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ABSTRACT

A basic step in the construction of a symbolic interpretation of an image is the ini-
tial iconic to symbolic mapping, which associates portions of the image with hypothesized
object identities. Our approach involves building an intermediate symbolic representation
of the image data using knowledge-free segmentation processes. From the intermediate
level data, a partial interpretation is constructed by associating an object label with se-
lected groups of the abstracted image events that are represented as symbolic tokens. This
bottom-up step is necessary in order to activate potentially relevant knowledge structures,
and to provide spatial constraints on the application of such knowledge.

This paper describes a simple mechanism for generating object hypotheses that relies
on covergent evidence from a variety of attributes of region tokens produced by a seg-
mentation process. We introduce the idea of a constraint function, which is an extended
real-valued function defined over a single region attribute. A simple constraint maps a sin-
gle attribute value of a region token into a graded response which can be viewed as a ‘vote’
for the associated object. Simple constraint functions are hierarchically organized into
compound constraints that are applied to a set of token attributes in order to generate ini-
tial object hypotheses. Our use of these constraint-based techniques as a focus-of-attention
mechanism is compared to classical pattern classification methods and goals.

The object hypothesis system may also be viewed as creating tentative ‘islands of
reliability’ from which knowledge-driven processing may be initiated. The most highly
rated object hypotheses can be considered object exemplars which capture image-specific
characteristics of the object. Constraint functions can be defined on the difference in the
values of a pair of token attributes in the same manner as the values of the token attributes
themselves. Thus, a similarity constraint function can be applied to compare all tokens to
a given token in an exemplar extension strategy.



1 Introduction

The interpretation of complex natural images, such as those typically encountered in
the outdoors domain, has proven to be a formidable task. The variability in the structure
of common objects and their appearance in an image, the complications arising from both
object and sensor motion, and the image effects of the relationship between the observer,
objects, and light sources produce an environment i}l which purely bottom-up approaches
to interpretation cannot be expected to be generally effective. It has been our position for
some time that world knowledge, expectations, and image scene content must be used to
guide the construction of complete scene-describing symbolic interpretations[16,17]. This
paper does not attempt to carefully survey the literature in knowledge-based vision sys-
tems. However, we do note that most of these systems extract a set of two-dimensional
image features in some form and then utilize a particular control structure for mapping
this information onto concepts in a knowledge base. For example, several rule-based sys-
tems which map features to object identities have been developed [23,28,30], relaxation
processes have been employed for propagating hypotheses under uncertainty [3,14], alge-
braic constraint manipulation has been used in model matching [10], constraint satisfac-
tion systems have been used to capture relational information (24,40, and frame-based
(or schema-based) approaches for more general (and sometimes more complex) control
strategies have been proposed (2,18,41]. A partial review of image interpretation research
can be found in [2,8,9,17,42] and descriptions of several other individual research efforts
beyond those cited above are found in [1,10,21,17,24,25,32,33,34.38.41,43,44,47].

Early attempts to interface stored knowledge to image data at the pixel level met with

only limited success and little possibility of generalization [40]. For example, blue pixels
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could immediately be hypothesized to have sky labels and appropriate constraints could be
propagated, but such an approach to interfacing visual knowledge seems rather futile in the
face of increasing numbers of objects and increasing complexity of the task domain. In an
image of reasonable resolution there are 512x512 = 1/4 million pixels; hence vision systems
must confront the problem of dynamically forming, from the large number of individual
pixels, more useful entities to which propositions will be attached. Transforming the data
into a much smaller set of image events is the goal of segmentation processes. However,
algorithms for extracting primitives such as 2D regions of homogeneous color and texture,
straight lines, simple geometric shapes, and/or local surface patches have proven to be
complex and quite unreliable, suggesting that substantial further processing is required
before one can expect this intermediate representation to support a globally consistent
interpretation.

A basic step in the construction of a symbolic interpretation is the initial iconic to sym-
bolic mapping, which associates portions of the image with hypothesized object identities.
This bottom-up step is necessary in order to activate potentially relevant knowledge and
to provide spatial constraints on its application. The approach presented in this paper
addresses the start-up problem of interpretation by creating tentative ‘islands of reliabil-
ity’ from which knowledge-driven processing can be initiated. Since these processes are
somewhat independent and are usually associated with separate parts of the images. they
can be executed independently and in parallel. Multiple processes operating on the same
portion of the image can also compete in order to arrive at the best interpretation among
a set of alternatives. The relations and expected consistencies between local interpreta-

tions form the basis for a cooperative/competitive style of processing among the possible
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interpretations as the system attempts to extend the islands to uninterpreted parts of the

image.

1.1 Complexity of Vision

The complexity of visual tasks can be made explicit by examining almost any un-
constrained natural image. Although this initial discussion is qualitative, we believe the
conjectures are intuitive and reasonable even though it is very difficult to be introspective
of one’s own visual processing. Humans are rarely aware of any significant degree of am-
biguity in local portions of the sensory data, nor are they aware of the degree to which
global context and storedAexpecta.tions derived from experience are employed. However,
if the visual field is restricted so that only local information is available about an object
or object-part, interpretation is often difficult or impossible. Increasing the contextual
information so that spatial relations to other objects and object-parts are present makes
the perceptual task seem natural and simple. Consider the scenes in Figure 1 and the
closeup images in Figure 2. Here, we have selected some subimages of objects which show
to varying degrees:

o primitive visual elements — these are image events which convey limited information
about the decomposition of an object into its parts (which of course is a function at
least partly of resolution); note that this implies that the path to recognition of the
object via subparts is not available to our perceptual system;

e absence of context — there is limited information about other objects which might
relate to the given object in expected ways; note that this implies that the path
to recognition of the object, via the scenes or objects of which it is a part, is not
available to our perceptual system.

In Figure 2, as some of the surrounding context of the shoes and the head are sup-

plied, the perceptual ambiguity disappears and the related set of visual elements is easily



recognized. In each of the above cases the purely local hypothesis is inherently unreliable
and uncertain and there may be little surface information to be derived in a bottom-up
manner.

