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Abstract

We modify the likelihood-based method for obtaining derivatives with respect o the rate of a Poisson
process so that it is not necessary to know the exact value of that rate. This type of modification is
necessary if the method is to be used on a sample path from a real system. The modification to the
likelihood estimator is simply to use the value of the Poisson rate estimated during the sample interval.
For regenerative systems, this produces a strongly consistent, asymptotically normal and
asymplotically unbiased estimate of the derivative. The strong law and central limit theorem are
generalized (o the case of estimating a derivative with respect (o an unknown parameter from the
exponential class of probability density functions. Numerical results for the M/M/1 queue illustrate
litle difference between the estimates for the derivative of the expected delay with respect to arrival
rate obtained when the arrival rate is known and unknown. However, both estimates are highly bi-
ased for small sample sizes. This bias can be reduced by jackknifing.
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1. Introduction

In recent papers, Glynn (1986), Reiman and Weiss (1986) and Rubinstein (1986) describe a simple
method for estimating derivatives with respect to an input parameter in a discrete event simulation.
This method has its roots in classical statistics (see, e.g., Section 32 of Cramér (1946)). As a specific
example, the method can be used to estimate the derivative of expectations with respect to the pa-
rameter of a Poisson process in many queueing systems. The estimator, called the likelihood ratio
estimator in Reiman and Weiss (1986), is based on the derivative of logarithm of the likelihood (also
called the efficient score, see Rubinstein (1986)) of the sample path and is known to produce valid

derivative estimates for a large class of systems.

There is another class of estimators for computing derivatives based on the technique of perturbation
analysis; see, e.g., Ho and Cassandras (1983) for an introduction to this subject and Heidelberger,
Cao, Zazanis and Suri (1987) (and the references therein) for a discussion of the convergence prop-
erties of Infinitesimal Perturbation Analysis derivative estimates. Perturbation Analysis can also be
applied to sample paths generated from a real system. In this paper, we will only consider

likelihood-based derivative estimates.

As described in Reiman and Weiss (1986), the likelihood-based estimator requires that the parameter
of the Poisson process be known exactly. In this paper, we modify the likelihood-based estimator for
derivatives so that the underlying parameter need not be known a priori. The primary application for
this problem is in control and optimization of real time systems. In many situations, gradient infor-
mation is required for control policies for real systems. For example, the routing policies in Gallager
(1977) and Bertsekas, Gafni and Gallager (1984) and the load balancing policies in Kurose and Singh
(1986) and Lee (1987) require gradient information in order to obtain optimal performance. In this
context, the sequence of arrival times to the system is observable, although, unlike in a discrete event
simulation, the mechanism generating arrivals may be unknown or not directly controllable. How-
ever, it is often reasonable to assume that the arrival process possesses a particular stochastic struc-
ture even though its underlying parameters are unknown. In particular, because of well known limit
theorems concerning the superposition of point processes (see, e.g., page 223 of Karlin and Taylor
(1975)) a Poisson process may often be assumed to model the arrival process. Within our context,

the arrival rate A of the Poisson process is then unknown.

To make things concrete, let Y, denote the sum of the waiting times over the k’th busy period in an

M/G/1 queue with arrival rate A, let ay denote the number of customers served during the busy pe-
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riod and let 7, denote the length of the k’th busy period. By regenerative process theory, the expected

stationary waiting time E[ W] is given by the ratio

ELY,]
E[ak]

E[W] = (1.1

(see, e.g., Cinlar (1975) or Crane and lglehart (1975)) Consider the problem of estimating
d
dan Ny
arrivals in the k’th busy period, then as shown in Reiman and Weiss (1986), Hy(\) = ( —_——T)is

~—— E[W]. This requires estimating both —— E[ Y,] and —_ E[ak] Letting N, denote the number of

the derivative (with respect to A) of the logarithm of the likelihood over cycle k and that
d_
dx d
in more general queuem;, systems. If n busy periods are observed (or simulated), then i E[Yk] can

N,
—E[Y,]1= E[Yk( —= — 7)]. Note that in this example, ay = Ny, but that this need not be the case

be estimated by

n

E k(‘——’fk)

Ay = = : (1.2)

A
In this paper, we show that if a strongly consistent estimate A, is used instead of A, then resulting

estimator f,,(ﬁ ) is strongly consistent, asymptotically normal and asymptotically unbiased for
d_
d\
quantity that can be represented by a ratio as in Equation 1.1. This provides a means for placing

—— E[Y,]. We further state and prove a central limit theorem for the derivative of a steady state

confidence intervals on the derivative.

