7S

“*

Experiments in Constrained Expression Analysis
George S. Avrunin

COINS Technical Report 87-125
November 1987

Software Development Laboratory
Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

‘This rescarch was partially supported by the Defense Advanced Research Prajects

Agency (ARPA Order No. 6104) Lhrough National Science Foundation grant
CCR-BTO417R.

n

TS

1 Introdiiction

This report describes some experiments in analyzing concurrent software sys-
tems using the constrained expression formalism [1,6]. The primary analysis
techniques used are the inequality-based methods of (1] and (2], and the major
goal of these experiments is the identification of useful heuristics for generat-
ing the necessary systems of inequalities. In particular, we are interested in
determining the extent to which this process can be automated.

A couple of warnings to the reader are in order. First, this report is a
description of the actual analysis of some distributed systemns, and not an outline
of how such an analysis might be most efficiently or elegantly conducted. We
learned many things about our methods during these experiments, and this is
reflected in changes in their application as the analysis progressed. Second,
we assume that the reader has some familiarity with the constrained expression
formalism and the design language CEDL. The material in {1] and 3] is probably
sufficient background for the reader who it familiar with Ada and willing to
struggle a bit with the constrained expression formalism. For fuller descriptions
of constrained expressions and CEDL, the reader should also consult (6] and [4).

The systems analyzed in this report are based on the automated gas station
examples given by Helmbold and Luckham in [7] to illustrate their run-time
monitoring approach to debugging Ada tasking programs. These examples rep-
resent a number of iterative corrections to a system representing an automated
self-service gas station, in which customiers repeatedly prepay, pump gas, and
collect change. In the examples, the customers, the pumps, and a central oper-
ator are all represented by Ada tasks, and a number of packages are provided to
queue the customers, generate the amounts prepaid and pumped, and so forth.
In the systems described by Helmbold and Luckham, there are three pump tasks
and ten customer tasks.

For these experiments, we translated three of Helmbold and Luckham’s sys-
tems into CEDL, an Ada-based design language we have developed for use with
the constrained expression formalism. A detajled descriptions of CEDL is given
in [4]. CEDL fociises on the expression of communication and synchronization
among the tasks in a concurrent system, and language features not related to
concurrency are kept to a minimum. Thus, for example, data types are limited,
but almost all of the Ada control-flow constructs and the various forms of the
Ada select statement have correspondents in CEDL.

In addition to translating these systems into CEDL, we reduced their size to
make it practical to carry out the analysis by hand. The effects of this reduction
on the behavior of the systems will be explored in later sections.

We do not present a complete analysis of the three systems here. Instead
we focus on a single question. Phrased in terms of the gas station that these
systems model, that question is: Does a customer who prepays always get to
pump gas? In the following sections, we will show how this question can be
answered by the constrained cxpression analysis techniques.

I3

‘2. A Two-Customer System
2.1 The CEDL System

In this section, we analyze 2 CEDL systemn representing an automated self-
service gas station with one pump and two customers. Our goal is to determine
whether a customer who prepays can then always pump gas. The task and
package declarations for this system are shown in Figure 1, and the task bodies
are shown in Figures 2 and 3.

In this system, customers repeatedly arrive at the gas station and prepay for
gas. This is represented by the rendezvous between a CUSTOMER task and the
OPERATOR task at the PREPAY entry of the OPERATOR. If no customer is waiting,
the operator activates the pump. Otherwise, the operator enters the customer’s
request in a queue. These activities are represented by statements in the PREPAY
alternative of the select statement in the OPERATOR body.

After prepaying, a customer goes to the pump and starts it, pumps gas,
and then stops the pump. These activities are represented by the two calls
Lo entries of the PUMP in the body of the CUSTOMER task. The customer then
collects change from the operator, as indicated by the accept statement in the
body of the CUSTOMER task.

After a customer has shut it off, the pump reports to the operator. This
is modelled by the call to OPERATOR.CHARGE in the accept FINISE PUMPING
statement in the body of the PUMP task. The operator, who waits for a customer
to prepay or for a report from the pump, gives change to the customer after
this report. If another customer is waiting, the operator then reactivates the
pump. These aclivities are modelled by the statements in the accept alternalive
for CHARGE in the OPERATOR task body.

‘This system is a CEDL version of the second example studied by Helmbold
and Luckham in [7]. The most significant difference between our system and
theirs is that we have reduced the number of customers to two and the number
of pumps to one in the CEDL system. These reductions were made to keep the
constrained expressions small enough to analyze by hand. The other differences
result from the focus on concurrency in CEDL, and the consequent limitations
on data types and packages. Thus, we use the variables CURRENT and WAITING in
the CEDL system to keep track of the customers, while Helmbold and Luckham
use a queue provided in a separate package.

2.2 The Task Expressions

To begin our analysis, we must first obtain a constrained expression represen-
tation for this system. Translation rules for producing constrained expression
representations from CEDL designs have been developed jointly by Laura Dil-
lon at the University of California, Santa Barbara [3] and Usha Sundaram, Jack
Wileden, and the author al the University of Massachusetts, Amherst. In Fig-

package COMMON is
type C_NAME is (c1,c2); -- names for two customers
type COUNTER is (zero,one,two,three);
-- enough to handle 3 customers
end COMMON;

use COMMON;

task OPERATOR is
entry PREPAY(CUSTOMER_ID : in C_NAME);
entry CHARGE;

end OPERATOR;

task PUMP is
entry ACTIVATE;
entry START_PUMPING;
entry FINISH_PUMPING;
end PUMP;

use COMMON;

task CUSTOMER_1 is
entry CHANGE;

end CUSTOMER_1;

use COMMON;

task CUSTOMER_2 is
entry CHANGE;

end CUSTOMER_2;

Figure 1: Task declarations for the two-customer system

"

1.

use COMMON;
task body OPERATOR is

CUSTOMERS : COUNTER := zero;
CURRENT, WAITING : C_NAME;
begin
loop
select

accept PREPAY(CUSTOMER_ID :
if CUSTOMERS = one then

CURRERT := CUSTOMER_ID;
PUMP.ACTIVATE; ‘
else

WAITING := CUSTOMER_ID;

end if;

end PREPAY;

or

accept CHARGE;

if CURRENT = c1 then
CUSTOMER_1.CHBANGE;
else
CUSTOMER_2.CHANGE;

end if;

: in C_NAME) do
CUSTOMERS := CUUNTER’Succ(CUSTDHEES);

== if no previous customer
-- is waiting

—-- mark this one as current
-- and activate the pump

-- otherwise, mark this one
-- as next in line

CUSTOMERS := COUNTER’pred(CUSTOMERS);

if CUSTOMERS > zero then
CURRENT := WAITING;

PUMP.ACTIVATE;
end if;
end select;
end loop;
end OPERATOR;

if another customer is
waiting, promote that one
to be current

and activate the pump

Figure 2: Body of the OPERATOR task

task body PUMP is
begin
loop
accept ACTIVATE;
accept START_PUMPING;
accept FINISH_PUMPING do
cee -- compute charge for this transaction
OPERATOR .CHARGE; —-- report charge to operator
end FINISH_PUMPING;
end loop;
end PUMP;

use COMMON;
task body CUSTOMER_1 is
begin
loop
OPERATOR.PREPAY(c1);
PUMP .START_PUMPING;
PUMP.FINISH_PUMPING;
accept CHANGE;
end loop;
end CUSTOMER_1;

use COMMON;
task body CUSTOMER_2 is
begin
loop
OPERATOR.PREPAY(c2);
PUMP.START _PUMPING;
PUMP.FINISH_PUMPING;
accept CHANGE;
end loop;
end CUSTOMER_2;

Figure 3: Bodies of the PUMP and CUSTOMER tasks

~

ures 5, 6, and 7, we show task expressions corresponding to the tasks in our
system. These task expressions have been derived using the translation rules of
[3]*, put into reduced form [5] and then simplified further. The line numbers in
these figures are included for reference. The event symbols used in the task ex-
pressions are essentially those of (3], with some simplification and abbreviation.
A table showing the symbols and the associated events is given in Figure 4.

To begin the analysis, we must formulate our question about the gas station
in terms of the appearance of patterns of symbols in the interpreted language of
the constrained expression representation of that system. Our original question
was: Does a customer who prepays always get to pump gas? Prepaying is
modelled by a rendezvous between the CUSTOMER and OPERATOR tasks at the
entry OPERATOR . PREPAY and pumping is modelled by a rendezvous between the
CUSTOMER and PUMP tasks atl the entry PUMP.START_PUMPING. In the bodies of
the CUSTOMER tasks, the call to OPERATOR.PREPAY is followed immediately by
the call to PUMP.START_PUMPING. Therefore, the only way that a customer can
prepay but fail to pump is for the CUSTOMER task to starve calling the entry
PUMP.START PUMPING. 1

In terms of the CEDL system, then, we may phrase our question as: Is there
a behavior of the system in which one of the customer tasks starves waiting
to call the PUMP.START_PUMPING entry of the pump task? The corresponding
question for the constrained expression representation is: Is there a constrained

!The trenslation rules used here differ from those of [3] in one respect, the handling of
kill rend and dead.rend symbols. The translation rules of [3] use an expression kill_exp,
which is defined to be A if the statement S being translated does not lie in the scope of any
accept statements. If S does lic in the scope of accept statements,

kill exp = V kil rend(T', E'),
T’(rcullera(E‘)

where E' denotes the entries Ej,...,F; sssociated with the accept statements in which S is

nested and callera(E') is the sct of all n-tuples (T}, ..., T?) such thet the tasks T,,1<k<n,
are distinct and T}, calls Ej. In this case, the expression kill_ezp hos an alternative for each
passible sequence of Lasks calling the entries in which S is nested.

In the case where § lies in the scope of one or more accept statements, we have defined
kill exzp somewhat differently. We take

kill ezp = kill rend(E'),

where, as hefore, E' denntes the entries E{ v+« EL associated with the accept statements in
which S is nested. We then replace the contraint of type (12) of [3] by

Av (kill_rend(E) @ V dead .rend(T, E)).
TEtaHers(E)

One such constraint is required for cach entry E.
This modification of the translation rules produces somewhat simpler task expressions, espe-

cially when accept statements are deeply nested, and facilitates the generation of inequalities
for analysis.

6

[Symbol 1 7 7 Associated event o]

[def(V.) [Variable V is assigned the value v _ —
use(V,v) Variable V is presumed Lo have the value v
ml‘a.f;g-laop(l,) “| Begin execution of loop L
call(T,E) Task T calls entry E

beg-rend(T,E) Begin rendezvous with task T at entry E
end_rend(T,E) | End rendezvous with task T at entry E

resume(T,E) Resume task T after rendezvous at entry E
starve (T,E) Task T starves on call to entry E
starve,(E) Task starves waiting to accept a call at entry E

kill_rend(()E) Rendezvous at entry E is aborted

dead_rend(T,E) | Rendezvous with task T at entry E is assumed to abort
stop(T) Execution of task T stops

In the symbols used in the task expressions, the task name CUSTOMER i is abbreviated to Ci,

PUMP is sbbreviated to P, and OPERATOR is abbreviated to 0. Variable and entry names arc also
abbreviated.

