time
of the slave transactions of type s at site j, 7 «. S(t). However, as shown in Figure 4, the
contributions of the remote wait time, Dgw (s, 7), and the inter-transaction time, Dut(s, ), of
the slave transaction to I2(s,7) shonld be excluded. That is, the slave request response time
consists only of the service times at. the CPU, Disk, and LW service centers. Since the number
of the remote requests issued by the coordinator transaction between two successive comniibs
is No(t,1) - (1), we have,

£l HVROS.J) D (PROS.5)  Dur(DROSI -

Raw (DROC,E) 2o |
aw ( 1) 2w N{DROC, T {(DROC)
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and,

}_;J,.q(’), R( DUS 7} Dpw( DUS, j) I)UT(I)US,j)I

R/gw(l)l’(,', f) 2 v | ‘
N_.(’)U(,',i)-r(')”(,') '

(22)

where o denotes the communication delay. The mean remote request wait time, Rew (s, 7), for
a slave transaction at site 7, s ¢ {DROS, DU S}, corresponds to the mean elapsed time between
the end of a remote request Lo site 7 and the initiation of a subsequent remote request, to site 3 by
its corresponding coordinator transaction of type  at the coordinator site 1, ¢ € {DROC,DUC}.

For the remainder of this section we introduce the parameter J(t.1,7) as the fraction of remote
requests that a distributed transaction at site ¢ makes to site 7, j ~= ¢. This must be input to
the model. Since a slave transaction is in remote wait state when its coordinator or other slave
transactions are serving the user transaction, we can calculate Rpw(s,7) by R(t,?), the mean
transaction response time of its corresponding coordinator transaction. The total amount of
time a slave transaction spends in the remote wait state is R(t,1) excluding the remote wait

time the coordinator spends waiting for the slave transaction, i.c., R(t,7) - Dpw(t,1)- f(t,1,7).
Hence, we have,

Rew(DROS, j)  FUWROCH) Dy (DROC,i)- [(DROC,i,5) - Dur(DROC,i)
R S5 N.(DROS, ) -1(DROS) P )

and,

ADUC, 1 e ) - JC 1, 7) - . ]
Rpw (DUS, ) - RDUC,1)  Dpw (DUC,5) - [(DU ._1,'_3:7_)._..__p‘_.’f’.g?(_]f_’.’..).'

N.(DUS,3)-I(DUS) (24)

5.7 Two-phase Commit Delay

The two-phase commit delay time for a transaction of type t, t ¢ {DROC, DUC}, consists of
Lwo components: the commitl processing time at the slave sites and two round trip communi-
cation delay for the two-phase commit protocol. For a successful exccution, a DROC or DUC
transaction waits for all the DROS or DUS transactions at its slave sites for acknowledgments
to the PREPARE and COMMIT messages. Since the two-phase commit messages are processed
in parallel at the slave sites, the two-phase commit delay time, Rew (), is the maximum of the
differences in the commit processing time al the slave sites and the coordinator site plus the
communication delay. The commit processing time includes the CPU and 1/0 times spent in
the TC and TCIO (or TA and TA10) phases.

6 Model Solution and Validation

The model 15 solved iteratively using equations 5 through 10 in Section 5.3, Observe that
cquations 7 through 10 depend on guantities that are function of the performance neasures
of the model. Consequently we use an iterative procedure to obtain values for the service
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requirements of the LW, RW CW _and U'T service centers so that the relations in equations 7
throngh 10 are satisfied. Each step of the iteration requires that the site model for cach site be
solved. This is done using the Mean Value Analysis alporithm for product form networks.

In order to validate the model against empirical measurements, we conducted a scries of ex-
periments with the CARAT testbed to obtain performance data for different workloads. From
these experiments we obtained the basic parameter values nceded for the model, parameters
that are independent, of the specific workload, as well as empirical values for system performance
measures that the model is expected to predict. We first discuss the basic parameter values
and then the system performance measures for the four multi-user workloads (LB8, MB4, MBS,
and UB6) introduced in Section 2.