While the above discussion was specific to the M/G/1 queue, the results generalize to essentially
arbitrary regenerative systems with Poisson arrivals. In the general case, Y, and e, are random vari-
ables defined on the k’th cycle, 7, is the length of the k’th cycle and N is the number of Poisson
arrivals during the k’th cycle. In the general case, for the expression H; (A) = ( -}\i — 7;,) to be valid,
we assume that the end of a regenerative cycle always coincides with an arrival from the Poisson

process (see discussion below).

As discussed in Reiman and Weiss (1986), these results also generalize to estimating the derivative
with réspect to the rate of an exponential service time in a queueing network; in this case N is the
number of departures in the k’th cycle and 7, is the sum of the service times at the particular queue
in the k’th cycle (as in the case of the Poisson arrival rate, we assume that the cycles either end with

a departure or the server is idle at the end of a cycle). These results are also applicable to estimating
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the derivative of the expected value of a so-called transient performance measure using the method

of independent replications; in this context, k indexes replications rather than regenerative cycles.

The strong law and central limit theorem further generalize to estimating derivatives with respect to
an unknown parameter of an input sequence drawn from the exponential class of probability density
functions (pdf; see, e.g., Chapter 7 of Hogg and Craig (1970)). The exponential class, which includes
many standard distributions, arises in the study of sufficient statistics and maximum likelihood esti-
mation. This generalization is useful for systems with non-exponential arrival or service time proc-

€sses.

We conducted experiments on an M/M/1 queue to study the effect that the lack of knowledge of A
has on the estimate of % E[W]. We observed that, for small sample sizes, 'the estimates of
% E[W] can be highly biased due to the nonlinearity of the derivative of a ratio. However, there is
only a slight increase in the bias when ﬁ,, is used instead of A. Furthermore, the bias of both estimators
can be substantially reduced by the technique of jackknifing (see, e.g., Miller (1974)). There is also
only a slight difference in the variances of the estimators when X is known as opposed (o estimated.
Consequently, lack of knowledge of the arrival rate does not significantly affect estimation of the
derivative. The primary consequence of this work is that we have shown that the likelihood-based

technique can be used to in certain situations (o estimate derivatives on a sample path generated by

systems in real time.

The remainder of this paper is organized as follows. Section 2 contains the mathematical develop-
ment including the strong law and asymptotic unbiasedness for the Poisson case and the strong law
and central limit theorem for the case of an unknown parameter from the exponential class. The
numerical study of the M/M/1 queue is reported in Section 3. Finally, Section 4 summarizes the

main results of the paper and indicates where further work is required to generalize the results of this

paper.
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2. Mathematical Development

Because of its importance in applications, we begin by specializing the results to derivative estimation
with respect to the unknown rate of a Poisson process. Treating the Poisson process separately has
the advantage of providing the practitioner with explicit formulae and exposing the fundamental
concepts. Reiman and Weiss (1986) show that H,(A) = ( %— — ;) is the derivative (with respect
10 A) of the logarithm of the likelihood over the k’th regenerative cycle. We assume throughout that
the likelihood-based method of derivative estimation is valid, i.e., E[Y,H,(A)] = 7‘1— E[Y,] (see, e.g.,

Reiman and Weiss (1986)). Define the estimator of A to be:

A==l @2.1)

A
Notice that lim A, = A as. provided E[N] <o and 0 < E[7;] < o= Let )lr\,,(}\) be defined as in
A A
Equation 1.2 and define ;;"(A,,) to be the right hand side of Equation 1.2 but with A, replacing A:

A A
Yu(A,) is the estimate of % E[Y,] when the parameter A is unknown.