Figure 4: Event Symbols and Assoicated Events

prefix containing a starve.(Ci, P.start) symbol, for i = 1 or 2?

To answer this question, we assume that there is such a prefix and gencrate
a system of inequalities involving the number of occurrences of other event
symbols in segments of that prefix. If the system is inconsistent, we conclude
thal no such prefix exists. If the system of inequalities is consistent, we use
the inequalities in attempting to construct such a prefix and the corresponding
behavior of the CEDL system.

In this case, we assume that there is a constrained prefix containing a
starve (Ci, P.start) symbol, for i= 1 or 2. Since the two customer tasks are
treated symmetrically in the gas station system, we may, without loss of gener-
ality, assume that a starve.(Cl, P.start) symbol occurs in a constrained prefix.
When projected on the alphabet of the task expression 7(C1), the image of such
a prefix lies in the language the expression (C1-1)*C1-4 from Figure 5.

Consider the image of such a prefix when projected on the alphabet of the
task expression 7(P). We know from a constraint of the form (11) of [3] that
this image must lie in the language of the expression (P-1)*(P-2 v P-4 v P-5).
We will consider these three alternatives separately.

2.3 Analysis of the Case in Which the PUMP Task Starves
at the Entry PUMP.FINISH PUMPING
We assume that we have a constrained prefix, s, containing a starve.(C1, P.start)

symbol and a starve,(P.finish) symbol. When s is projected on the alphabet
of 7(C1), its image must lie in the language of the expression (C1-1)*C1-4, and

"

Ci-1

Ci-5

Ci-6

Ci-7

beg loop(Ci) (calI(Ci, O.prepay)resume(Ci, O.prepay) call(Ci, P.start)
resume(Ci, P.start)call(Ci, P.finish)resume(Ci, P.finish)

.
beg-rend(O, Ci.change)end _rend(O, Ci.change))

(atarvec(Ci, O.prepay)stop(Ci)

Veall(Ci, O.prepay)dead -rend(Ci, O.prepay)stop(Ci)

Veall(Ci, O.prepay)resume(Ci, O.prepay)starve (Ci, P.start)
stop(Ci)

Veall(Ci, O.prepay)resume(Ci, O.prepay)call(Ci, P .start)
resume(Ci, P.start)starve (Ci, P.finish)stop(Ci)

Veall(Ci, O.prepay) resume(Ci, O.prepay)call(Ci, P.start)
resume(Ci, P.start) call(Ci, P.finish)dead _rend(Ci, P.finish)
stop(Ci)

Veall(Ci, O.prepay)resume(Ci, O.prepay)call(Ci, P start)

resume(Ci, P.start)call(Ci, P finish)resume(Ci, P finish)

starvc,,((‘.i.change)stop(Ci))

Figure 5: Task Expression 7(Ci) Associated with the Task CUSTOMER.i

P-2

P-3

P-4

P-5

beg_loop(P) (bc_q -rend(O, P.act)end _rend(O, P.act)

(V beg-rend(Ci, P.start)end_rend(Ci, P.start))

1

(V beg-rend(Ci, P.finish) call(P, O.charge)resume(P, O.charge)

end_rend(Ci, P.ﬁnish)))

(starvea(P.act.).stop(P)

Vbeg-rend(0O, P.acl)end_rend(O, P.act)starveq (P.start)stop(P)

Vbeg.rend(O, P.act)end.rend(O, P.act)(v beg _rend(Ci, P.start)
i

end_rend(Ci, P.start)) starve, (P.finish)stop(P)

Vbeg.-rend(O, P.act)end _rend(O, P.act) (V beg -rend(Ci, P.start)
i

end..rend(Ci, P.start)) (V beg rend(Ci, P.finish))
i

starve (P, O.charge)kill_rend(P.ﬁnish)stop(P))

Figure 6: Task Expression 7(P) Associated with the Task PUMP

~

0-1 def(cus, zero)def(current, L)def(wait, 1)beg loop(O) (

0-2 (V (beg -rend(Ci, O.prepay)def (cus.id, ci) (V use(cus, x)def (cus, succ(x)))

i

0-3 ((use (cus, one)def (current, ci)call(O, P.act) resume(O, P.act))
0-4 v(V use(cus, x)def (wait, ci))) end _rend(Ci, O.prepay)))
x#one
0-5 \% (bc_q_rend(P, O.charge)end .rend(P, O.charge)
0-6 (use(current, c1)eall(O, Cl.change)resume(O, Cl.change)
0-7 Vuse(current, c2)call(O, C2.change) resume(O, C2.change))
0-8 (V use(cus, x)def (cus, pred(x)))
X
0-9 ((v use(cus, x)) (V usc(wait, ci)def (current, ci))
x>3ero i

call(O, P.act)resume(0O, P.act)

*

w0 v

0-11 (starvca(O.prepay)starvea(O.charge)stop(O)
0-12 V(V beg -rend(Ci, O.prepay)def(cus._id, ci) (V use(cus, x)
i x

def(cus, succ(x))) use(cus, one)def (current, ci)starve (O, P.act)

kill_rend(O.prepay)stop(0O))

Figure 7: Task Expression 7(0) Associaled with Lthe Task OPERATOR

0-13 \Y (bch rend(P, O.charge)end. rend(P, O.charge)use(current, cl)

starve (O, Cl.change)stop(O)

O-14 Vbeg_rend(P, O.charge)end _rend(P, O.charge)use(current, c2)

starvec(O, C2.changc)stop(0))

0-15 Vbeg.rend(P, O.charge)end_rend(P, O.charge)
0-16 (use(current, cl)eall(O, Cl.change)resume(O, Cl.change)
0-17 Vuse(current, c2)call(O, C2.change)resume(O, CZ.changc))
0-18 (V use(cus, x))

x>zero
0-19 (V use(wait, ci)def (current, ci))
0-20 starve.(O, P.act)stop(()))

Figure 7: (Continued)

when s is projected on the alphabet of 7(P), its image must lie in the language
of the expression (P-1)*P-4.

In each case, the symbols in a starred subexpressions must occur the same
number of times. Using this observation, we obtain the following equalities
relating the number of occurrences in s of symbols in these alphabets as follows.
(We use the notation |symb| to denote the number of occurrences of symb in s,
and we ignore the stop and beg.loop symbols in this analysis.)

From the assumplion that the projection of s on the alphabet of 7(C1) lies
in the language of (C1-1)*C1-4, we have

|starve (Cl, P.start)] = 1 (1)
[resume(C1, O.prepay)| = |call(Cl,O.prepay)| (2)
|call(C1, O.prepay)| = [end_rend(O,Cl.change)| + 1 (3)

11

|end.rend(O, Cl.change)| = |beg-rend(O, Cl.change)| (4)

|beg.rend(O, Cl.change)| = |resume(C1, P.finish)| (5)
|resume(C1, P.finish)| = [call(C1, P.finish)| (6)
|call(C1, P finish)] = [resume(C1, P.start)| (7)
[resume(C1, P.start)] = |call(C1, P.start)|. (8)

From the assumption that the projection of s on the alphabet of T(P) lies
in the language of (P-1)*P-4, we have

[starves(P.finish)] = 1 9)
lend rend(C1, P.start)] = |beg-rend(C1, P.start)| (10)
lend_read(C2, P.start)| = |beg-rend(C2, P.start)] (11)
Z |beg_rend(Ci, P.start)| = lend -rend(O, P.act)| (12)
lend rend(O, P.act)] = |beg -rend(O, P.act)| (13)
|beg.rend(0O, P.act)] - Z |end rend(Ci, P.finish)| + 1 (14)
Z |end rend(Ci, P.finish)| = [resume(P, O.charge)| (15)
[resume(P, O.charge)| = [call(P, O.charge)| (16)
|call(P, O.charge)] = " |beg_rend(Ci, P.finish)| (17)

i
|end.rend(C1, P.finish)| = |beg-rend(C1, P.finish)| (18)
lend rend(C2, P.finish)| = |beg-rend(C2, P.finish))|. (19)

The constraints of the form (5) of [3] give the equations

lcall(C1, O.prepay)| = |beg-rend(C1, O.prepay)| (20)
lcall(C1, P.start)| = |beg_rend(Cl1, P.start)| (21)
|call(C1, P.finish)] = [beg_rend(C1, P.finish)| (22)
fcall(O, Cl.change)| = |beg-rend(O, Cl.change)| (23)
leall(O, P.act)] = |beg.rend(O, P.act)| (24)
|call(C2, P.start)| = |beg rend(C2, P.start)| (25)
leall(C2, P-finish)| . |beg rend(C2, P.finish)| (26)
|call(P, O.charge)| = |beg.rend(P, O.charge)). (27)

Now consider the projection of s on the alphabet of 7(C2). We have the
following equations and inequalities

lbeg rend(O, C2.change)] = [resume(C2, P finish)| - |C2-7| (28)

12

|resume(C2, P.finish)] -+ |call(C2, P.finish)| — |C2-6] (29)

|call(C2, P.finish)] = |resume(C2, P.start)| -- |C2-5| (30)
|resume(C2, P.start)] = |call(C2, P.start)| (31)
|call(C2, P.start)] = |resume(C2,O.prepay)| — |C2-4| (32)
|resume(C2, O.prepay)| = |call(C2,0.prepay)| — |C2-3| (33)
|call(C2, O.prepay)] = |end_rend(O,C2.change)| + 1 — |C2-2|(34)
|end_rend(O, C2.change)| = |beg.rend(O, C2.change)| (35)
|starve.(C2, O.prepay)] = |C2-2| (36)
|dead _rend(C2, O.prepay)] = |C2-3| (37)
|starve (C2, P.start)] = |C2-4| (38)
|starve,(C2, P.finish)| == |C2-5| (39)
|dead_rend(C2, P.finish)] = |C2-6| (40)
|starve, (C2.change)] - |[C2-7| (41)
|call(C2, O.prepay)] > [C2-3] (42)
|resume(C2, O.prepay)] > |C2-4| (43)
|resume(C2, P.start)] > |C2-5| (44)
|call(C2, P.finish)| > |C2-6| (45)
|resume(C2, P.finish)] > |C2-7), (46)

where we use the notation |C2-j| to denote the number of occurrences of the
alternative C2-j in the projection of s. Since exactly one of the alternatives
C2-2 through C2-7 occurs, we must also have

|C2-2| + |C2-3| + [C2-4| + |C2-5| + |C2-6] + |C2-7| = 1. (47)

(All variables are assumed to be nonnegative).
Finally, a constraint of the form (11) of {3] tells us that

|starve,(P.finish)| + |starve.(Cl, P.finish)| < 1 (48)
|starveq (P finish)| + |starve.(C2, P.finish)| < 1. (49)

We use a standard branch-and-bound integer linear programming package [8]
to solve this system of equations and inequalities. (For convenience, we usually
choose the objective function to minimize the sum of the variables.) In this case,
the package reports that the system is inconsistent. We therefore conclude that
there is no constrained prefix s containing both a starve.(C1, P.start) symbol
and a starve,(P.finish) symbol.