As shown in ‘Table 2, there are six basic parameters for each transaction type t at each site
(node) 1. Other parameter values used by the model are derived from these basic parameters.
Fach of the parameters corresponds to the CPU or disk 1/O requirements for a transaction
phase, such as user application processing (U), T™ processing (TM), lock request processing
(LR), DM disk 1/O (DMDIO), cte. In addition to thesc values, we also measured the CPU
times required for the ‘I'M server Lo receive, service, and then send a local or remote message.
The additional CPU times required to send or receive network messages for the distributed

read (DR) and distributed write (DW) transactions are reflected in R-(;K:), the mean CPU

requirements for the TM phase for that transaction type. Therefore, Rgfﬁ‘) for the DRO and
DU transactions are larger than those of the local read-only (LRO) and local update (LU)
transactions. Note that the mean CPU time for a lock request, R}f,’;"), includes the CPU cost
for local deadlock detection and the user think time, Ry, is set to be zero. Also note that

R;;i;:,';)(,, the disk 1/Q requirements to read or update a database record for a transaction in

the DMIO phase, for the LU and DU transactions are three times larger than lig‘;}’;)o for the
LRO and DRO transactions, because three disk 1/0 operations, (one read operation to the
database file, one write operation to the journal file, and one write operation to the database
file) arc nceded to update a database record, while only one read operation is needed to read
a database record. Since only two active nodes were used in the experiments, it turned out
that the average Ethernet communication delay, «, was relatively small and therefore could be
neglected in the computation. Based on these basic parameters, the resource requirements for
cach transaction phase was calculated [JENQS86)].

Other important parameters that were calculated using the equations discussed in this paper
arc the blocking probability, I’b(1,1), the deadlock probability, Pd(t,1), and the mean blocking
ratio, BR(t). The mean blocking ratio is an impaortant, parameter for the estimation of the
mean blocking time of a blocked lock request. Based on our analysis we nsed BR(t) — 1/3.
This value is in agreement. with the resnlts from measurements.

We now present. the modeling results and compare the data against the performance measures
obtained in the experiments. ‘The number of requests for per transaction, n, was varied from 4 to
20 for each workload Lo investigate Lhe sensitivity of the results to the length of the transactions.
Longer transactions encounter a higher probability deadlock. We use T'R-XPUT and Total-
CPU refer to the total transaction throughput and the total CPU utilization, respectively, at
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Node v ™ ) | e300 | by [l | sk R () |

A LRO 7.8 8.0 5.4 by 1.5 280
LU 7.8 8.0 8.6 2.2 2.5 84.0

“DRO 78 12.0 5.4 2.2 1.5 28.0
~_bu 78 12.0 8.6 2.2 2.5 84.0
B LRO 738 8.0 54 2.0 1.5 | 400
LU 7.8 8.0 8.6 2.2 2.5 120.0

DRO 7.8 12.0 5.4 22 1.5 40.0

DU 7.8 12.0 8.6 22 2.5 120.0

Table 2: Basic Parameter Values (milliseconds).

Node.A or Node_B. The Total-DIO for the measured data denotes the total disk 1/0 rate. The
unit of disk 1/0 was the database granule, a disk page of 512 bytes. The disk 1/O rates for
the model were caleulated from the the disk utilization, predicted by the model, and the disk
service rates. Figures 5 through 10 compare the model predictions with measurements for the
1.38 and MB4 workloads. Becanse the results are displayed for different transaction sizes, n, the
transaction throughput data has been normalized by multiplying the transaction completion
rate (transactions/second) by the transaction size (database records accessed/transaction) to
give a transaction rate in database records/second.  Notice that the normalized transaction
throughput. decreases as the transaction size, n, increases beyond n - 8. This is due to an
increase in data conflict and rollback caused by deadlocks. The probability that a transaction
deadlocks inereases rapidly with n. Similar data is given in tabular form for the MB8 and U6
workloads in Tables 2 and 4. Furthermore, in order to validate the model for cach transaction
type, we also compared the modeling results for cach type against the measnrement data in the

MB4 workload. as shown in Table 5.