Proposition 2.1
Let A>0 and assume that E[|Y|l<e, 0<E[r]<e, EN]I<x, E[lYNIl<ex,
E[| %7, 11 < oo. I ELY, H(\)] = 7"):- E[Y,], then

LA . AN d
'!Ln;lo »nA) = J!lll, »nA) = '?K'E[Yk] as. (2.2)

Proof: The proof for }A»,,(A) follows directly from the strong law of large numbers (see Chapter 4 of

A
Chung (1974)). Consider y,(A,): ,
> YN, > Y
A A k=1 k=1
yn(An) = A - n
Agn (2.3)

1 d
-> T E[Y‘Nk] - E[Yka] = _dTE[Ykl

The convergence in Equation 2.3 (which occurs with probability one) is guaranteed by the strong law

of large numbers under the stated moment conditions. []
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Notice that the convergence in 2.3 is easily obtained because )\,, enters as only a simple multiplicative

factor in y"()\") As will be seen later, this is characteristic of the exponential class of pdfs.

Proposition 2.2
Assume the conditions of Proposition 2.1 hold. If, in addition, Ny > 1 a.s., E[| ¥, N, |?*%] < s and
Ell7,1>*%] <  for some § > 0, then

lim E[p (A d
fim EGA) = gy, (24)

Proof: By Equation 2.3 and the fact that the regenerative cycles are independent and identically dis-

tributed (iid),

A Y,N
ED,(\)] = E[%] ~ E[¥,r,) (2.5)
A

n

Thus we need only show that Jim E[Y,N,/)\,,] = E[ YIN,/A] Since lim Y} N, /)\,, = Y{N{/A as,, it
suffices to show that the family of random variables {Y,N] /A,,} is uniformly mle;,mble (see page 95
of ChI:Jng (1974)). Since N, >1, 1 /)\,, <7, where 7,= kgl'r,‘/n. Therefore
| ¥,N, /Al < D, = | YNy7,|. Therefore, it suffices to show that E{D,'*'] is bounded in n for some

¢ > 0. By Cauchy-Schwartz,
E[D)*] < EI[lY,N,|2*¥)/2 gs2+21/2, (2.6)

= <P —2+2¢' & 242¢ .
By the convexity of i(x) =x"forx >0 and 8 > 1, < (l/n)klek and therefore the right

hand side of Inequality 2.6 is finite and bounded under the stated moment assumptions provided
£<6/2.03
The assumption that N, > 1 merely states that there is a least one arrival in every regenerative cycle.

We next generalize the estimation context. Glynn and Iglehart (1987) present an expression for the
likelihood in an essentially arbitrary discrete event simulation (formally, in a Generalized Semi-
Markov Process (GSMP)). Let us fix a parameter 8 and let f(x, 8) denote the pdf associated with one
of the “clocks”™ in a GSMP (a clock may represent an arrival or service process). Assuming the clocks
are sampled independently, then the likelihood Li(0) over the k'th cycle can be written as a product

of terms
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N,

L8 = [] %, 0 Ly (2.7)
j=1

where X, ; is the j’th value sampled from the clock in cycle k, N, is the number of times the clock is
sampled and L, does not depend on 8 ( L, is itself a product of terms). The representation of
Equation 2.7 again assumes that either the clock associated with 8 is inactive at the end of a cycle or
that the start of a new cycle corresponds to a new setting of the clock. To apply the likelihood-based

derivative estimation technique, we need to compute

Ny
Hy(8) = d;‘; In(L(0)) = 3 d—daln(f(ij, 0)). (2.8)

j=1

We assume that f belongs to the exponential class of pdfs by which we mean (see Chapter 7 of Hogg
and Craig (1970))

f(x’ 0) =

0)A(x) + B(x) + q(8 <x<b
{exP(P() () +B(x) +4(0)) a<x (2.9)

elsewhere

where a and b do not depend on 8, p(8) is continuous and both A'(x)20 and B(x) are continuous
functions of x for a < x < b. An analogous definition exists for a discrete valued random variable.
Examples of continuous distributions in this class include the exponential, gamma, Weibull, normal

and truncated normal. However, the uniform distribution on (a,b) is not in this family.