13

2.4 Analysis of the Case in Which the Pump Task Starves
Calling the Entry OPERATOR.CHARGE

Now assume that our constrained prefix, s, contains a starve.(C1, P.start) sym-
bol and that the projection of s on the alphabet of 7(P) lies in the language of
the expression (P-1)*P-5. This implies that s contains a starve.(P, O.charge)
symbol, and thus represents a behavior in which the pump starves waiting to
call the entry OPERATOR.CHARGE.

Projection on the alphabet of 7(C1), yields the following inequalities, exactly
as in the previous section.

|starve (C1, P.start)] = 1 (1)
|resume(C1, O.prepay)| - |call(C1, O.prepay)| (2)
leall(C1, O.prepay)| = |end -rend(0, Cl.change)| + 1 (3)
lend_rend(O, Cl.change)| = |beg_rend(O, C1.change)| (4)
|beg-rend(O, Cl.change)| = |resume(C1, P.finish)] (5)
|resume(C1, P.finish)] = |call(Cl, P.finish)| (6)
leall(C1, P.finish)] = |resume(C1, P.start)|)
[resume(C1, P.start)] = [eall(C1, P.start)|. (8)

Our hypothesis about the projection of s on the alphabet of 7(P) implies
that

|kill_rend(P.finish)] = 1 (9)

|starve (P, O.charge)] = 1 (10)

Z |beg .rend(Ci, P.finish)] = Z |end rend(Ci, P.start)| (11)
i i

2: lend rend(Ci, P.start)] 2: |beg rend(Ci, P.start)| (12)

x |beg-rend(Ci, P.starl)] = |end -rend(O, P.act)| (13)

lend_rend(O, P.act)] = |beg.rend(O, P.act)| (14)

|beg-rend(O, P.act)| = Z |end_rend(Ci, P.finish)| + 1 (15)

Z |end rend(Ci, P.finish)| = |resume(P, O.charge)| (16)

|resume(P, O.charge)] = |call(P, O.charge)| (17)

Z |beg_rend(Ci, P.finish)| > |kill _rend(P.finish)). (18)

From the constraints of the form (5) of [3], we obtain

leall(C1, O.prepay)| lbeg rend(C1, O.prepay)] (19)

14

[call(C1, P.start)|
|call(C1, P finish)|
|call(O, C1.change)|
|call(O, P.act)|
|call(C2, P.start)|
|call(C2, P.finish)|
|eall(P, O.charge)|

il

ll

11

|beg rend(C1, P.start)|
|beg -rend(CL, P.finish)|
|beg -rend(O, Cl.change)|
|beg.rend(O, P.act)|

|beg .rend(C2, P.start)|
|beg.rend(C2, P.finish)|

= |beg rend(P, O.charge)|.

(20)
(21)
(22)
(23)
(24)
(25)
(26)

Exactly as in section 2.3, we obtain the following equations and incqualities
by considering the projection of s on the alphabet of T(C2).

|beg-rend (O, C2.change)|
|resume(C2, P.finish)|
|call(C2, P.finish)|
|resume(C2, P.start)|
|call(C2, P.start)|
|resume(C2, O.prepay)|
|cali(C2, O.prepay))|

|end .rend (O, C2.change)|
|starve.(C2, O.prepay)|
|dead _-rend((:2, O.prepay)|
|starve (C2, P.start)]
|starve.(C2, P.finish)|
|dead .rend(C:2, P.finish)]
|starve,(C2.change)|

| call(C2, O.prepay)|
|resume(C2, O.prepay)|
|resume(C2, P.start)|
|call(C2, P.finish)|
|resume(C2, P finish)|

and

H

il

IV IV IV IV IV

resume(C2, P finish)	-	C2-7
call(C2, P finish)	—	C2-6
resume(C2, P.start)	-	C2-5
call(C2, P.start)		

|resume(C2, O.prepay)| — |C2-4|
|call(C2, O.prepay)| — |C2-3|

(27)
(28)
(29)
(30)
(31)
(32)

|end _rend(O, C2.change)| + 1 — |C2-2{(33)

|beg_rend(O, C2.change)|
|c2-2|
|C2-3
|C2-4|
|C2-5]|
|C2-6|
|c2-7|
23|
|c2-4|
|C2-5]
|C2-6|
|C2-7],

|C2-2| + |C2-3] + |C2-4| + |C2-5] + |C2-6] + |C2-7| = 1.

From constraints of the form (11) of {3], we have

|starveq(P-finish)| + |starve (C1, P.finish)|
|starve, (P.finish)| + |starve (C2, P.finish)]|
|starve.(P, O.charge)| + |starvea(O.charge))

15

(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

(46)

(47)
(48)
(49)

This system is consistent so we must examine the projection of s on the
alphabet of 7(0).

Since we are assuming that |starve (P, O.charge)| = 1, the last inequality
implies that |starve,(O.charge)| = 0. Hence, the projection of s on the alphabet
of 7(O) lies in the language of the expression (O-1---0-10)*(0-12 v (0O-13 Vv
0-14) v (0-15(0-16 v 0-17)0-18 - - - 0-20)). We will treat each of these cases in
turn.

2.4.1 The (0O-1:--0-10)'0-12 Case

Assume first that the projection of s on the alphabet of 7(O) lies in the language
of the expression (O-1--:0-10)*O-12. Then s contains a starve (O, P.act) sym-
bol, and so represents a hehavior in which the task OPERATOR starves calling the
entry PUMP.ACTIVATE. We have

|kill rend(O.prepay)] = 1 (50)
|starve (O, P.act)] = 1. (51)

From the constraints involving kill_rend and dead.rend symbols, we have
|kill. rend(O.prepay)| - Z |dead .rend(Ci, O.prepay) = 0, (52)

i
and we see from our hypothesis on s that
|dead _rend(C1, O.prepay)| = 0. (53)
Similarly, we have

|krendP. finish| -) _ |dead_rend(Ci, P finish)] = 0 (54)
|dead _rend(C1, P.finish)] = 0. (55)

"The integer linear programming package reports that this system is inconsistent,
and we conclude that no such constrained prefix exists.

2.4.2 The (0-1:--0-10)*(0-13 v O-14) Case

Assume now that the projection of s on the alphabet of 7(O) lies in the language
of the expression (O-1---)-10)*(0-13 v O-14). Then our constrained prefix
conlains a starve (O, Ci.change) symbol, and so represents a behavior in which
the task OPERATOR starves calling one of the entries CUSTOMER_i . CHANGE.

We have

|starve (O, Cl.change) = |O-13| (50)

|starve.(O, C2.change) = [O-14| (51)

|end.rend(P, O.charge)| - Z |call(O, Ci.change)) + 1 (52)
3

[O-13] + [0-14] = 1 (53)

16

from 7(0), where |O-j] denotes the number of occurrences of Lhe allernative O-)
in the projeclion of s.
From the constraints of the form (11) of [3], we have

1 (54)
L. (55)

|starveq(Cl.change)| -+ |starve (O, Cl.change)|

<
|starve,(C2.change)| + |starve (O, C2.change)| <

The integer linear programming package reports that this system of equa-
tions and inequalities is inconsistent, and we conclude that no such constrained
prefix s exists.

2.4.3 The (O-1---0-10)*0-15(0-16 vV O-17)0-18 - .- 0-20 Case

In this case, s contains a starve.(O, P.act) symbol, and represents a behavior
in which the task OPERATOR starves calling the entry PUMP.ACTIVATE following
a rendezvous at the entry OPERATOR.CHARGE. From 7(0O), we have

|starve (O, P.act)] = 1 (50)
|resume(0, Cl.change)] = |eall(O, Cl.change)| (51)
|resume(0), C2.change)| - |call(Q, C2.change)| (52)
E |call(O, Ci.change)] - |end.rend(P, O.charge)| (53)

i
|end .rend(1, O.charge)] = |beg rend(1’, O.charge)| (54)

v

Z |resume(O, Ci.change)| |starve (O, P.act)]|. (55)
i

From a constraint of the form (5) of [3], we have
Jeall(O, C2.change)| = |beg.rend(O, C2.change)|. (56)

The integer linear programming packages finds a solution to this system.
This solution corresponds to a string representing a behavior in which the
task CUSTOMER.1 prepays and starves calling the entry PUMP.START.PUMPING
and CUSTOMER_2 pumps gas once, receives change, prepays and starts pumping
again and then calls PUMP .FINISH_PUMPING. This last rendezvous cannot be com-
pleted, however, because the PUMP task starves trying to call OPERATOR.CHARGE.
An examination of the task expressions, however, shows that such a string can-
not be a constrained prefix. From the task expression r(P) we see that, in any
prefix of astring in the language of the system expression,

|resume(P, O.charge)| < |end_rend(O, P.act)| < |resume(P, O.charge)| + 1,
with equality holding on the left if the last symbol of either of these two types
is a resume(P, O.charge) and equality holding on the right if the last symbol is

17

(G

an end.rend(O, P.act). (This is just a statement of the fact that rendezvous at
PUMP.ACTIVATE and OPERATOR . CHARGE alternate in any behavior of the system.)
Our hypothesis concerning the projection of s on the alphabet of 7(0O) and
constraints of type (6) of [3] imply that the last symbol in s of either of these
types is a resume(P, O.charge), so we have

|resume(P, O.charge)| = |end_rend(O, P.act)|. (57)

The integer linear programming package reports that this system is incon-
sistent, and we conclude that no such contrained prefix s exists. This com-
pletes the analysis of the case in which the PUMP task starves calling the entry
OPERATOR .CHARGE. :

2.5 Analysis of the Case in Which the Pump Task Starves
at the Entry PUMP.ACTIVATE

Let s be a constrained prefix containing a starve.(Cl, P.start) symbol, and
consider the projection of s on the alphabet of 7(P). We have shown that this
projection does not lie in the language of the expression (P-1)*(P-3V P-4V P-5),
so it must lie in the language of (P-1)*P-2. This implies that s contains a
starveq (P.act) symbol, and thus represents a behavior in which the pump starves
at the entry PUMP.ACTIVATE.