The modeling results agree quite well with the measured data for all the workloads and for each
transaction type. Note, however, that the maximum deviation generally occurs in the cases with
the smallest transaction size, i.e., when n - 4. This can be explained by the fact that, in our
inplementation of the solution procedure for the model, the ‘T'™M serialization delay was ignored.
For the small transaction sizes, the rate at which messages are sent to the TM server increases
and the effects of synchronous disk writes (force-writes by the ‘I'M server process Lo the recovery
log) in the two-phase commit execution is more signilicant. Becanse the ‘I'M serialization delay
1< significant, the modeled disk 170 rates, and thus, the transaction throughputs, are higher in

the model than i the real system.
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MBS

* Test,

URG |

T'est.

n
! N()(l(?
1 A
B
8 A
I3
12 A
B
16 A
B
20 A
B

n

6

{20

_ Node

B
A
B

B
A
B

], ‘ Mcasurement, "'K/ivc)a;ii;ghmq“_.
L TR | Total TTotal |7 7PR | Total | Total |
xput | cru |l pio | xeur | cpu | pro
094 045 T289 | 117 {085 | 35.1
0.72 1036 1 219 § 079 | 042 | 25.0
045 | 0.36 | 28.1 051 | 045 | 32.8
039 | 032 | 232 | 041 | 036 | 21.6
023 | 031 1263 [ 027 1033 275
0.21 | 027 225 || 023 | 029 | 2266
0.15 | 026 | 234 | 0.14 | 0.26 | 25.6
0.02 | 025 | 230 || 0.3 | 023 | 21.4
000 | 027 7 239 | 009 [027 | 308
0.08 | 0.26 | 238 | 008 | 0.22 | 23.6

Table 3: Model vs. Measurement, Results (MB8).
"i\'i(-:{sur'e‘{ucini ' ‘ ~ Modeling -
TR | Total | Total | TR | Total | Total
XPUT | ¢PU ! DIO | XPUT | CPU | DIO
099 | 044 . 296 | 113 [ 051 | 351 ]
0.70 | 033 209 | 081 | 039 | 249
053 | 0.38 1 309 | 056 | 044 | 33.7
020 | o030 232 | o042 | 034 | 246
027 | oar [ 282 0327 035 [ 302
021 [ o2 227 | 024 | 028 | 23.1
015 [ o2r T 210 | oar | oes | 279 ¢
014 o2z 2ol o4 | oea | 218
o0 L o2y o249 o0 o2 | 302
0.08 (1,22 21.3 0.0K8 0.21 22.8

B

Table 4: Model vs. Measurement Results (UBG).
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' XPUT Mcasurement. | M—odd:__

| n [ Type | Node A" Node B | Node A | Node B

[ 4 | LRO| 0.39 025 | 046 | 0.29

| LU 0.19 0.11 0.21 0.12

| DRO | 022 0.22 0.25 0.25

' N1 0.1 | oo 0.11 0.11

s |TRO | o020 TT03 | 022 | 014 |

| LU 0.10 | 007 0.11 0.06
DRO| 014 ¢ 0.14 0.14 0.14

1 DU 0.07 0.06 0.06 0.06

12 LRO | o.nt 0.08 0.12 0.08 |

'; LU 0.06 0.04 0.06 0.04
DRO | 0.09 0.08 0.09 0.09
DU 0.04 0.03 0.04 0.04

|

|

!

i

i

116 | LRO | 007 005 0.07 0.05

LU | 0.04 % 0.03 0.03 0.02
|
|

| |pro| o005 | 007 | o006 | 006 |
DU 0.03 0.02 0.03 0.03 |

£ 20 | LRO 005 004 1 oo4 ] 6;65Wl

5 LU 0.02 0.02 0.01 0.01

| DRO | 0.04 0.04 0.04 0.04 i

, pu | ooz | o001 | 002 002 |

Table 5: Model vs. Measurement. Throughput. Results for Each TR Type (MBA).
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7 Conclusions

We have developed a quencing network model to analyze the performance of a distributed
database testbed system. The model includes the effects of the concurrency control proto-
col (two-phase locking with distributed deadlock detection), the transaction recovery protocol
(write-ahead-logging of before-images), and the commit protocol (centralized two-phase com-
mit). The model has been validated against empirical measurcments.

The study differs from other studies in that it presents a model for a functioning distributed
transaction processing system. The model must consider the effects of the transaction workload,
the two-phase locking scheme, the recovery and journaling costs, etc..

We have validated the queneing network model for a variety of workloads using the data ob-
tained from performance measurements. Note, however, that the approximation of Pd(t,1),
the probability of local and global deadlocks, did not include deadlock cycles of length greater
than two. Even thongh deadlock cycles of length greater than two are relatively rare compared
to two-cycle deadlocks, it is not insignificant as the transaction size gets larger and the multi-
programming level goes up. Therefore, it would be useful to derive a more accurate model for
Pd(t,7) in a multi-node distributed transaction processing environment.