When f(x, 8) has this form, then

d .
Hy(8) = — In(L(8) = P04, + 4'(0) N, (2.10)
Ny
where 4, = _EJA (Xy)- For example, in the case of an exponential density f(x, 6) = 0e=% so that
j= N,
p(8) = — 8, g(8) = In() and A(x) = x. Therefore, H,(0) = (_()L — A,) as described above (in the

case of Poisson arrivals 4, = 7).

We are now in a position to generalize Proposition 2.1. Analogous to Equation 1.2, define

> YH ()

y(0) = 2= (2.11)

n
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and let y,,(()") be the right hand side of Equation 2.11 but with the estimate 9 replacmg 0. We assume
that the likelihood-based method of derivative estimation is valid, i.e., E[Y, H,(0)] = W E[Y,]. This
requires some additional regularity conditions (see Cramér (1946), Reiman and Weiss (1986) or

Glynn (1986)), however, these conditions are typically not restrictive in practice.

Proposition 2.3

Assume Hk(a) =p (G)Ak +gq (O)Nk where p’( ) and q '() are finite and conlmuous in a neighborhood
of 8. If lim a =0 as., E[| V4,11 < o=, E[1 Y, N, |] < o and ELY, H,(8)] = ’ E[)’k], then

. A . A A d
,!TL »(0) = "121; »(0,) = 7(—)—13[)’,(] as. (2.12)

Proof: Because of the factorization of H,(0) in Equation 2.10,

n
A 2 A Y, LAY
A =1 k=1
»(0,) = (0") T‘ + q'(l)") — > (2.13)

and the result follows immediately from the strong law of large numbers and the continuity of p'( )
and¢'(). O

AN )
The analog of Proposition 2.2 concerning the asymptotic unbiasedness of Yu(8,,) could be established

under a variety of possible assumptions, although these will not be pursued here.

— n _ n
To estimate the derivative of a ratio as defined in Equation 1.1, let Y, = k):] Y /n, @, = kg,lak/n,

A n
a,(8) = kglaka(O)/n

A - A —
(0w, — a,(0) ¥,

=2
O

A
d,(8) = (2.14)

and let d ( ,) be the right hand side of Equation 2.13 but with 0,, replacing 6.

Proposition 2.4
A
HE[ Y]] <o, E[| a |1 < o, E[a;] # 0 and if the conditions of Proposition 2.3 hold for both y,(8)

and a,(6), then

. A LA A d
’!21; d(0) = '!!11:011"(0") = WB[WJ a.s. (2.15)
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We next turn to central limit theorems for },,(3") and 9"(3"). These limit theorems are direct applica-
tions of results in Section 28 of Cramér (1946) concerning the asymptotic normality of a nonlinear
function of means. For comparison purpose, we also state central limit theorems for )A',,(B) and
(?’,,(0), but see Reiman and Weiss (1986) who use somewhat different techniques to establish these

results.

For simplicity, assume that 8 = E[B,]/E[C,]; for the Poisson process By = Ny and Gy = 7;. Let X

be the 8-dimensional vector

Xk = (Yk’ ﬂk, Ak-Yk’ Nk Yk' Ak“k’ Nkak, ‘Bk’ Ck)’ (216)

k= E[X,] and let C be the variance-covariance matrix of X,. Let p,, and X, (i) denote the ’th com-
ponents of p and X, respectively, and let X, = E Xk/n In this notation,

): Bk/ 2 ck=x,,(7)/ (8). WE[|X; |1 < wand [C| <<, then

JF(_X,,—E)=>N(0,C) (217

where = denoles convergence in distribution (see Billingsley (1968)) and N(0, C) denotes a multi-
dimensional normally distributed random vector with means zero and variance-covariance matrix C.
Using this central limit theorem and Taylor series expansions, Cramér (1946) shows that if, in addi-
tion, 4 is a real valued function such that & and T(;L are finite and continuous in a neighborhood of

y
i, then

Vi (hX,) = h()) = NO,0%) (2.18)

where o’ = ZhiCyj h; and by = —(,‘37- lp (provided 0 < % < ). The central fimit theorems for}/r:,(a),
i A i :

y,,(f),,), ,,(0) and d,,(B,,) all follow as special cases of Equation 2.18.