Projecting s on the alphabet of 7(Cl), we obtain as usual

|starve (C1, P.start)] = 1 (1)
|[resume(C1, O.prepay)| == |call(Cl,O.prepay)| (2)
|call(C1,O.prepay)| := |end.-rend(O, Cl.change)| + 1 (3)

|end rend(O, Cl.change)] = |beg_rend(O, Cl.change)] 1)
|beg .rend(O, Cl.change)] = |resume(Cl,P.finish)] (5)
|resume(C1, P.finish)] = |call(C1, P.finish)| (6)
|call(C1, P.finish)| = |resume(C1,P.start)] (7
|resume(Cl, P.start)] = |call(CL, P.start)]. (8)

Projecting on the alphabet of 7(P), we have

|starveg(P.act)] = 1 (9)

2: |end .rend(Ci, P.finish)] = |resume(P, O.charge)| (10)
|resume(P, O.charge)] = |call(P,O.charge)| (11)
|eall(P, O.charge)] =) |beg rend(Ci, P.finish)| (12)

}_: Jbeg rend(Ci, P.finish)| Z lend rend(Ci, P.start)) (13)

Zlend rend(Ci, P.start)|
i

Z |beg-rend(Ci, P.start)|

t

|end .rend(Q, P.act)|
From 7(C2), we obtain, as in the

|beg -rend (O, C2.change)|
|resume(C2, P.finish)|
|call(C2, P.finish)|
|resume(C2, P.start)| ==
|call(C2, P.start)] =
|resume(C2, O.prepay)| =
|call(C'2, O.prepay)| -
|beg.rend(O, C2.change)| =
|starve.(C2, O.prepay)] =
|dead -rend(C2, O.prepay)| ==
|starve(C2, P.start)] =
|starve.(C2, P.finish)| =
|dead -rend(C2, P.finish)| =
|starve, (C2.change)| =
|call(C2, O.prepay)|

B

'
i

>
|resume(C2, O.prepay)| >
|resume(C2, P.start)] >
|call(C2, P.finish)] >
|resume(C2, P.finish)| >

and

= X |beg. rend(Ci, P.start)|
1

= |end_rend(O, P.act)|

= |beg rend(O, P.act)|.
preceding sections,
|resume(C2, P.finish)| - |C2-7]
|call(C2, P.finish)| - |C2-6|
|resume(C2, P.start)| - |C2-5|
|call(C2, P.start)|

|resume(C2, O.prepay)| — |C2-4|
|call(C2, O.prepay)| - |C2-3]

(1)

(15)
(16)

(17)
(18)
(19)
(20)
(21)
(22)

|end .rend(0O, C2.change)| + 1 — |C2-2|(23)

|end -rend(O, C2.change)|
|c2-2|
|C2-3|
|C2-4|
|C2-5|
|C2-6|
|C2-7]
|C2-3|
|C2-4]
|C2-5|
|C2-6|
|C2-7|

|C2-2| 4 |C2-3| + |C2-4| + |C2-5| + [C2-6] + |C2-7| = 1.
The constraints of the form (5) of [3] give

call(C1,O.prepay)] =	beg_rend(Cl, O.prepay)	
call(C1, P.start)] =	beg-rend(Cl,P.start)]	
call(C1, P.finish)	=	beg-rend(C1,P.finish)
call(O, Cl.change)] =	beg_rend(O, Cl.change)	
call(O, P.act)] =	beg-rend(O,P.act)	
call(C2, P.start)] =	beg-rend(C2,P.start)	

19

(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)

(36)

(37)
(38)
(39)
(40)
(41)
(42)

|call(C2, P.finish)| = |beg -rend(C2, P.Anish)| (43)

|call(P, O.charge)| = |beg_rend (P, O.charge)| (44)
|call(C2, O.prepay)| = Ibegﬁrend(CZ,O.prepay)l (45)
|call(O, C2.change)| = |beg-rend(O, C2.change)|. (46)

The constraints of the form (11) of [3] tell us that
Istarve,(P.act)| + |starve (O, P.act)] < 1 (47)
Istarve.(C1, O.prepay)| + |starves(O.prepay)] < 1 (48)
Istarve,(C2, O.prepay)| + |starvea(O.prepay)] < 1 (49)
|starveq (Cl.change)| + |starve, (O, Cl.change)] < 1 (50)
|starveq(C2.change)| +- [starve(O, C2.change)] < 1. (51)

Since we have [starve,(P.acl)| = 1, we conclude that |starve (O, P.act)| = 0.
This implies that the projection of s onto the alphabet of 7(O) lies in the
language of the expression (O-1-- -0-10)*(0-11 vV 0-13 v 0-14). We consider
each of these alternatives scparately.

2.5.1 'The (0-1:--0-10)*0-11 Case
From 7(0), we have

|starveq (O.prepay)| = 1 (52)
|starveq(O.charge)] = 1, (53)

and we see that, in this case, s represents a behavior in which the OPERATOR
task starves at Lthe select statement.
We also have
|kill_rend(O.prepay)| = 0. (54)

The kill rend-dead.rend constraints give

|kill rend(QO.prepay)| - Z |dead _rend(Ci, O.prepay)| = 0. (55)

The integer lincar programming package finds a solution to this system, cor-
responding to a behavior in which each customer task completes a rendezvous
at the entry OPERATOR.PREPAY, but the pump task starves waiting for a ren-
dezvous at the entry PUMP.ACTIVATE. Both customer tasks then starve waiting
for rendezvous at PUMP.START_PUMPING.

An examination of the CEDL programs indicates that such a behavior should
be impossible, since the first rendezvous at OPERATOR.PREPAY cannot be com-
pleted without a (nested) rendezvous at PUMP.ACTIVATE. The problem is that
our system of inequalities does not reflect the correct branching based on the
value of the variable cus. The casiest way to resolve this problem is to establish
another inequality to be added Lo the system.

20

Lemma 2.1 Lel s be a constrained prefiz. Then

}_: |resume(Ci, O.prepay)| < |resumne(O, P.act) + 1.

3

Proof. From the task expresions for the customer tasks, we see that

Z |eall(Ci, P.start)| < Z |resume(Ci, O.prepay)| < Z |call(Ci, P.start)| + 2

and, from the constraints and the task expression for the pump,

Z |call(Ci, P.start)| < |resume(O, P.act)| < Z |call(Ci, P.start)] -+ 1
i i

in any prefix of s. It follows that

Z |resume(Ci, O.prepay)| < |resume(O, P.act)| + 2,

1]

with equality holding only in a prefix for which), |resume(Ci, O.prepay)| =
3" leall(Ci, P.start)| + 2.

Assume that equality holds for s, so s represents a behavior in which each
customer prepays once more than it starts pumping. Consider the last two
beg rend(Ci, O.prepay) symbols in s. If a resume(O, P.act) symbol followed ei-
ther of these, we would have }°, |resume(Ci, O.prepay)| > |resume(O, P.act)|+3
in the prefix of s ending at the first of these beg_rend(Ci, O.prepay) symbols, and
we have seen that this is impossible. It follows that the def(cus, -) symbol fol-
lowing the first of these beg.rend(Ci, O.prepay) symbols must be a def(cus, two).

It is an easy exercise to show that, in any constrained prefix not ending in a
beg_rend(Ci, O.prepay) symbol, a def (cus.id, ci) symbol, or a use(cus, .) symbol,
the value of cus in the last use(cus, .) symbol is). |beg.rend(Ci, O.prepay)| -
Y |resume(0O, Ci.change)|, where we abuse the notation by equating the value of
an enumeration type and the corresponding integer. (This is just the verification
that the variable cus keeps track of the number of customers who have currently
prepaid but not yet received change.) So, in the prefix ending just before the
first of our two beg_rend(Ci, O.prepay) symbols, we must have

Z |resume(Ci, O.prepay)| — Z |resume(O, Ci.change)| = 1.
i i

We conclude that there must be a resume(O, Ci.change) symbol between the
beg_rend(Ci, O.prepay) symbols.

Since this occurs with cus = 2, it must be followed by a call(O, P.act)
symbol or a starve (O, P.act) symbol before the last beg_rend(Ci, O.prepay).
Since another prepay rendezvous occurs, the starve (O, P.act) is impossible.

21

Thus, a resume(O, P.act) symbol must occur somewhere belween the last two

beg-rend(Ci, O.prepay) symbols in s. This is a contradiction. l
So the lemma tells us that

Z [resume(Ci, O.prepay)| < |resume(O, P.act)| + 1, (56)
i

and a constraint of Lype (6) gives
|resume(O, P.act)| := |end .rend(0O, P.act)|. (57)

‘The integer linear programming package reports that this system is incon-
sistent, and we conclude that no such constrained prefix exists.

2.5.2 The (0-1---0-10)°0-13 Case

From 7(0), we have

[starve (O, Cl.change)] | (52)
|end. rend(P, O.charge)] > | (53)
lend rend(P, O.charge)] = |beg-rend(P, O.charge)| (54)
|beg.rend(P, O.charge)| - Z |resume(O, Ci.change)| + 1 (55)
|resume(O, Cl.change)] = |call(O, Cl.change)| (56)
[resume(O, C2.change)| :: |eall(O, C2.change)|. (57)

We also have
|kl rend(P.finish)| = 0, (58)

and

|kill_rend(P.finish)| - |dead.rend(Ci, P.finish)] = 0 (59)
|dead.rend(C1; P.finish,|) = 0. (60)

When we apply the integer lincar programming package to this system, hav-
ing sel the objective function to minimize the sum of the variables, it finds an
optimal solution. Examining this solution, we sec that |starve,(C2.change)| =
I. If this solution actually corresponds to a constrained prefix, that prefix
represenis a behavior in which the task CUSTOMER.1 starves calling the entry
PUMP .START._PUMPING, the task CUSTOMER.2 starves waiting for a rendezvous at
its entry CUSTOMER .2.CHANGE, the task PUMP starves waiting for a rendezvous
at its entry PUMP.ACTIVATE, and the task OPERATOR starves calling the eniry
CUSTOMER 1.CHANGE. In terms of Lthe gas station modelled by the CEDL system,

22

we have a situalion where the operator is trying to give change to the first cus-
tomer, who is waiting to pump gas, and the second customer is waiting to get

change, already having pumped.

It is not hard to construct a constrained prefix representing such a behavior.

One such is

beg_loop(C1)beg_loop(P)beg .loop(C2)def (cus, zero)def (current, L)
def (wait, 1)beg _loop(O)call(C1, O.prepay)beg_rend(C1, O.prepay)
def (cus.id, c1)use(cus, zero)def (cus, one)use(cus, one)

def(current, c1)cell(O, P.act)beg rend(O, P.act)end _rend(O, P.act)
resume(O, P.act)end _rend(C1, O.prepay)resume(C1, O.prepay)
call(C2, O.prepay) beg_rend(C2, O.prepay)def(cus;d, c2)use(cus, one)
def (cus, two)use(cus, two)def (wait, c2)end .rend(C2, O.prepay)

resume(C2, O.prepay)call(C2, P.start) beg_rend(C2, P.start)
end _rend(C2, P.start)resume(C2, P.start)call(C2, P.finish)
beg_rend(C2, P.finish)call(P, O.charge)beg_rend(P, O.charge)

end _rend(P, O.charge)resume(P, O.charge)end _rend(C2, P.finish)

resume(C2, P.finish)use(current, c1)sterve (O, Cl.change)
starve.(Cl, P.start)starve, (P.act)siarve,(C2.change)stop(C1)
stop(C2)stop(P)stop(0).