It is hard to imagine a bottom-up system deriving a surface model of the shoes based
upon the intensity information shown in Figure 2. It appears that human vision is fun-
damentally organized to exploit the use of contextual knowledge and expectations in the
organization of the visual primitives. However, it may be impossible to associate object
labels with these ambiguous primitives until they are grouped into larger entities and
collectively interpreted as a related set of object or scene parts. Thus, the inclusion of
: knowledge-drivgn processes at some level in the image interpretation task, where there

is still a great degree of ambiguity in the organization of the visual primitives, appears
inevitable.

We conjecture that image interpretation initially proceeds by forming an abstract rep-
resentation of important visual events in the image without knowledge of its contents. The
primitive elements forming this representation are then collected, grouped, and refined to
bring their collective description into consistency with high-level semantic structures that

represent the observer’s knowledge about the world.

2 Constraint-Based Object Hypothesis Strategies

The interpretation task of concern in this paper is that of labelling an initial region
segmentation of an image [7,29] (such as those shown in Figure 3) with object (and object
part) labels when the image is known to be a member of a restricted class of scenes

(e.g., outdoor scenes). An important aspect of this task is the mechanisms for focussing



attention on selected areas of the image for which plausible hypotheses of object identities
can be generated and for merging regions with a common semantic label. This latter task
can occur simultaneously with the labeling process or delayed until a later phase of the
interpretation process.

We propose a simple approach to object hypothesis formation, relying on convergent
evidence from a variety of measurements and expectations. In the early interpretation
phase, when little is known about the scene or its contents, the approach is primarily
bottom-up and involves the generation of a few reliable hypotheses about prominent image
events. The object hypothesis system thus provides a link between the image data and the
knowledge structures. Control can then shift to a more top-down orientation as context
and expectations allow the use of further knowledge-dependent processing to validate and
extend the initial hypotheses (see Figure 4).

Our goal, therefore, is to develop methods for selecting specific image events that are
likely candidates for particular object labels, rather than the selection of the best object
label for each region and line. For example, given a set of regions in an outdoor scene (and
assuming a standard camera position), we might choose to select a few bright blue areas
with low texture located near the top of the image as likely sky regions. Similarly, in an
outdoor scene one could select grass regions by using the expectation that theyl would be
of medium brightness, have a significant green component, be located somewhere in the

lower portion of the image, etc.! For each object, these expectations can be translated into

!Note that a camera model and/or access to a 3D representation of the environment could dynamically
modify the value of these location limits in the image; thus, the use of constraints on relative or absolute
environmental location in a fully general system would involve modification of expectations (and subsequently
the associated constraints) about image location as the system orients the camera up or down relative to
the ground plane.
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a complex constraint function on the attributes of a region token (see next section); the
constraint function combines the results of many measurements into a confidence level that
a region token (or small group of region tokens) represents that object. In previous papers
[5,35,36], each constraint function on a single attribute was referred to as a rule which
mapped attributes (or features) of a token to a vote for an object label. However, in order to
avoid confusion with the use of the term rule in productions systems in the Al expert system
literature, we have changed the terminology. Perhaps the term fuzzy constraint would be
more appropriate, but this, too, carries potential confusion with existing terminology and

approaches that we wish to avoid [48].

2.1 The Choice of Initial Token Primitives

It has been suggested that 2D region and line tokens are not appropriate object de-
scriptions of the initial image data and that they should be replaced with local estimates
of surface orientation, reflectance, depth, and velocity [4,9,26]. In this case the descriptive
elements are surface patches which directly capture aspects of the three—dimensi6nal world
from which the image was obtained. The implication is that the interpretation task will
be far simpler when a surface description is used, since it is a representation of the actual
physical world that is to be interpreted and therefore a broader spectrum of domain con-
straints can be brought to bear upon the information. Although the claim is nundoubtedly
correct to some degree, reliable extraction of surface range, reflectance, and orientalion
information from monocular image data has yet to be demonstrated except in highly con-
strained domains or under very unrealistic constraints on the type of surfaces making up

the objects in the scene. In fact it has proven very diflicult even when stereo, motion, and
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range data are available.

On the other hand, even if a very reliable surface description could be obtained, the
complexity of the natural world will leave us facing many of the same representation,
grouping, and interpretation issues. Let us assume for the moment that, in addition to the
original spectral information at each pixel, the distance to the corresponding visible surface
element at each pixel is also available. Consider the problem of interpreting a complex
environment (such as a typical crowded city street scene) even if such a perfect depth
map was available. How should one partition the numerical depth array into meaningful
entities such as surface patches, parts of objects, and objects? And then how could this be
interfaced to the knowledge base so that control of the interpretation process is feasible?
Given that many initial local hypotheses are inherently uncertain and unreliable, how do
we achieve globally consistent and reliable integration of the information? This, in fact,
is exactly the set of problems that we face with the two-dimensional region and line data.
We believe that the principles and approaches presented here will be applicable not only to
the two-dimensional tokens extracted from the static monocular color images presented in
this paper, but also to the interpretation of three-dimensional depth data recovered from
stereo and laser ranging devices, and both two- and three-dimensional motion data derived

from a sequence of images.

2.2 Knowledge as Constraint Functions

The general idea is to represent expectations such as grass is green in the form of
constraints on the attributes of region tokens, so that if the constraint is satisfied. that

attribute votes for the associated object label. To do this, we introduce the idea of a simple
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constraint function as an extended real-valued function on a token attribute, which maps

from attribute (or feature) space into a real-valued response:

C(R;) ¢ RU{VETO)

where C' is the constraint function, R;; is the value of the i** attribute/feature of the j**
region token, R is the set of real numbers, and VETO is a special response indicating
that, on the basis of R;;, the region token cannot possibly represent an instance of the
associated object (see below). Simple constraint functions, as described above, are thus
defined as the ranges over a scalar-valued feature which will map into a real-valued vote
for an object label. Typically a feature will be the mean or variance of a property of the
pixels composing the region. Belknap et al [5| demonstrate how this general idea can be
extended to include multiple types of tokens (e.g. region and line tokens) by defining
relational measures between tokens of the different representations. Compound
constraint functions involve a combination of simple constraint functions, and they allow
fusion of information from a variety of different types of measurements. Hereafter,

constraint functions often will be referred to simply as constraints.