This modeling study does not. answer all the important questions, but it establishes a framework
for further modeling studies. In order to make practical use of this model in a more general
environment than we have investigated, the model should be extended to account for such
things as multiple parallel requests, nonuniform and nonrandom database access patterns, the
effects of database buffering, and more complex transaction behavior.

Acknowledgments. The autors would like to acknowledge and thank the referees for their careful
reading of the original manuseript and their suggestions for improving the presentation.

References

[ALMET9} G. Almes and E. Lazowska, “The Behavior of Ethernet-like Computer Commu-
nication Network,” Procecdings 7th Symposium on Operaling System Principles,
1979.

[AGRA85%a] R. Agrawal, M. J. Carey, and M. Livny, “Models for Studying Concurrency Con-
trol Performance: Alternatives and lmplications,” ACM SIGMOD International
Conference on Management of Data, 1985, pp. 108-121,

AGRABSD] R Agrawal and D. J. DeWitt, “Integrated Concurrency Control and Recov-
ery Mechanisms: Design and Performance Evaluation,” ACM Transactions on
Database Systems, Vol 10, No. 4, December 1985, pp. H29-564.

|HASK75} 1. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios, “Open, Closed, and Mixed
Networks of Quenes with Different. Classes of Castomers,” J. ACM, Vol. 22, No. 2,
Apnil 1975,



REFERENCES 28

[BIERNK2]

[CARESA)|

[CERI84|

CHANB8O|
[CHANS3|

|CHES83)

|CORNSG)|

[FRANSS)

|G ALLS2

[GARCTY|

[GRAYTY]

CRAYSI|

HRANT79]

I Bernstein and N. Goodman, “A Sophisticate’s Introduction to Distributed
Database Coneurrency Control,” Research Report, TR-19-82, Harvard University,
also Sth Intl. Conferenee on Very Large Dala Bases, September, 1982

M. Carey and M. Stonebraker, “The Performance of Concurrency Control Algo-
rithms for Database Management Systems,” Tenth International Conference on
Very Large Data Bases, August 1984,

S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems, McGraw-
Hill, New York, 1984,

K. M. Chandy and . I, Sauer, “Computational Algorithms for Product Form
Queucing Networks,” Communications of the ACM, October 1980.

K. M. Chandy, J. Misra and L. M. Haas, “Distributed Decadlock Detection”, ACM
Transactions on Computer Systems, Vol. 1, May 1983, pp. 144-156.

A. Chesnais, E. Gelenbe and L Mitriani, “On the Modelling of Parallel Access to

Shared Data,” Communications of the ACM, Vol. 26, No. 3, March 1983, pp. 196-
202.

. W. Cornell, D. M. Dias, P.S. Yu, “On Multisystem Coupling Through Function
Request, Shipping,”™ 1IEEE Trans. on Software Engincering, Vol. SE-12, No. 10,
October 1986, pp. 1006-1017.

P. Franaszek and J. ‘I Robinson, “Limitations of Concurrency in Transaction
Processing,” ACM Transactions on Database Systems, Vol. 10, No. 1, March 1985,
pp. 1-28.

B. Galler, “Concurrency Control Performance Issues,” Ph.D. dissertation, Univer-
sity of ‘Toronto, September 1982,

H. Garcia-Molina, “Perforimance of Update Algorithms for Replicated Data in a
Distribited Database,” Ph.D. Dissertation, Computer Science Department, Stan-
ford University, 1979.

J. N CGray, “Notes on Data Base Operating Systems,” in Operaling Systems: An
Advanced Course, R. Bayer, R. M. Graham, and G. Secgmuller, Editors, Springer
- Verlag, 1979, pp. 393-481.

J. N Gray, P Homan, R. Obermack, and . Korth, “A Straw Man Analysis of
Probability of Waiting and Deadlock,” IBM Rescarch Report R 3066, 1981,

K. B. Irani and 1. Lin, “Queuncing Network Maodels for Concurrent ‘Transaction
Processing in a Database System,” ACM SIGMOD International Conference on
Management of Data, 1979, pp. 134-142.