(This constrained prefix corresponds exactly to the optimal solution found by

the integer linear programming package.)

2.5.3 The (O-1---0-10)*0-14 Case

From 7(0), we have

|starve (O, C2.change) = 1 (52)
lend.rend(P, O.charge)] > |1 (53)
|end_rend(P, O.charge)] = |beg-rend(P, O.charge)| (54)

|beg rend(P, O.charge)| = Z |resume(O, Ci.change)| + 1 (55)
|resume(O, Cl.change)] = |call(O, Cl.change)| (56)
|resume(O, C2.change)] = |call(O, C2.change)). (57)

We also have
|kill_rend(P finish)| = 0, (58)
and

|kill_rend(P.finish)| — " |dead_rend(Ci, P.finish)| = 0 (59)

23

task body PUMP is
begin
loop
accept ACTIVATE;
accept START_PUMPING;
accept FINISH_PUMPING do
ces -- compute charge for this transaction
end FINISH_PUMPING;
OPERATOR.CHARGE; -- report charge to operator
end loop;
end PUMP;

Figure 8: Revised Version of the Body of the PUMP Task

|dead .rend(C1; P.finish,[) = 0. (60)

The integer linear programming package reports that this system is inconsistent,
and we conclude that no such s exists.

3 A Revised Two-Customer System

Our analysis of the original system has uncovered a flaw in the design: it is
possible for a customer to prepay but never get to pump gas. Following Helm-
bold and Luckham (7], we attempt to correct this flaw by changing the order of
the calls to the CHANGE and ACTIVATE entries in the accept CHARGE alternative
of the OPERATOR task and moving the call to the operator out of Lthe accept
FINISH_PUMPING statement in the body of the PUMP task. The revised task bod-
ics are shown in Figures 8 and 9. The corresponding task expressions are given
in Figures 10, 11, and 12. (Although the task bodies for the customer tasks are
unchanged, the reduced and simplified task expressions for the customers must
be modified to reflect the fact that pump task can no longer starve during a
rendezvous at the entry PUMP.FINISH.PUMPING. This climinates the alternative
Ci-6 in the original task expressions.)

We now analyze the revised system to show that this flaw has indeed been
correcled. As before, we assume that there is a constrained prefix containing
a starve.(C1, P.start) symbol and conclude that the projection of such a prefix
on the alphabet of 7(P) must lic in the language of the expression (P-1)*(P-2 v
P-4 v P-5).

24

use COMMON;
task body OPERATOR is

CUSTOMERS : COUNTER := zero;

CURRENT, WAITING : C_NAME;

begin

loop
select
accept PREPAY(CUSTOMER_ID : in C_NAME) do
CUSTOMERS := COUNTER’succ(CUSTOMERS);

if CUSTOMERS = one then -~ if no previous customer
-- is waiting
CURRENT := CUSTOMER_ID; -- mark this one as current
PUMP .ACTIVATE; -- and activate the pump
else
WAITING := CUSTOMER_ID; -- otherwise, mark this one
-- as next in line
end if;
end PREPAY;
or
accept CHARGE;
if CUSTOMERS > one then -- if another customer is
-- waiting,
PUMP .ACTIVATE; -- activate the pump
end if;
if CURRENT = c1 then
CUSTOMER_1.CHANGE;
else
CUSTOMER_2.CHANGE;
end if;
CUSTOMERS := COUNTER’pred(CUSTOMERS);
if CUSTOMERS > zero then -- if another customer is
CURRENT := WAITING; -- waiting, promote that one
-- to be current
end if;
end select;
end loop;

end OPERATOR;

Figure 9: Revised Version of the Body of the OPERATOR task

25

Ci-1 beg_loop(Ci) (ca.ll(Ci, O.prepay)resume(Ci, O.prepay)call(Ci, P.start)
resume(Ci, P.start)call(Ci, P.finish)resume(Ci, P.finish)

beg .rend(0, Ci.change)end _rend(O, Ci.chnnge))

Ci-2 (starvcc(Ci, O.prepay)stop(Ci)

Ci-3 Veall(Ci, O.prepay)dead . rend (C4, O.prepay)stop(Ci)

Ci-4 Veall(Ci, O.prepay)resume(Ci, O.prepay)starve.(Ci, P.start)
stop(Ci)

Ci-5 Veall(Ci, O.prepay)resume(Ci, O.prepay) call(Ci, P.start)

resume(Ci, P.slart)starve . (Ci, P.finish) stop(Ci)
Ci-6 Veall(Ci, O.prepay)resume(Ci, O.prepay)call(Ci, P.start)

resume(Ci, P.start)call(Ci, P.finish) resume(Ci, P.finish)

starvc,(Ci.change)stop(Ci))

Figure 10: Task Expression 7(Ci) Associated with the Revised Version of the
Task CUSTOMER_i

26

P-1 beg _loop(P) (bcg -rend(O, P.act)end _rend(O, P.act)

(V beg_rcnd(Ci, P.start)end _rend(Ci, P.start))

(V beg.rend(Ci, P.finish)end _rend(Ci, P.finish))

call(P, O.charge)resume(P, O.charge))

P-2 (starve,(P.act)stop(P)

P-3 Vbeg .rend(O, P.act)end -rend(O, P.acl)starve, (P .start)stop(P)

P-4 Vbeg.rend(O, P.acl)end rend (0O, P.act)(v beg -rend(Ci, P.start)

end _rend(Cli, P.start)) starve, (P finish)stop(P)

-5 Vbeg rend(O, P.act)end rend(O, P.a.ct.)(\/ beg -rend(Ci, P.start)
i

end _rend(Ci, P.start)) (V beg_rend(Ci, P.finish)

end_rend(Ci, P.ﬁnish)) starve (P, O.charge)stop(P))

Figure 11: Task Expression 7(P) Associated with the Revised Version of the
Task PUMP

27

0-1 def(cus, zero)def (current, 1)def (wait, L)beg -loop(O) (

0-2 (V (beg_rend(Ci, O.prepay)def (cus.id, ci) (V use(cus, x)def (cus, succ(x)))

b 4

0-3 ((use(cus, one)def(current, ci)eall(O, P.act)resume(O, P.act))

0-4 v(V use(cus, x)def (wait, ci))) end _rend(Ci, O.prepay)))
x#one

0-5 \ (bey-rend(}’, O.charge)end_rend(P, O.charge)

0-6 ((V use(cus, x)call(O, P.act)resume(O, P.act)) v V use(cus, x))
x>one x#one

0-7 (use(current, c1)call(0, Cl.change)resume(O, Cl.change)

0-8 Vuse(current, c2)call(O, C2.change)resume(O, C2.change))

0-9 (V use(cus, x)def (cus, pred(x)))

0-10 ((V use(cus, x)) (V use(wail, ci)def (current, ci))
x>zero i

0-11 Vusc(cus, zcrn))))

0-12 (starvca(O.prepay)starvc,(O.charge)atop(O)
0-13 v (V beg _rend(Ci, O.prepay)def (cus.id, ci) (V use(cus, x)

def (cus, succ(x))) use(cus, one)def (current, ci)starve (O, P.act)

kill_rend(O.prepay)stop(0O))

Figure 12: Task Expression 7(0) Associated with the Revised Version of the
‘Task OPERATOR

28

0-141 Vbeg_rend(1’, O.charge)end _rend(P, O.charge)

0-15 ((V use(cus, x))starve (O, P.act)stop(O)
x>one
0-16 Vbeg.rend(P, O.charge)end rend(P, O.charge)((V use(cus, x))
x>one

call(O, P.act)resume(O, P.act) v V use(cus, x))

x<one
0-17 (usc(current, cl)starve (O, Cl.change)stop(O)
O-18 Vuse(current, ¢2)starve (O, CZ.change)stap(O)))

Figure 12: (Continued)

3.1 Analysis of the Case in Which the Pump Task Starves
at the Entry PUMP.FINISH_.PUMPING

Let s be a constrained prefix containing a starve.(C1, P.finish) symbol, and
assume that the projection of s on the alphabet of 7(P) lies in the language of
(P-1)*P-4.

As hefore, we oblain the folowing equalities [rom the projection of s on the
alphabet of 7(Cl).

|starve (C1, P.start)] = 1 (N
|resume(C1, O.prepay)| = |call(C1,O.prepay)| (2)
|call(C1, O.prepay)| = |end.rend(O,Cl.change)| + 1 (3)
|end_rend(O, Cl.change)] = |beg_rend(O, Cl.change)| (4)
|beg -rend(O, Cl.change)] = |resume(Cl,P.finish)| (5)
|resume(Cl, P.finish)] = [call(C1, P.finish)]| (6)
|call(C1, P.finish)| = |resume(Cl, P.start)] (7)
|resume(C1, P.start)] = [call(Cl, P.start)]. (8)

Since the projection of s on the alphabet of 7(P) lies in the language of

29

(2¢)
(9¢)
(s€)
(ve)

0€

[
le-zol
lz-zol
|(28ueydgD ‘0)pudu-bag|

(e€)lz-zDd| — 1 + |(3Buey>g) ‘0)puas pua|

(z¢)
(1€)
(og)
(62)
(82)
(22)

(92)
(s2)
(ve)
(e2)
(22)
(12)
(02)
(61)

(s1)
(21)

(91)
(s1)
(1)
(e1)

(e1)
()
(o1)
(6)

le-20| — |(Aedasd 0 ‘zd)1100|
lv-20| — |(Ledaid-@ ‘z;))aumm.q
[(veis g ‘20)no|

[g-zo| — |(1ers g ‘z0)swnson |
|(ystuyd ‘zD)nws|

19-20| = [(ystuy-d ‘gD)ownsau|

urejqo am ‘(zD)+ jo 12qeydie ayj uo s jo uoiydafoid ayy woij ‘pue

‘|(aBreya Q ‘q)puas-bag| =
|(ystuy-d ‘g0)puas-baq|
|(viess g ‘z)puas-boq| =
[(32e°] ‘O)puas-baq| =
|(a8ueyd 1) ‘Q)puat-baq| =
|(ustuy-d ‘10)puas-baq| =
[(haeys d ‘1D)puau-bag| =
|(fedaid () ‘1D)puau-bag| =

1"