We will now develop a simple constraint that captures the expectation that grass is
green using a feature that is a coarse approximation to a green-magenta opponent. color
feature, obtained by computing the mean of 2G-R-B [or all pixels in this region.? In order
to demonstrate the actual basis and form of knowledge embodied in the constraint, Figure

5 compares the green-magenta feature histogram of grass pixels to the histogram of the

2Note that R,G,B refers to the red, green, and blue components of the color image, respectively.
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same feature for all pixels. This data was obtained by hand-labelling region segmentations
of 8 sample images of outdoor house scenes with their object identities.

One approach to defining C for scalar-valued features is to construct this function using
distance in feature space between the measured value and a stored prototype feature value.
Let d = d(fp, Ri;) = |Rij — fp| be the distance between the measured feature value R;;
and the prototype feature point fp and let 6; < 0, < ... < 0g be real-valued tllresholds on

d. The value C of the simple constraint is then:

(1 if —0; <d <0,
d+0, .
— < —
6, — b5 if =0, <d< —03
C(d)=3 d-06 .
—— <
04_05 lf04<d_05
0 if (—01 <d< —02) or (05 <d< 06)
\VETO otherwise

As shown in Figure 6, this defines a piecewise linear mapping in which the thresholds
6;,i = 1,...,6, represent a coarse interpretation of distance measurements in feature
space. When the measured and expected values are sufficiently similar, the object label
associated with the simple constraint receives a maximum vote of 1. Under the principle
of graceful degradation, small changes in a feature measurement should not dramatically
alter the system response, and therefore beyond some distance the voting function is
linearly ramped to O as the distance in feature space increases. Note that the function C
would have to be modified if the feature was not scalar-valued, as in a circular range for

an orientation attribute, or if multiple modes were desired.
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0, and f¢ allow a veto vote if the measured feature value indicates that the object
label associated with the prototype point cannot be correct. For example, a certain range
of the green-magenta opponent color feature implies a magenta, red, or blue color which
should veto the grass label. Thus, certain measurements can exclude object labels; this
proves to be a very effective mechanism for filtering the summation of several spurious
weak responses. Of course there is the danger of excluding the proper label due to a single
feature value, even in the face of strong support from many other features. A natural
extension to the mechanisms presented here would generalize the constraint form to be
parameterically varied from the fixed form that we have defined. Thus, the ranges could
be dynamically varied so that fewer or larger numbers of regions are in the positive voting
range of a particular constraint. If there are multiple peaks in the histogram, then a simple
constraint can be defined for each peak independently; their results could be combined in
a straightforward manner using a function, such as the maximum of the responses.

A simple constraint defines a range over the value of a feature within which a measured
feature must fall if the region is to be considered an instance of the object label. A
compound constraint is defined as a (partially redundant) set of simple constraints on
token attributes that is assembled into a composite response via a combination function
applied to the responses of the simple constraints. The combination function can take
many logical or arithmetic forms; this is an extension of the functional form of hypothesis
rule in Nagao et al [28]. The premise is that by combining many partially redundant
constraints, the effect of any single unreliable constraint is reduced.

It is useful to impose a hierarchical structure on the sel of constrainis associated with

an object. In the experiments described below, a compound constraint for each object is
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organized into a hierarchical structure containing five compound constraints which provide
an expectalion for the color, texture, location, shape, and size of region tokens relative to
the object. Each of these compound constraints is composed of a set of simple constraints
on various attributes related to the overall constraint. This allows some flexibility in
combining several highly redundant features (e.g., several color features) into a compound
constraint which is somewhat more independent of the other constraints (e.g., color vs.
location), although this is still not theoretically sound as we shall discuss later. It should be
recognized, however, that this is only one alternative for imposing a hierarchical structure
on the set of constraints; many other combination functions are possible and the choice of
the function determines how the features ‘cooperate’ to provide an initial hypothesis.
Each of the five compound constraints for color, texture, location, shape, and size
is in turn joined into a compound constraint. The structure of the heuristic compound
constraint for grass is shown in Figure 7; it consists of a normalized weighted average of

the five compound constraints Cy, :
13
grass score = — _ W)Cy
N h=1

5
where the W), are the weights and N = Y° W,. Each of the compound constraints is in
h=1

turn a weighted sum of a set of simple constraints:
Cr= 17 ViC(Rir))
h — M 2’_‘ i th

where C(R;;) is the response from an individual feature constraint based on feature ¢

measured on region R;, the V; are the weights, and M = L V;. Note that a VETO
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propagates through the summation as a VETO, so that a lower level constraint can still
reject a region as a candidate for the object in question. The value associated with any
compound constraint might have a weight of zero, which means that the constraint will
have no effect on the weighted response of a higher level constraint.

The weights shown in Figure 7 capture the heuristic importance of each of the contri-
butions to the response of the higher-level compound constraint. The weights are integers
from 0 to 5, and reflect our belief that only a few levels of relative importance are needed
(weak = 1, medium = 3,strong = 5 in importance)[27]. Since many simple constraints
are expected to be used in a compound constraint, the constraint response should be
relatively insensitive to small changes in the weights. The intention is to allow obvious
relative weightings to be expressed, but to avoid twiddling of numbers. As we shall discuss
in Section 3 of this paper, the constraint response will be used only to order the regions for
further processing on the basis of their similarity to the stored feature templates, rather
than classifying them as an instance of a specific class. Thus, in this focus-of-attention
approach, verification processes are expected to detect errors in the next stages of the

image interpretation process.

2.3 Results of Constraint Application

Figure 8 shows the results of applying two simple constraints for grass to the region
segmentation shown in Figure 3c. For each constraint there are two images. The left image
of each pair is a composite feature histogram showing the feature distribution across all
pixels in a set of images, and the distribution for grass pixels across the same set of

images. The histograms were computed from a set of eight hand-labelled images and then
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smoothed. The right image of each pair shows the value of the constraint for each region
coded as a brightness level: bright regions correspond to high values and dark regions
correspond to low values.