REFERENCIES ) : . 29

[IACO83]

[JENQSG|

[KLEITS)

|KOH1L86a]

|KOHL.86b)

[KRON86)

[KUNGSI|

[MENAS2]

INAKAS2]

POTI8N)

[RIESTT]

IRIEST79a]

[RIESTOh

P. Jacobson and . Lazowska, “A Reduction Technigue for Evaluating Queueing -
Networks with Serialization Delays,” Proccedings of IFIP W.G.7.8 International

Symposium on Computer Performance Modeling, Measurement, and FEvaluation,
1983.

B. P. Jenq, “Performance Measurement, Modelling, and Evaluation of Integrated
Concurrency Control and Recovery Algorithms in Distributed Database Systems,”
Ph. D. Dissertation, Departient of Electrical and Computer Engincering, Univer-
sity of Massachusetts, Amherst, February 1986.

L. Kleinrock, Queneing Systems - Volume 1, John Wiley and Sons, 1975.

W. H. Kohler and B. P. Jenq, “Performance Evaluation of Integrated Concur-
rency Control and Recovery Algorithms Using a Distributed ‘Ivansaction Process-
ing ‘Testhed,” Sizth International Conference on Distributed Computing Systems,
Cambridge, MA, May 1986, pp. 130-139.

W. H. Kohler and B. P. Jenq, “CARAT: a Testbed for the Performance Evalu-

ation of Distributed Database Systems,” 1986 Fall Joint Computer Conference,
November 1986, to appear.

N. P. Kronenberg, . M. Levy, W. D. Strecker, and R. J. Merewood, “VAXclus-
ters: A Closely-Coupled Distributed System,” ACM Transactions on Computer
Systems, Vol. 4, No. 2, May 1986.

H.T. Kung and J. 1. Robinson, “On Optimistic Methods for Concurrency Con-
trol.” ACM Transaction on Database Systems, Vol. 6, No. 2, Junc 1981.

. Menasce and 'I'. Nakanishi, “Optimistic Versus Pessimistic Concurrency Control

Mechanisms in Database Management Systems,” Information Systems, Vol. 7, No.
1, 1982,

T. Nakanishi and D. Menasce, “Performance Evaluation of a ‘I'wo-Phase Commit
Based Protocol for DDBs,” ACM Principles of Database Systems, March 1982.

D. Potier and P. Leblanc, “Analysis of Locking Policies in Database Management,
Systems,” Communications of the ACM, October 1980,

D. Ries, “Effects of Locking Granularity in a Database Management. System,”
ACM Transaction on Database System, September, 1977,

D. Ries, “The Effects of Coneurrency Control on the Performance of a Distributed
Data Management System,” Proceedings of fth Berkeley Waorkshop on Distributed
Data Manag-ment and Computer Network, 1979

DR Ries and M. R. Stonebraker, “Locking Granularity Revisited,” ACM Trans-
action on Database System, June 1979,



REFERENCES i 30

STON83|

[TAYSS)

[THOMS2)

[THOMSS)

[YAOTT|

[Yuss|

M. Stoncbraker, et al., “Performance Analysis of Distributed Data Base Systems,”
Procecdings Third Symp. on Reliability in Distributed Software and Database Sys-
Lems, October 1983, pp. 135-138.

Y. C. Tay, N. Goodman and R. Suri, “Locking Performance in Centralized
Databases,” ACM Transactions on Database Systems, Vol. 10, No. 4, December
1985, pp. 415-462.

A. Thomasian, “An Iterative Solution to the Queueing Network Model of a DBMS
with Dynamic Locking,” 18th Computer Mcasurement Group Conference, Decem-
ber 1982, pp. 2562-261.

A. Thomasian, “Performance Evaluation of Centralized Databases with Static
Locking,” IEEE Transaction on Software Engineering, Vol. SE-11, No. 4, April
1985.

S. B. Yao, “Approximating Block Accesses In Database Organizations,” Commu-
nications of the ACM, April 1977.

. S. Yu, D). M. Dias, J. I'. Robinson, B. R. lyer, and D. Cornell, “Modeling of
Centralized Concurrency Control in a Multi-system Environment,” Performance
Evaluation Review, Vol. 13, No. 2, (Proc. 1985 ACM SIGMETRICS Conference),
pp. 183-191.