[(veisd *zD)’ saunys|
|(£edaxd- () ‘) puas-poap|
|(Aedaid’ ¢ *g))’20amps|
|(a8ueya-zD ‘6)pua¢‘pua|
|(£edaid @ ‘z0)1192|
|(£edaxd-) ‘gD)ownsau|
|(v1e38°d 201109
|(veys g ‘2D)awnsau|
|(ystuy: g ‘2ONo9|
[(ystuy:d ‘z;>)amnsau|
|(38uey>-z)y ‘O) puau- bag|

|(a81ey2-Q ')1192|
|(ystuy 4 ‘z0)nm2|
|(33e35°d ‘2D) 12|
[(yed ‘0)nwo|
|(38ueyd 1D ‘O)1o|
|(ystuy- g ‘10)1199|
|(11e98°g 101179
|(£=daid 0 ‘1)n90|

aaey am ‘[g] Jo (g) wio) ayj Jo sjuleljsuod ay) wioly

|(ustuy: g ‘go)puau-baq)
[(ystuy 4 ‘1)) puse-bog| =

3

|(ystuy-d ‘to)pusspua| { =
|(381ey>-0 ‘d)iyod| =

T +|(38rey>(‘g)ownsau| =
[(32e°d ‘O)puas-boq| =

(10 O)pusi-pus| =

|(31238 g ‘gO) puas-bag|

[(1re18°d ‘1) puau-bag| =
1 =

[(ystuy: ‘2D) puss pus|
[(ystuy-d ‘1) puss pus|

|(3%1ey>0 ‘d)1rwo|
|(38aey> (g ‘g)ownsau|
(102" ‘0)puas-bag|
|(10eg ‘0)puas-pus|

|(11e38°d 10)puau-bag) "
[(Heis g ‘2D)puas-pua|
[(13e18° g ‘1D)puau-pua|
|(ystuy: g)®anasvss |

aney am ‘p-4,(1-d)

|sterve (€2, .linish)| |25 (38)

|starve, (C2.change)] = |C2-6] (39)
|call(C2,O.prepay)] > [C2-3| (40)
|resume(C2, O.prepay)| > [|C2-4| (41)
|resume(C2, P.start)] > [|C2-5]| (42)
|resume(C2, P.finish)] > |C2-6], (43)

and
|C2-2| + |C2-3| + |C2-4] + |C2-5| + [C2-6] = 1. (44)

Finally, a constraint of the form (11) of [3] gives

|starve,(P.finish)| + |starve (C1, P.finish)| < 1 (45)
|starveq (P finish)| + |starve(C2, P.finish)| < 1. (46)

The integer linear programming package reports that this system is incon-
sislent.

3.2 Analysis of the Case in Which the PUMP Task Starves
Calling the Entry OPERATOR.CHARGE

Now assume that we have a constrained prefix containing a starve (C1, P.start)
symbol whose projection onto the alphabet of 7(P) lies in the language of the
expression (P-1)*P-5.

As before, projecting on the alphabet of 7(C1) gives

|starvec(C1, P.start)] = 1 (1)
|resume(C1, O.prepay)| = |call(C1,O.prepay)| (2)
|call(C1,0.prepay)] = |end._rend(O,Cl.change)|+ 1 (3)
|end_rend(O, Cl.change)] = |beg.rend(O, Cl.change)| (4)
|beg-rend(O, Cl.change)] = |resume(C1,P.finish)| (5)
|resume(C1, P.finish)] = |call(Cl, P.finish)| (6)
|call(C1, P.finish)] = |resume(Cl,P.start)] (7)
|resume(Cl, P.start)] = |call(C1, P.start)|. (8)

Our hypothesis about the projection of s on the alphabet of 7(P) implies
that

|starve.(P, O.charge)] = 1 (9)
|end _rend(C1, P.finish)] = |beg-rend(C1,P.finish)| (10)
|end _rend(C2, P.finish)] = |beg_rend(C2, P .finish)| (11)

31

Z |beg -rend(Ci, P.finish)|

|end .rend(C1, P.start)|
|end _rend(C2, P.start)|

Z |beg_rend(Ci, P.start)|

|end .rend(O, P.act)|
|beg_rend(O, P.act)|
|resume(P, O.charge)|

Z |end _rend(Ci, P.finish)|

Exactly as before, we also have
|eall(C1,O.prepay)| =
|call(C1, P.start)| -
|call(C1, P.finish)] =
|call(O, Cl.change)| =
|call(O, P.act)| =

|call(C2, P.start)|

|call(C2, P.finish)|
|call(P, O.charge)| -
|beg .rend(O, C2.change)| =
|resume(C2, P finish)| -
|call(C2, P.finish)] =
|resume(C2, P.start)] =

|call(C2, P.start)|
|resume(C2, O.prepay)| =
|call(C2, O.prepay)| =
|end _rend(0O, C2.change)| =
|starve.(C2, O.prepay)| =
|dead .rend(C2, O.prepay)| =
|starve (C2, P.start)|
|starve (C2, P.finish)|
|starve,(C2.change)|
|eall(C2, O.prepay)|
|resume(C2, O.prepay)|
|resune(C2, P.start)|

] il

v iV IV

= Z |end -rend(Ci, P.start)|

= |beg.rend(C1, P.start)|
= |beg.rend(C2, P.start)|
= |end._rend(O, P.act)|

|beg_rend(O, P.act)|
|resume(P, O.charge)| + 1
|call(P, O.charge)|

|starve (P, O.charge)].

([T

AV

|beg-rend(C1, O.prepay)|

|beg rénd(C1, P.start)|
|beg-rend(C1, P.finish)|
|beg-rend(O, Cl.change)|
|beg_rend(O, P.act)|
|beg_rend(C2, P.start)|
|beg_rend(C2, P.finish)|

|beg -rend(P, O.charge)|
|resume(C2, P.finish)| — |C2-6|
|call(C2, P.finish)|
|resume(C2, P.start)| — |C2-5|
|call(C2, P.start)|

|resume(C2, O.prepay)| ~ |C2-4|
|call(C2, O.prepay)| — |C2-3|

(12)

(13)
(14)
(15)

(16)
(17)
(18)
(19)

(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)

|end _rend(O, C2.change)| -+ 1 — |C2-2|(34)

|beg -rend(O, C2.change)|
|C2-2|
|C2-3]
|C2-4]
|C2-5]
|C2-6]
|C2-3|
|C2-4|
|C:2-5|

32

(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)

|resume(C2, P.finish)| >

and

|C:2-6),

|C2-2| + |C2-3| + |C2-4| + |C2-5| 4 |C2-6] = 1.

From constraints of the form (5) of [3], we have

|call(C2, O.prepay)|
|call(O, C2.change)|

|beg -rend(C2, O.prepay)|
|beg -rend (O, C2.change)|.

From constraints of the form (11) of [3], we have

|starve, (P.finish)| + |starve.(C2, P.finish)] <
|starve (P, O.charge)| + |starve,(O.charge)] < 1.

1

(44)
(45)

(46)
(47)

(48)
(49)

As before, we now examine the projection of s on the alphabet of 7(0O). By
(9) and (45), we have |starve,(O.charge)| = 0, so the projection must lie in the
language of (O-1---0-11)*(0-13 V (O-14 0-15) v (0-16(0-17 V 0-18)).

3.2.1 The (0-1:--0-11)*0-13 Case

Assume that the projection of s on the alphabet of 7(O) lies in the language of
(O-1.--0-11)*O-13. Then s represents a behavior in which the OPERATOR task
starves calling the entry PUMP.ACTIVATE. We have

| kill_rend(O.prepay)|
|starve (O, P.act)|

Z |beg -rend(Ci, O.prepay)|

|resume(O, C2.change)|

|resume(O, Cl.change)|
Z |call(O, Ci.change)|

|end _rend(P, O.charge)|

il

1
1

Z |end .rend(Ci, O.prepay)| + 1

|call(O, C2.change)|
|call(O, Cl.change)|
|end_rend(P, O.charge)|

|beg .rend (P, O.charge)].

From the kill .rend-dead.rend constraints, it follows that

|kill_rend(O.prepay)| - Z |dead _rend(Ci, O.prepay)| = 0,

and we know that

|dead .rend(C1, O.prepay) = 0.

From constraints of the form (5), we have
|end _rend(C1, O.prepay)|
|end _rend(C2, O.prepay)|

= |resume(C1, O.prepay)|
= |resume(C2, O.prepay)|.

(50)
(51)
(52)

(53)
(54)
(55)

(56)

(57)

(58)

(59)
(60)

The integer linear programming package reports that this system is incon-

sistent.

3.2.2 The (0-1---0-11)*0-140-15 Case

Assume that the projection of the constrained prefix s on the alphabet of
7(0) lies in the language of the expression (O-1---0-11)*0-140-15. Then
s represents a behavior in which the OPERATOR task starves calling the entry
PUMP . ACTIVATE following a rendezvous at the entry OPERATOR . CEARGE. We have

Istarve (O, P.act)] = 1 (50)

|end rend(P, O.charge)] > 1 (51)

|beg_rend(P, O.charge)] = |end_rend(P, O.charge)] (52)

Z |resume(O, Ci.change)] = |beg.rend(P, O.charge)| — 1 (53)
i

|call(O, C2.change)| = |resume(O, C2.change)| (54)

|call(O, Cl.change)] = |resume(O, Cl.change)|. (55)

The integer linear programming package reports that this system is incon-
sistent. ' =

3.2.3 The (0-1---0-11)°*0-16(0-17 v O-18) Case

Assume that the projection of s on the alphabet to 7(0) lies in the language of
the expression (O-1---0-11)*0-16(0-17 v 0-18). Then s represents a behav-
ior in which the OPERATOR task starves calling one of the CUSTOMER-i.CHANGE
entries. We have ‘

|starve (O, Cl.change)] = |O-17| (50)
|starve (O, C2.change)] = [O-18| (51)
|O-17| +]O-18] = 1 (52)

|call(O, P.act)] = |resume(O, P.act)] (53)
|beg_rend(P, O.charge)| = |end_rend(P,O.charge)| (54)
Z [resume(O, Ci.change)] = |beg_rend(P, O.charge)| - 1 (55)
|call(O, C2.change)] = |resume(O, C2.change)| (56)
|call(O, Cl.change)| = |resume(O,Cl.change)]. (57)

The integer linear programming package reports that this system is incon-
sistent.

3.3 Analysis of the Case in Which the PUMP Task Starves
at the Entry PUMP.ACTIVATE

Assume that s is a constrained prefix containing a sterve.(C, P.st.a!'t) symbol
and Lhal the projection of s onto the alphabet of 7(P) lies in the language of
the cxpression (P-1)°P-2.

34

As before, projecting on the alphabet of 7(C1) gives

|starve.(Cl, P.start)|
|resume(C1, O.prepay)|
|call(C1, O.prepay)|

|end -rend(O, Cl.change)|
|beg_rend(O, Cl.change)|
|resume(C1, P finish)|
|eall(C1, P.finish)|

|resume(C1, P.start)|

= 1

= |call(C1,O.prepay)|

|end _rend(O, Cl.change)| + 1
|beg.rend(O, Cl.change)|
|resume(C1, P.finish)|
|call(C1, P.finish)|
|resume(CL, P.start)|
|call(C1, P.start)|.