The constraint that was developed interactively by the user is superimposed on the his-
tograms in piecewise linear form. In the upper left portion of the constraint figures, Target
refers to the object associated with the constraint, in this case grass, while Other refers
to all objects other than the target object. The first row of numbers shows the weighted
average response of grass regions and other regions to the constraint function (scaled to a
maximum value of 100), while the lower numbers tabulate the percentage of target regions
and other regions vetoed. Thus, the ideal constraint is one which responds maximally with
a value of 100 to the target regions, while vetoing 100% of all other regions. In practice,
there is almost always a tradeoff between increasing the response of target regions and
increasing the percentage of other regions that are vetoed, and optimal settings are not at
all obvious. In some cases constraints for the target object were interactively set to exclude
regions associated with other objects, while in other cases the goal was to maximize the
response for the target object regions. Since the constraints are not independent, they
were specified interactively in an empirical knowledge-engineering fashion. There is no
intent here to put forth these specific constraints as a significant contribution or even as a
satisfactory set; in fact some of these constraints probably need modification.

Figure 9 shows the response for three of the five compound constraints and the final
result for the overall compound constraint. For each constraint the region response is
shown superimposed over the image in two complementary formats. The left image of

each pair shows the strength of the constraint response coded in the intensity level of each
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region; bright regions correspond to good matches. Since low response and vetoed region
both appear dark, a second format is presented. The right image shows the vetoed regions
in black with all others uniformly grey. Figure 10 shows the final results for the foliage,
grass, and sky hypotheses for the house image in Figure 1b (vetoed regions are not shown).

The effectiveness of the constraints can be seen by examining the rank orderings of the
regions on the basis of the values of the compound constraint responses. For the grass
results shown in Figure 9d, for example, the two top ranked regions are actually grass.
For the grass results shown in Figure 10a, the top six regions are grass and 8 of the top 10
regions are grass; the two non-grass regions were actually sidewalk and driveway. For the
foliage responses shown in Figure 10b, the top 21 regions were some form of foliage (tree,
bush, or undergrowth); of the 30 regions not vetoed, only 7 were non-foliage regions (all of
them were grass and were among the lowest ranked of the non-vetoed regions (7 of the last
9). For the sky results in Figure 10c, only four regions were not vetoed and the top three
were sky. The fourth region, with a significantly lower response, was actually foliage with
some sky showing through. Figure 11 shows the highest ranked regions for each of three
object hypothesis constraints (sky,grass, and foliage) when applied to the three example
images. In Section 2.5 we discuss how these initial object hypothesis results may be used

as the basis of a strategy to produce a more complete interpretation.

2.4 A Language Interface for Knowledge Engineering

Knowledge engineering of constraints can be greatly facilitated by an interactive
environment. A user can get an immediate sense of the effectiveness of proposed constraints

by displaying the rating of each symbolic candidate in intensity or color. Thus, constraint
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development becomes a dynamic process with a natural display medium for user feedback.

Even though an immediate visual response to a proposed constraint is available, the
knowledge engineer must not be forced into a “parameter twiddling” mode. The constraints
should be robust enough so that a fairly crude specification of the constraint parameters
generates reasonable results. The specification can then be interactively refined, if neces-
sary. As a first step toward an interactive specification facility, a simple language interface
has been constructed so that constraints can be specified on any feature in terms a uniform
scale of five intervals of the dynamic range of a feature - VERY-LOW LOW, MEDIUM,
HIGH, VERY-HIGH (37,46]. These labels induce a partition on the range of the feature;
for each interval, the user specifies whether the rule response is ON, OFF, or VETO.

Coarse quantization of the feature range offers the knowledge engineer the opportunity
to quickly develop and assess a set of constraints without detailed examination of feature
statistics. It may be possible, in some cases, Lo completely develop the knowledge base
using semantic terms that are intuitive to the user, including the structure of the compound
constraints and the relative weights, as well as the setting of the individual constraint
parameters.

The results obtained from the coarsely quantized constraints are quite good and often
are comparable to the results obtained in the previous section using the more carefully
defined constraints. Typical results are shown in Figure 12 using the foliage hypothesis
constraint on two of the test image segmentations (Figure 3a,c). These results are com-
parable to those shown in Figure 10, and demonstrate that precisely specified constraints
are not always necessary to produce usable hypotheses for knowledge-hased interpretation.

For the segmentation of the house image of Figure 3a, a total of 24 regions survived the
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vetoes; of these, only two were incorrect (window and grass). For the image in Figure 1b
(results not shown), 16 regions were not vetoed and all of them were some form of foliage
(tree, bush, tall grass, or undergrowth); only one grass region was included. In Figure 1c,
28 regions remained after applying the foliage constraint to the image; of these, 20 were
bush or tree, 2 were grass, and the remainder were rocks, house window or shadowed areas.
All of the incorrect regions were rated fairly low by the constraint, and in all cases the |
most highly rated regions were foliage.

Similar results were obtained for the sky and grass constraints. For the image in Figure
1b, for example, 9 regions were not vetoed and of these, 5 were sky, 2 were a mixture of
sky and the telephone or power wire (see Figure 3b) and two were a mixture of tree and
sky. Applying the grass constraint to the segmentation of Figure 1a results in 41 regions,
17 of which are grass and are among the 18 top rated regions (the other region was bush).
The remaining 23 regions, all rated very low, are bushes, trees, windows, house steps, and
shutters.

The constraint system, as described in this and preceding sections, has been applied to
a number of outdoor images of several different types (including road scenes). Although
quantitive data is not yet available in sufficient quantity to generate meaningful statistics,
qualitatively the results presented here are typical. The constraints for grass, foliage and
sky appear to be effective in exiracting a set of regions which include actual grass, foliage,
and sky regions ranked at the top or near the top of the list. Similar results have heen
obtained for road and sidewalk (concrete and macadam) and, to a somewhat lesser extent.
for house roof. The constraints appear to be defined sulliciently loosely that normalization

of the features has not been necessary.
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2.5 Extending Initial Object Hypotheses

The most highly rated object hypotheses, obtained by applying the object hypothesis
system to the intermediate level data (e.g. regions, lines, and surfaces), can be consid-
ered object ezemplars which capture image-specific characteristics of the object. The set
of exemplars can be viewed as a largely incomplete kernel interpretation. There are a
variety of ways by which the exemplar regions can be used to extend and refine the kernel
interpretation [45,46], and we will briefly present one specific implementation.