[l
)

i

i

I

Y

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Our hypothesis about the projection of s on the alphabet of 7(P) implies

that

|starveq(P.act)]
|call(P, O.charge)
Y |end_rend(Ci, P.finish)|

lend _rend(C2, P.finish)|
|end _rend(C1, P.finish)|

3" |beg rend(C:i, P.finish)|

|end_rend(C2, P.start)|
|end .rend(C1, P.start)|

Z |beg _rend(Ci, I’.start)|

|end_rend(0, P.act)|
Exactly as before, we also have

|call(C1, O.prepay)| =
|call(C1, P.start)] =
|call(C1, P.finish)] =
|call(O, Cl.change)| =
feall(O, P.act)| =

|call(C2, P.start)| =
|call(C2, P finish)| =
|call(P, O.charge)] =
|beg_rend(O, C2.change)] =

= 1
= |resume(P, O.charge)|
= |eall(P, O.charge)|

= |beg.rend(C2, P.finish)|
= |beg_rend(C1, P finish)|

= Z |end _rend(Ci, P.start)|

= |beg_rend(C2, P.start)|
= |beg-rend(C1, P.start)|
= |end.rend(O, P.act)|

= |beg-rend(O, P.act)|.

|beg -rend(C1, O.prepay)|
|beg -rend(C1, P.start)|
|beg-rend(C1, P.finish)|
|beg.rend(O, Cl.change)|
|beg rend(O, P.act)|

|beg _rend(C2, P.start)|
|beg_rend(C2, P finish)|
|beg-rend(P, O.charge)|
|resume(C2, P.finish)| — |C2-6|

35

(9)
(10)
(11)

(12)
(13)
(14)

(15)
(16)
(17)

(18)

(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

|resume(C2, P.finish)] = |call(C2, P.finish)| (28)
|call(C2, P.finish)| := |resume(C2, P.start)| — |C2-5] (29)
|resume(C2, P.start)] = |cali(C2, P.start)| (30)
|call(C2, P.start)| - |resume(C2, O.prepay)| — |C2-4| (31)
|resume(C2, O.prepay)| = [call(C2, O.prepay)| — |C2-3| (32)
|call(C2, O.prepay)| = |end_rend(O, C2.change)| + 1 — |C2-2|(33)
lend_rend(O, C2.change)| = |beg-rend(O, C2.change)| (34)
|starvec(C2, O.prepay)| = |C2-2| (35)
|dead_rend(C2, O.prepay)| = |C2-3| (36)
|starve.(C2, P.start)] — |C2-4] (37)
|starve.(C2, P.finish)| = |C2-5| (38)
|starve,(C2.change)| = |C2-6] (39)
|call(C2, O.prepay)] > [|C2-3| (40)
|resume(C2, O.prepay)| > |C2-4] (41)
Iresume(C2, P.start)] > |('2-5 (42)
[resume(C2, P.finish)] > |C2-6], (43)

and
|C2-2] 4 |C2-3] 4 |C2-4] + |C2-5) + |C2-6] = 1. (44)

Constraints of the forms (5) and (11) of [3] yield

lcall(C2, O.prepay)] = |beg.rend(C2, O.prepay)| (45)
|call(O, C2.change)] = |beg rend(O,C2.change)| (46)
|starve,(P.act)| + |starve (O, P.act)] < 1. (47)

We now have to examine the projection of s on the alphabet of 7(0). By
(9) and (47), we have |starve (O, P.act)] = 0, so the projection must lie in
the language of the expression (O-1---0-11)*(0-12 vV 0-16(0-17 v O-18)). We
consider these cases separately.

3.3.1 The (0-1---0-11)*0-12 Case

Assume that the projection of s on the alphabet of 7(0O) lies in the language of
the expression (O-1---0-11)*0-12. Then s represents a behavior in which the
task OPERATOR starves wailing for a call at either of the entries OPERATOR . PREPAY
or OPERATOR .CHARGE. We have

1 (48)
| starve,(O.charge)| 1 (49)
[resume(O, C2.change)| |call(O), C2.change)| (50)

|starveqa (O.prepay)|

i

36

|resume(O, Cl.change)] = |call(O,Cl.change)| (51)

Z |call(O, Ci.change)] = |end.rend(P,O.charge)l (52)
|end -rend(P, O.charge)| = |beg.rend(P, O.charge)| (53)
|end -rend(C1, O.prepay)| = |beg-rend(C1,O.prepay)| (54)
|end rend(C2, O.prepay)| = |beg-rend(C2,O.prepay)| (55)
|resume(O, P.act)] = |call(O,P.act) (56)

|kill .rend(O.prepay)| = 0. (57)

Constraints of the form (11) give

|starve (C1, O.prepay)| + |starve, (O.prepay)| < 1 (58)
|starve (C2, O.prepay)| + |starve,(O.prepay)l < 1, (59)
and we our hypothesis on s implies that
|starve (C1, O.prepay){ = 0. (60)
Finally, we have
|kill_rend (O.prepay)| - Z |dead.rend(Ci, O.prepay)] = 0 (61)
t |dead_rend(C1, O.prepay)] = 0. (62)

The integer linear programming package finds a solution to this system.
That solution represents a behavior in which each customer task completes a
rendezvous at the entry OPERATOR. PREPAY, but the operator task never calls the
entry PUMP.ACTIVATE. By the argument for the lemma in section 2.5.1, modified
slightly to account for the fact that we have changed the order of the calls to
the CHANGE and ACTIVATE entries in the accept CHARGE alternalive, we have

Z |resume(Ci, O.prepay)| < |resume(O, P.act)] -+ 1. (63)

T

This last inequality makes the system inconsistent.

3.3.2 The (O-1---0-11)*0-16(0-17 v O-18) Case

Assume that the projection of s on the alphabet of 7(O) lies in the language of
the expression (O-1:--0-11)*0-16(0-17 v O-18). Then

|starve,(O, Cl.change)] = |O-17] (48)
|starve.(O, C2.change)] = |O-18| (49)
|0-17| 4 [0-18] = 1 (50)

37

|re.9:l:me(0, Cl.change)] - |call(O,Cl.change)| (51)

|resume(O, C2.change)| = [call(O, C2.change)| (52)
|resume(O, P.act) = |call(0, P.act)| (53)
lend_rend(P, O.charge)] > 1 (54)
fend.rend(P, O.charge)] = |beg .rend(P, O.charge)| (55)
|beg.rend(P, O.charge)| = Z |call(O, Ci.change)| + 1 (56)
|end_rend(C1, O.prepay)| - |beg-rend(C1, O.prepay)| (57)
lend rend(C2, O.prepay)| = |beg -rend(C2, O.prepay)| (58)
|kill_rend(Q.prepay)| = 0. (59)

From constraints of type (11), we have

[starveq(Cl.change)| + |starve.(O, Cl.change)] < 1 (60)
|starves(C2.change)| + |starve (O, C2.change)] < 1, (61)
and our hypotheses on s tell us that
[starve,(Cl.change) = 0. (62)
We also have
|kill .rend(O.prepay)] - 2: |dead_rend(Ci, O.prepay)| = 0 (63)
' |dead_rend(Cl, O.prepay)| = 0. (64)

The integer linear programming package reports a solution for this system.
The solution corresponds to a hehavior in which both customer tasks prepay,
the operator activates the pump, CUSTOMER.2 pumps gas and starves waiting for
change, and Lhe operator starves trying to give change to CUSTOMER_1. Exam-
ining the CEDL code, we see that such a behavior is impossible. The value of
the variable cus following the rendezvous at the entry OPERATOR . CHARGE must
be one or two, depending on whether the quantity

2 |beg -rend(Ci, O.prepay))| -- Z |[resume(O, Ci.change)|

[} i

is 1 or 2 (it’s clear that it can’t be 0). In the first case, no call(O, P.act) symbol
can occur after the last beg_rend(P, O.charge) symbol, while in the second case,
one must occur. Using (23), (26), and the fact that beg_rend(O, P.act) and
call(P, O.charge) symbols alternate in 7(P) as we did in secton 2.4.3, we have

|call(O, P.act)] = |call(P,O.charge)| + Z |beg -rend(Ci, O.prepay)|

- Z jresume(O, Ci.change)} - 1. (65)

38

Adding this equation makes the system inconsistent, and we conclude that no
such constrained prefix exists.

4 A Three-Customer System

The systems discussed in this report are based on the examples given by Helin-
bold and Luckham in [7]. To facilitate the analysis of these systems, we reduced
the number of tasks, cutting the number of customer tasks from ten to two and
the number of pump tasks from three to one. In this section, we briefly examine
the effect of this reduction on the analysis by considering a system with three
customers.

4.1 The Task Expressions and the Behavior of the System

In Figures 13 and 14, we show the task declarations and the body of the
OPERATOR task for a three-customer version of the revised gas-station system
considered in section 3. The task expression for the OPERATOR task is given
in Figure 15. The other task bodies and task expressions are the same as in
section 3.

We will not present here a detailed analysis of this larger system. We simply
nole that this system does have behaviors in which a customer prepays but
never pumps gas. A constrained prefix representing such a behavior is

beg _loop(C1)beg .loop(P)beg .loop(C2)beg -loop(C3)def (cus, zero)

def (current, 1.)def (wait, L)beg..loop(O)call(C1, O.prepay)

beg rend(C'1, O.prepay)def (cus_id, cl)use(cus, zero) def(cus, one)use(cus, one)
def (current, c1)call(O, P.act)beg -rend(O, P.act)end.rend(O, P.act)
resume(O, P.act)end _rend(C1, O.prepay)resume(CL, O.prepay)
call(C2, O.prepay)beg -rend(C2, O.prepay)def (cus.id, ¢2)use(cus, one)
def (cus, two)use(cus, two) def (wait_L, c2)end .rend(C2, O.prepay)
resume(C2, O.prepay)call(C2, P.start)beg -rend(C2, P start)
end_rend(C2, P.start)resume(C2, P.start) call(C2, I’.finish)
beg_rend(C2, P.finish)end _rend(C2, P finish)resume(C2, P finish)
call(C2, O.prepay)beg -rend(C2, O.prepay)def (cus.id, c3)use(cus, two)
def (cus, three)use(cus, three)def (wait.2, c3)end _rend(C3, O.prepay)
resume(C3, O.prepay)call(P, O.charge)beg-rend(P, O.charge)
end_rend(P, O.charge)resume(P, O.charge)use(cus, three)call(O, P.act)
beg_rend(O, P.act)end _rend(O, P.act)resume(O, P.act)call(C3, P.start)
end _rend(C3, P.start)resume(C3, P.start)call(C3, P finish)
beg_rend(C3, P.finish)end _rend(C3, P.finish)resume(C3, P.finish)