The exemplar extension strategy presented next uses the similarity of region features
between the exemplar and other regions. The strategy is based on the expectation that
the image-specific variation of a feature of an object (i.e. intra-image variation) is less than
the inter-image variation of that feature for the same object; Figure 5 is a typical example
of this point. In many situations another instance of the object in the same scene can be
expected to have a similar color, size, or shape and this expectation can be used to detect
similar objects, while larger variations almost always occur across images due to changes
in lighting, season, geographic locale, object class, etc.

There are many alternative subsets of features of an object which could be used to
determine the full set of regions representing the object. In some cases, color and texture
may be more reliable than shape and size (as in a sky exemplar region), while in other
situations shape and size might be very important (for example, when extending one
window shutter to other shutters). In the current version of the VISIONS systems, it is
the responsibility of the knowledge engineer to encode within the interpretation strategies
associated with the object schema, information about which of these alternative strategies

is most appropriate, when they should be applied, and to what set of primitives they
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should be applied [13,36,45]. We have made a basic assumption that exemplar extension
will in fact involve a knowledge engineering proce;ss that will use different strategies for
each object, and in that sense the general VISIONS system can be viewed as a collection
of cooperating special-purpose vision systems|12].

A simple feature differencing mechanism can be used to extend hypotheses using the
same set of features and associated weights that were emplo;red in the original object
hypothesis constraints. Assume that region R, (the exemplar) has been hypothesized to
be an instance of a given object T, and that attributes : = 1,...N will be used to compute

_similarity with other regions to extend that object hypothesis. Then, a relational measure

of similarity S;, applied to region R;, is defined as a weighted distance function:

N
S; = _Wi(|Ra — Rijl)
=1

where W; is the relative weight of attribute i. The city-block distance was used above for
computational simplicity, but alternative distance metrics could be used for the relational
similarity measure, including Euclidean distance or other forms of feature-normalized

distances.

Constraint functions can be defined over the difference in the values of a pair of token
attributes in the same manner as for the token attributes themselves (see Section 2.2).
Thus, a similarity constraint can be applied to compare all tokens to a given token in
an exemplar extension strategy. The piecewise-linear functional form allows significant
‘flexibility. It might be appropriate in one case to employ an inverse lincar function with

high values for small differences and low values for large differences; in another case, the
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similarity constraint might provide a uniformly high response within some threshold. It
is also easy to use a veto for large differences, as in the case of spatial constraints based
upon a difference in location attributes to restrict the spatial distance from a given region
token over which other region candidates will be considered for exemplar extension.

Results applying the similarity relational measure are depicted in Figure 13 and 14 and
would form the basis of exemplar extension strategies as discussed above. The attributes
in the full object hypothesis constraint (such as the one shown in Figure 7) were used to
measure the similarity between the exemplar region and each candidate region, using the '
direct feature differences for the simple constraints and combining them into a weighted
distance for the compound (multidimensiona.l) feature distances; in the figures, bright
regions correspond to small differences. The location and size differences were used in
computing the compound weighted difference, but in general, there are more intelligent4
ways of using these features in the interpretation strategy responsible for grouping regions.
Our goal here was simply to rank order the regions that are candidates for extension; again,
the specific results shown in the figures are not as important as the overall philosophy.

Figure 13 shows the similarity rating of regions obtained using the same set of features
as those in the grass constraint (Figure 7) and comparing them to the exemplar region
(see Figure 11). In addition to the final grass similarity response, the similarities obtained
from the color compound constraint and two of its c;mst;ituent simple constraints (green-
magenta and intensity) are also shown. Figure 14 shows similar results for foliage.

It is interesting to compare the region rankings produced‘ by the image-independent
initial grass constraint that was applied to all regions and the rankings obtained from the

exemplar similarity strategy, which tunes the region rankings to the initial best choice in
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the same image. The exemplar matching strategy produces more reliable results than the
initial hypothesis constraint since it takes into account image-dependent characteristics of
the object’s appearance. The original grass constraint shown in Figure 10, when applied
directly to all regions, vetoed all but 27 regions; of these, 15 were grass and the 6 highest
ranked regions were grass. By way of comparison, of the 27 regions most similar to the
grass exemplar region, 18 were actually grass, and the 8 highest ranked regions were
grass. Of the 16 regions most similar to the exemplar, all but two were grass. Again,
the confusion was between grass, sidewalk, and driveway. Thus, these limited results
demonstrate the possibility that exemplar extension may be effective in practice as we
have argued, although it is clear that more experimental results are necessary before strong

conclusions are reached.

3 Relationship of the Constraint System to Bayesian

Classification Techniques

Constraint-based object hypotheses and the resulting object hypothesis strategies
just presented exhibit a number of characteristics that make them appealing to vision
practitioners. The knowledge about the properties of objects is simple and there is an
obvious relationship to semantic information that is intuitive to human experts who must
build the knowledge base. Nevertheless, it will be instructive to consider the relationship to
the standard statistical approaches used in Bayesian pattern classification. In this section.
we will contrast at a general level the goals and problems of classification in a Pattern

Recognition (PR) sense with focus-of-attention in an Artificial Intelligence (Al) sense.
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3.1 Theoretical View of Classification

In the classical character recognition problem, the jth character in a sequence of
characters, say R;, is to be classified as one of a fixed set of classes C;, i = 1,...,N on the
basis of a feature vector X; extracted via measurements on character R;, where X; =
(z1j,°**»TM;). One can view the region labelling problem to be equivalent, in that a set
of feature measurements can be computed for all regions, and then each can be classified
with respect to their object class according to a maximum-likelihood decision process.

A training set of characters is usually provided a priori, from which statistical estimates
of feature distributions can be extracted; of course it is necessary that the training set be
large enough to capture the expected variations in the domain. Under a reasonable set of
assumptions, the optimal decision process for a given character R; involves the computation
of the a posteriori Bayesian probability for each class given the feature vector X;, followed
by the selection of the maximum likelihood class as the output decision. Thus, using Bayes
rule sample R; is classified as character C;, where

P(X; | Ci) P(Ci)
P(X;)

MAX P(C;| X;) = MAX

Since P(X;) is constant across the N classes, it cannot affect the decision and may be
ignored. Thus, the decision rule typically is sﬁnpliﬁed to choosing class ¢ such that:
MAX P(X;|C:) P(Ci)

with P(X; | C;) estimated from the training set and P(C;) obtained via statistical analysis

of the task domain.
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There are a number of variations to the basic paradigm which we note here, but do
not wish to explore in this treatment. Some samples could be rejected if the maximum
likelihood is sufficiently low; by avoiding classification of a difficult subset of characters
the error rate might be reduced, but more importantly there is the possibility of focussing
attention on samples where additional information would be valuable. Another extension
involves the dependencies between characters that are a function of the characteristics of
the language; contextual analysis via conditional probabilities of letter sequences could be
used to improve the estimates of the likelihoods [15,20].

To summarize, in the pattern recognition/classification case, the set of classes is known,
fixed, and usually is not large. Also note again that P(X;) could be factored out of the
computation of the posterior class likelthoods only because the set of feature measurements
was the same for each class; i.e., one set of measurements was performed and these results
were used to determine all of the P(X; | C;). However, the a priori class probability P(C)
does vary in the computation of each class likelihood. Finally, the intent of the process is

the classification of every character sample.

3.2 Al Focus-of-Attention Vs. Pattern Recognition Classifica-

tion Approaches

Let us briefly make several points about why the pattern recognition (PR) classification
paradigm is not effective in the current problem. It assumes a fixed set of known classes thal
usually is not large. The samples to be classified are assumed Lo be directly presented, or to
be extractable in a relatively straightforward lashion; in particular there is little difliculty

in figure-ground separation of the sample. Finally, the samples are usually assumed to be
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complete (i.e. no occlusion or missing portions), so that one can avoid the difficult problem
of partial matching of portions of the character.

The region labelling problem encountered in image interpretation is far more difficult
than the typical pattern recognition problem. For a variety of reasons one must expect
the data at this level of representation and at this stage of processing to be distorted,
incomplete, and sometimes meaningless. Segmentation of an image into regions, each of
which is composed of a spatially contiguous set of pixels, is a very difficult and ill-formed
problem [7,17]. As we have pointed out earlier, the sensory data is inherently noisy and
ambiguous and this leads to segmentations that are unreliable and vary in uncontrollable
ways; regions and lines are fragmented and merged, and thus, the decision processes often
will be forced to rely on region and line samples, of which only some are meaningful. In the
character recognition problem this would be akin to being given joined and split letters at
a very high frequency. In fact this is one of the major problems in cursive script recognition
that makes it much harder than recognition of printed or fsyped characters. In addition to
the classification process, the system is repeatedly faced with the difficulty of organizing
the input data into appropriate segments.

In addition to the above, the effect of occlusion leads to the difficult problem of partial

pattern matching, where a strong match with part of the pattern is the desired result,

as opposed to a weak match of the whole pattern. This would require a very different

organization of the classification process. One must also expect many region samples
which do not belong to any of the classes because they may be shadow regions, portions
of occluded objects which cannot be identified, objects that have not been included in the

set of target classes, or object parts which are only identifiable in the context of the object

s
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hypothesis. While there has been some success [47] in applying a Bayesian classification
viewpoint to these problems, difficulties abound and we believe this approach generally
leads to insoluble problems. We conclude that classical pattern recognition approaches are
not powerful enough by themselves to produce effective classification in the domains we
wish to consider.

Scene interpretation involves processes that construct complex descriptions, where
many hypotheses are pﬁt forth; only those subsets that can be verified and which sat-
isfy a variety of constraints are accepted. Al systems are often faced with fitting a set of
very weak but consistent hypotheses into a more reliable whole. This usually is a com-
plex process that requires a great reliance on stored knowledge of the object classes. This
knowledge takes the form of object attributes and relations between objects, particularly
relations between parts of objects which leads to a part-of object and scene hierarchy in the
knowledge base. The techniques developed to utilize this type of information have been
rather different than the classification strategies typically employed in pattern recognition
systems. The conclusion that we have drawn is rather simple — initially there should
not be an attempt to classify all image events. The organization of the input data is not
sufficiently well-defined to attempt direct classification in the vision domain. Ilowever, the
Bayesian classification strategy can be modified to become a focus-of-attention process,
within which the unreliable nature of the features and the imprecision of the numerical
values are explicitly considered. The hypotheses must be used in a somewhat qualitative
manner, with need for further processing and verification|12,36,15|.

With that viewpoint in mind let us consider the problem of labelling the regions ol a

given segmentation with relevant object identities. In particular, we re-examine Bayes rule
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in terms of Al strategies for focussing attention upon particular image events that are likely
candidates for particular object labels. Thus, rather than the selection of the best object
label for each region, we are looking for good region candidates for a particular object
label. In other words, given a set of regions in an outdoor scene we wish to rank order the
likelihood that each represents an object, such as sky. As we have seen in the preceding
sections, the goal of this ordering is the selection of ezemplar candidates, followed by the
subsequent extension of the exemplar labels to other regions, and then the application of
additional structured knowledge to infer a more complete interpretation.

From a Bayesian viewpoint, instead of the measurement vector P(X;) being held con-
stant across samples, the a priori class probability P(C;) for some fixed i is constant across
regions to be classified. While there may be a large number of object classes, each class is
processed independently. This changes the optimal decisi;)n rule via a Bayes formulation
to selecting, for a given object class 7, the region j such that:

P(X; | Ci)

MAX
i P(X)

An assumption of independence of the features in the measurement vector 7,- allows us to

decompose the joint probability into a product of feature terms:

M P(x15]Ci)
MAX At
j klZ[I P(:CkJ)

In summary, for a given class C; all regions are analyzed in order to rank order and
select the “best” candidates for further consideration. While there may be a common set of

features measured on each region, it should be noted that the measurement vector X; that
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is the basis of the decision could be different for each object, since it should be composed

of those feature measurements most useful for hypothesizing the given object.

3.3 Difficulties with a Statistical Approach to Focus-of-Attention

By changing the classification paradigm to a hypothesis-and-test paradigm involving a
focus-of-attention, we hope to finesse some of the inherent difficulties in the organization
and quality Qf the data that was described earlier. However, this still leaves the problem
of developing a representative and sufficiently large training set from which the statistics
can be derived for P(X | C;) and P(X) for classes ¢ = 1, ...,n.