39

package COMMON is
type C_NAME is (c1,¢2,c3); -- enough for three customers
type COUNTER is (zero,one,two,three);

-- enough to handle 3 customers
end COMMON;

use COMMON;

task OPERATOR is
entry PREPAY(CUSTOMER_ID : in C_NAME);
entry CHARGE;

end OPERATOR;

task PUMP is
entry ACTIVATE;
entry START_PUMPING;
entry FINISH_PUMPING;
end PUMP;

use COMMON;

task CUSTOMER_1 is
entry CHANGE;

end CUSTOMER_1;

use COMMON;

task CUSTOMER_2 is
entry CHANGE;

end CUSTOMER_2;

use COMMON;
task CUSTOMER_3 is

entry CHANGE;
end CUSTOMER_3;

Figure 13: Task declarations for the three-customer system

40

use COMMON;
task body OPERATOR is

CUSTOMERS : COUNTER := zero;

CURRENT, WAITING_1, WAITING_ 2 : C_NAME;

begin

loop
select
accept PREPAY(CUSTOMER_ID : in C_NAME) do
CUSTOMERS := COUNTER’succ(CUSTOMERS);

if CUSTOMERS = one then -- if no previous customer
-- is waiting
CURRENT := CUSTOMER_ID; -- mark this one as current
PUMP .ACTIVATE; -- and activate the pump
elsif CUSTOMERS = two tHen -~ this is the second one
WAITING_1 := CUSTOMER_ID; -- mark it as the second
-- in line
else
WAITING_2 := CUSTOMER_ID; -- otherwise, mark this
-- one as third in line
end if;
end PREPAY;
or
accept CHARGE;
if CUSTOMERS > omne then -- if another customer is
~-- waiting,
PUMP.ACTIVATE; -- activate the pump
end if;

if CURRENT = c1 then
CUSTOMER_1.CHANGE;

elsif CURRENT = c2 then
CUSTOMER_2.CHANGE;

else
CUSTOMER_3.CHANGE;

end if;

CUSTOMERS := COUNTER’pred(CUSTOMERS);

Figure 14: Body of the OPERATOR Task for the Three-Customer System

41

if CUSTOMERS = one then -- if one customer is

CURRENT := WAITING_1; -- waiting, promote that one
-~ to be current

elsif CUSTOMERS = two then -- if two customers waiting
CURRENT := WAITING_1; ~= promote both of them
WAITING_1 := WAITING_2;

end if;

end select;
end loop;

end OPERATOR;

Figure 14: Continued

starvec(P, O.charge)use(current, c1)starve (O, Cl.change)
starve (C1, P.start)starve,(C2.change)starve,(C3.change).

In terms of the gas station modelled by the CEDL system, this prefix corre-
sponds to a situation in which the first customer prepays, the operator activates
the pump and a second customer prepays and pumps gas. A third customer
then prepays and the pump indicates Lo the operator that a customer has fin-
ished. Knowing that customers are wailing, the operator aclivates the pump
again and the third customer pumps gas. The operator then tries to give change
to the first customer, who is still waiting to pump, and the other two customers
wait for change.

Our analysis of the two-customer system, then, does not carry over to the
three-customer version. In our revised two-customer systein, the operator reac-
tivates the pump immediately when there is a customer waiting and the pump
reports that a customer has finished pumping. When there are only two cus-
tomers, this is enough to ensure that no customer prepays without gelting to
pump gas. In the three-customer version, however, the third customer can take
advantage of this reactivation of the pump, preventing the first customer from
pumping.

The important point is that, although this problem is fairly obvious once it
has been pointed out, examination of the two-customer system does not clearly
suggest that an enlarged version will behave in a radically different manner.
With other systems, the combinatorics may be significantly more complicated,
and Lhere seems to be no good general approach to determining whether scaling
the system down to facilitate analysis will actually invalidate the analysis. For
this reason, il is especially important to try to construct automated tools that
can handle systems of realistic sizes.

0-1 dcf (cus, zero)def (current, 1.)def (wait, 1.)beg loop(0) (

0-2 ‘ (V(beg _rend(Ci, O.prepay)def(cus id, ci) (V use(cus, x)def (cus, succ(x))
0-3 ((use(cus, one)def (current, ci)call(O, P.act)resume(O, P.act))

0-4 vuse(cus, two)def (wait.1,ci) V use(cus, three)def (wait.2, ci))

end _rend(Ci, O.prepay)))

0-5 \Y (beg_rend(P, O.charge)end _rend(P, O.charge)

0-6 ((V use(cus, x)call(O, P.act)resume(O, P.act)) v \/ use(cus, x))
x>one x<one

0-7 (use(current, c1)call(O, Cl.change)resume(O, Cl.change)

0-8 vuse(current, c2)call(O, C2.change)resume(O, C2.change))

0-8 vuse(current, c3)call(O, C3.change)resume(O, C3.change))

0-10 (V use(cus, x)def (cus, pred(x)))
X

O-11 (use(cus, one)(v use(wait_1, ci)def (current, ci))

use(cus, two)(v use{wait_1, ci)def (current, ci))

1

T

0-12 (V use(wait.2, ci)def (wait_1, ci)) V use(cus, zero))))

0-13 (starveu(O.prepay)sta.rve,,(O.charge)stap(O)

Figure 15: Task Expression 7(0) Associated with the Three-Customer Version
of the Task OPERATOR

43

5

V(V beg _rend(Ci, O.prepay)def (cus.id, ci) (V use(cus, x)
i x

def(cus, succ(x))) use(cus, one)def (current, ci)starve (O, P.act)
kill_rend(O.prepay)stop(O))

Vbeg_rend(P, O.charge)end _rend(P, O.charge)

((V use(cus, x))starve. (O, P.act)stop(O)
x>one

Vbeg_rend(P, O.charge)end_rend(P, O.charge)((V use(cus, x))
x>one

call(O, P.act)resume(O, P.act) v V use(cus,x))
x<one

(use (current, c1)starve.(O, Cl.change)stop(O)

Vuse(current, c2)starve (O, C2.change)stop(O)

Vuse(current, c3)starve (O, C3.change)stop(0)))

Figure 15: (Continued)

Conclusion

In this report, we have presented parts of the analysis of three versions of a
design for a concurrent software system. The analysis was based on constrained
expression representations for the system, and involved the generation of sys-
tems of inequalities from those representations. The consistency or inconsistency
of those inequalities reflects the existence or noncxistence of a behavior of the
software system having some specified property.

Part of our purpose in carrying out this analysis was to investigate the
prospects for automating it. For that reason, we did not attempt to generate
inequalities in the cleverest or most insightful fashion, but rather tried to dis-
cover and follow a small number of simple rules. Most of these will be apparent
to the reader, but we have not tried Lo give a full codification of them in this

14

report. For those parts of the analysis where it was sufficient to consider only
inequalities involving the numbers of occurrences of event symbols in an entire
constrained prefix, this approach seems to be adequate. In those parts of the
analysis involving data dependencies, where the constraints give information
about segments of constrained prefixes, a more sophisticated approach was nec-
essary. In such cases, we need to consider inequalities involving such things as
the number of occurrences of a certain symbol following the last occurrence of
another symbol.

While we have not yet found any general approach for such cases, we were
encouraged to find that our more mechanical methods seemed to isolate and
highlight the problems. For example, in section 2.5.1, the systemn of inequali-
ties produced by our mechanical approach is consistent. However, examination
of the solution found by the integer linear programming package shows that it
cannot correspond to an actual behavior of the CEDL system. The solution
corresponds to a situation in which the two CUSTOMER tasks both complete ren-
dezvous at the entry OPERATOR.PREPAY but the OPERATOR task never calls the
entry PUMP . ACTIVATE. Having had our attention focused on this problem, we can
then establish another inequality relating the number of resume(Ci, O.prepay)
symbols to the number of resume(O, P.act) symbols and reflecting the appro-
priate dependence on the value of the variable cus.

The advantages of this sort of analysis, based on the constrained expres-
sion formalism, include its rigor, the fact that it is exhaustive (unlike dynamic
methods which animate the system in some way and must try to “execute”
each possible behavior), and the focused nature of the analysis. Because this
approach to analysis begins with a hypothesis about a behavior and reasons
“backwards” from that, the problem of combinatorial explosion is reduced. It is
clear, nonetheless, that automated support is necessary for this kind of analysis
to be of much praclical value. The size and complexity of the systems consid-
ered here are close to the limits of our ability to analyze them by hand. Even
though these methods are intended to be used with relatively high-level designs,
the importance of working with systems of realistic size should be clear from
the discussion in the previous section. Even partial results on modularizing this
analysis would also be helpful.

While these experiments in analysis were under way, Ugo Buy suggested
‘a somewhat more global approach to generating inequalities and constructed
a prototype tool implementing part of his approach. His idea is to regard a
task expression as a graph, with the event symbols as the terminal nodes, and
to generate a list of the paths leading to each symbol. Introducing auxiliary
variables for the number of times each branch is traversed and generaling in-
equalities involving these variables from the constraints and the semantics of
regular expressions, one gets inequalities involving the number of occurrences
of each symbol in a constrained prefix. Combined with some of the heuristics
discovered in the course of the experiments described here, this approach seems
very promising.

45

References

[1] G. S. Avrunin, L. K. Dillon, J. C. Wileden, and W. E. Riddle. Con-

2]

3]

(4]

[5]

[6

e

~]

18]

strained expressions: adding analysis capabilities to design methods for

concurrent software systems. IEEE Transactions on Software Engineering,
SE-12(2):278-292, 1986.

G. S. Avrunin and J. C. Wileden. Describing and analyzing distributed
software system designs. ACM Transaclions on Programming Languages
and Systems, 7(3):380-403, July 1985,

L. K. Dillon. A Constrained Ezpression Formulation of CEDL. Technical
Report TRCS86-22, Department of Computer Science, University of Cali-
fornia, Santa Barbara, November 1986. Revised July 1987.

L. K. Dillon. Overview of the Constrained Ezpression Design Language.
Technical Report TRCS86-21, Department of Computer Science, University
of California, Santa Barbara, October 1986.

L. K. Dillon. Simplification and Reduction of CEDL Constrained Ezpres-
sions. 'Technical Report, Department of Computer Science, University of
California, Santa Barbara, October 1986,

L. K. Dillon, G. S. Avrunin, and J. C. Wileden. Constrained Expressions:
Toward Broad Applicability of Analysis Methods for Distributed Software
Systems. To appear in ACM Transaclions on Programming Languages and
Systems.

D. Helmbold and D. Luckham. Debugging Ada tasking programs. IEEE
Software, 2(2):47-57, March 1985.

A. H. Land and S. Powell. Fortran Codes for Mathematical Programming:
Linear, Quadratic and Discrete. John Wiley & Sons, Ltd., London, 1973.

46