Consider the size of a suitable training set: 50-100 samples of each class might exhibit
much of the expected variation in handprinted characters (and far fewer samples would be
needed for clean typewritten characters of a single font). However, an enormous number of
training images containing objects of interest would be necessary before the variations in
lighting, distance, viewpoint, as well as natural variations in object shape, size, and surface
reflectance would be adequately represented. llow many different views of tree and grass
examples are needed if 50 to 100 training samples of a handprinted letter a are necessary
to achieve statistical reliability?

The second major difficulty which makes the previous problem even worse is that the
measurement vector X = (z;, 3, ..., zpr) will usually include several feature variables, and
it is their joint probability distribution which must be estimated. The size of the training
set needed will grow exponentially with the number of features. To avoid this problem.

even in simple pattern classification problem domains. there is a typical assumption of
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independence of features:
P(f( | C,‘) = P(zl | C.')....P(.’BM | C,');

in other cases the feature set is assumed to be only pairwise dependent. In fact, when
the independence assumpltion is violated, the Bayesian decision rule based upon feature
independence is really a heuristic without theoretical foundation. Nevertheless, many
problems have been solved with just such an approach. The point that is being made in
this paper is that the world cannot be approached from a purely statistical paradigm, and
that knowledge-based manipulation of a range of constraints by other mechanisms will be

necessary.

3.4 In Defense of the Hypothesis by Constraint Paradigm

In the light of the discussions of the last few sections, one might argue that many of
the difficulties with statistical approaches are inherent in the constraint-based approach
as well. In this section we briefly revisit the methodology of generating hypotheses by
constraints on the ranges of token attributes, and relate it to some useful aspects of the
Bayesian ratio and a pragmatic interactive knowledge-engineering methodology.

It should now be clear that functional form of the the simple piecewise-linear graded
constraint (without the veto range) is more than just an approximation to P(zy | Ci).
Ignoring the problems of feature independence for a moment and considering a single
scalar-valued feature z,, the positive voting range for object class ¢ is intended to cover a
significant portion of the mass in P(z; | C;). What it fails to include is the information

contained in P(z};) = ¥ P(zy; | C;) which appears in the denominator of the Bayesian
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maximume-likelihood ratio (MLR) of

MAX P—(:ij I C')
) P(IBU)

for rank ordering region candidates. The denominator is important because it brings in
the degree of discrimination of each feature measurement z; for class C;. For example,
there would be little value in a feature z, which exhibited a very tight range (i.e., very
low variance) for some object class, if in fact it also exhibited the same distribution for all
classes.

When the compound constraints are developed for a particular object or object part,
it is the responsibility of the vision system designer/knowledge engineer to select the most
appropriate features and constraint parameters, such as the features and weights intro-
duced in the grass and sky hypothesis constraints. To the degree that a constraint covered

P(zi | C:i) and excluded the rest of P(z;), that constraint would be effective. Since this

P(z4]C:)

Plzy) when these statistics are available this information

information is captured in

would be very valuable. Even if they cannot be expected to be very reliable, it might be
be/tter to present the ratio for use by the knowledge engineer during the construction of
the piecewise-linear function.

The next question in the reader’s mind might be: Why bother with the piecewise-
linear approximation at all? If the ratio represents the optimal information associated
with a scalar feature, then why not use it directly, rather than mapping it through an
approximating function? This argument is quite sound and with an adequalte training set.

the MLR can be used directly (this underlies the automatic system developed in |31]); it

clearly will be valuable in evaluating the importance of a given feature in discriminating
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a class C; from other object classes. However, a major problem is that it may be very
difficult to get a reliable approximation to P(z;) for reasons presented in earlier sections.
The background objects in the world vary significantly and it is hard to imagine that such
extensive statistics can be collected or are necessary.

On the other hand, there is still merit in the piecewise linear approximation. The
central range represents a semantically intuitive and concise summary of the information
in P(zx | Ci). We have argued fairly strongly that the values returned by the constraint
when applied to the intermediate data must be used qualitatively with further verification
of the best hypotheses. Therefore, fine numerical precision of the MLR. should not be
necessary. Furthermore, it will make the interface to human vision designers far more
difficult. Since the knowledge base is expected to grow, evolve and be maintained, it is
quite desirable to simplify the user interface. It is much easier for a person to consider
that a sky region will ezhibit high intensity, low tezture, ..., rather than to evaluate the
information in a set of complex continuous functions.

Finally, we have the very serious problem of the independence assumption of the feature
set. We allow the designer of the knowledge base to choose any of a library of combining
functions, including weighted average, multiplicative, logical or to write his own. However,
here, we agree with the critics of Bayesian approaches. If the set of features are not
independent, then joint probability functions must be estimated and the complexity of the
problem explodes. We believe that in most cases features will be partially (and sometimes
almost totally) redundant. The end result is that the actual use of this information becomes
heuristic even when it is applied within equations derived from a Bayvesian formulation.

Our basic strategy is to utilize a certain degree of redundancy because of the expected

e

"
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lack of reliability in any single feature. There is no computationally feasible theoretical
way around this problem. We just combine the information as if it were independent.
However, the performance of the resulting constraints can be empirically evaluated, and
the knowledge engineering process becomes an interactive paradigm of evaluation and
refinement. In this regard, we share the same experimental methodology that has been at

the heart of the development of most existing expert systems.

4 Conclusions

~Simple constraints on the range of region token attributes, hierarchically combined into
more complex constraints, are a simple and straightforward way of generating initial object
hypotheses in an interpretation system. The technique is useful for those objects which
may be described in terms of attributes such as color, texture, simple shape, size, location
etc. The same technique may be used to extend initial hypotheses into other areas of the
image by comparing attributes of the initial hypotheses with the attributes of unlabeled
region tokens. The approach has been shown to be effective in extracting initial hypotheses
for objects such as grass, sky, and foliage in unconstrained outdoor scenes; it has also been
effective in extracting initial hypotheses for roads, roadsides, and house roofs [13].

The technique is related to the traditional classification methods found in pattern
recognition. However, the intent is not to classify each region token as one of a [ixed
number of objects. Rather, the initial set of region hypotheses are intended to be used as
a focus-of-attention set for higher level interpretation strategies; within this set the tokens
can be rank-ordered on the basis of the values of the constraint function.

In a companion effort, Lehrer, Reynolds, and Griffith |22] have explored the use of the
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Shafer-Dempster approach [39] to evidence combination as the mechanism for combining
information from multiple attributes in object hypotheses. Their system automatically
generates a knowledge-base using statistical information obtained from a set of training
objects that is not infeasibly large. Attributes of region tokens are viewed as providing evi-
dence for and against the object labels in the knowledge. Evidence from multiple attributes
is combined using a computationally efficient version of Dempster’s rule [11]. Results from
the system applied to road scenes have been very promising, and are of similar quality to
the results shown here. The technique is, of course, dependent upon a hand-labelled set
of training images that have reasonable segmentations of the objects under consideration.

In another related effort, Riseman, Hanson, and Belknap [5,6] have extended the tech-
niques presented here into a system which relates information across multiple types of
tokens (e.g. regions and lines). In this extension, relational measures are defined between
symbolic tokens, so that sets of tokens across representations can be selected and grouped
on the basis of relational constraints applied to the measures. This work is a generalization
of constraints defined on the similarity relational measure between region tokens (i.e. a
relational measure between tokens of the same type) as described in Section 2.5. Control
strategies which affect the ordering of constraint application can be used to reduce the

computation required for producing token aggregations.

[
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Figure 1. Original images. These images are representative samples from a larger data
base. All are digitized to 512 x 512 spatial resolution, with 8 bits of gray scale resolution

in the red, green, and blue components.



Figure 2. The Relevance of Context. Closeups from one of the original images with
differing amounts of contextual information. In most cases, the identity or function of an
object or object part cannot be determined from a small local view. Only when the subpart
hierarchy or the surrounding context becomes available can the objects be recognized.
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Figure 3. Region Segmentations.
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which are

relatively uniform in some feature (in this case intensity). When region tokens are mapped
into a symbolic structure with a rich set of descriptors, they provide the basis for an early

linkage between the image data and a knowledge-base.
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Figure 4. Multiple levels of representation and processing in the VISIONS system [14].
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Figure 5. Image histogram of the “green-magenta” opponent color feature (2G-R-B).
The global histogram of the feature across all pixels in eight hand-labelled images is shown
unshaded. The intermediate diagonal shading represents the feature histogram of all grass
regions in the eight images. The darkest cross-hatched shading represents the feature
histogram of grass regions in a single image.
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Figure 6. Simple Graded Constraint. The structure of a simple piecewise-linear con-
straint is shown for mapping a token attribute value R;; into support for an object label
hypothesis. Here, it is shown constructed on the basis of a prototype feature value fp
obtained from the combined histograms of labelled regions across image samples. The
object-specific mapping is parameterized by seven values, fp.0i,...,0s and stored in the
knowledge network. Alternatively, instead of viewing the constraint in terms of a prototype
point f, in feature space, the construction of this constraint can be viewed as defining
the ranges over which the feature values imply the possibility of the object with different

degrees of confidence.
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Figure 7. Structure of the compound constraint function for grass. The constraint value is
the normalized weighted sum of the responses of five component. constraints, cach of which
is in turn a normalized weighted sum of the responses from simple constraints associated
with a single feature. Note that a weight could be 0, thereby allowing only the veto range
for that feature to be propagated.
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Figure 8. Results from selected simple constraint functions. In each image pair, the left
image is a composite feature histogram showing the feature distribution across all pixels
in a set of images (the unshaded curve), the distribution of grass pixels in the same set
(the shaded curve), and the constraint function. The piecewise-linear constraint function.
that is shown superimposed, can be interpreted by noting that the ramps vary over a [0.1]
response range, and that the vertical discontinuity in the response delimits the VETO
range. The right image shows the brightness-encoded strength of the constraint response
when applied to all regions in the segmentation of Figure 3c; bright regions correspond
to a high constraint response. Note that very dark regions denote hoth low confidence
regions or vetoed regions. See text for a discussion of the four numbers in the upper left
corner of the histograms.
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TFigure 8, continued
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Figure 9. Example Results of Compound Constraints for Grass. The responses for two of
the individual grass compound constraint and the overall compound response are shown.
In each pair of images, the left image shows the brightness-encoded (bright = high)
constraint response. The right image shows regions vetoed by the constraint in black:
all other non-vetoed regions in the right image are uniformly gray. (a) color compound
constraint; (b) texture compound constraint; (c) final result from overall grass compound

constraint.
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GRASS LOCATION

Tigure 9, continued
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FOLIAGE

Figure 10. Example Results of Compound Constraints for Grass. IF'oliage. and Sky.
Initial hypotheses from the compound constraints for grass. foliage. and sky rules. applied
to Figure 3b, are encoded in brightness. (a) grass. (b) foliage. () skv.
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Figure 11. Highest ranked object hypotheses for sky, grass, and foliage for each of the
three example images.
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Figure 12. Example Results of Coarsely Specified Constraints via a Language Interface.
Foliage results from the coarsely quantized constraints applied to the segmentations of

Figure 3a and c.
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Figure 13. Similarity of Grass Exemplar Tokens for Exemplar Extension. In the scene of
Figure 3b, the similarity of the grass exemplar regions token to all other regions tokens is
displayed. (a) similarities from the compound object hypothesis constraint; (b) similarities
from only the color component of the compound constraint; (c.d) similarities from the
simple constraint associated with excess green and intensity, respectively. In all cases.
similarity is encoded as brightness (i.e. small difference is bright). Note that subjectively
the full compound similarity constraint appears to be more accurate, in particular in
removing the foliage regions.
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Figure 14. Similarity to Foliage Exemplar Tokens. (a,b) Color and texture similarity
between image regions and the largest region in the tree area on the left side of the image
(region 69 in Figure 3c) as the image-specific exemplar; (c.d) color and texture foliage
matches using the large region in the low bushes in front of the house (region 128 in Figure
3a) as the image-specific exemplar. Note that brightness encodes similarity.
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