Proposition 2.5
Assume the conditions of Proposition 2.4 hold. If, in addition, E[|X, 1< «, |Cl <=, py #0,

pg # 0and p'( ), 4'( ), p"( ) and ¢ () are finite and continuous in a neighborhood of 6, then

vn (}’,,(0) E[Yk]) > N, 0?), (2.19)

vn (y..(f’) E[Yk]) = N(0, 02), (2.20)
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A
vn ( (0) = — E[WJ ) > N(O, 0;2;), (2.21)
vi ( a0 -2 ;
n o\ 46) - —=E[W] } = N(O,0p), (2.22)
8 8
whereol = 2 'ZlaC,j 7, oz = ‘E 2 aC,j J,a3 = E Z bCu 1,04— E ZI b,C,JbJ,and the g;’s and

b;’s are defmed in Table 1 (prov:ded these variance lerms are finite).

. A A - — - - - —_
Proof: For example, since y,(6,) = p'(X,(7)/X,(8))X,(3) + q'(z\’,,(7)/X,,(8))/\’,,(4), Equation 2.18
can be applied to the function h(&) =p (u7/pg)ps + q'(u7/n8)u4. The other results follow similarly

by appropriate definition and differentiation of the function A. [J

Notice the similarity between the variance terms a% and o%. In particular, a% = az; + the variance due
A -
to estimating 0 + the covariance between 0, and {X, (i), i= 1, ..., 6}. The variance terms ag and

03 are similarly related.

For a Poisson process, the central limit theorem for y, ,(A,,) simplifies and can be arrived at more di-
N,
rectly Let Z(A) = Yka(A) Yk( -_—- Tk), Gk()‘) = AHk(A) NI\ - }\Tk, GZ = Var[Zk()\)],
n A
aG Var[G,(A)] and oz¢ = Cov[ZA()\), Gi(M)]. Since y,,()\,,) = ),,(}\) (A,, - )\)kgl)’kN,‘./(nA,,A),

standard weak convergence arguments (see Billingsley (1968)) establish that

vn (y.,O\) ——E[Yk]) > MO, 02)
(2.23)
AN d 2
\/ﬂ_ (J"nO‘n) - _‘;X' E[YA] ) 2 N(O, 05)

where a§ = a-zl — 2a0¢6 + azo(z; and a = E[N, Y}/ (E[f,(]J\z). It is straightforward to verify that, in
this case, 2.23 agrees with 2.19 and 2.20.

We conclude this section by noting that the central limit theorems remain valid if the variance terms
are replaced by strongly consistent estimates. For example, if hm 04(n) = 03 a.s., then
vn (d ( (8 ) - — E[Wj)/ 04(n) = N(0,1). As discussed in Crane and Iglehart (1975), such variance
eslimation is stralghtforward and, furthermore, confidence intervals can be formed from such central

limit theorems.
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a)
a
as
a,
as
g
o

ag

9

]
€4

Table 1

Constants for the Central Limit Theorems of Proposition 2.5

0
0
F40)
q'(6)
0
0
a/ug
~ ppcs/bg

- &y/15

wie/Ey — alv;

AOY™

70/,

- 110" (0)/15

O™

o3/ (papg) — mycy/ (15g)

= uqc3/ (}‘2#%) + ppqcy/ (ﬂ%#gz;)

P + g0,
POns + 4'Org
POus + "By
P Oms + 4O
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3. Experimental Results

In this section we report on simulation experiments when applying the methodology described in
Section 2 to a simple queueing system. In particular, we consider estimation of the derivative of the
mean stationary waiting time in the M/M/1 queue with Poisson arrival rate A, service rate p and
traffic intensity p = A/p. The primary performance measures of interest are the bias and variance of

estimates of % E[W] for both known and unknown A.

To study these quantities, we performed experiments as follows. We simulated M iid replications of
the queueing system where each replicalion consisted of a simulation of n regenerative cycles

(throu«’hout the paper M = 10,000). Let W, (1) denote the estimate for E[#] on replication i and let

a',,(A, i) and d,,()\,,, i) denote the estimates on replication i for :)\ E[W] using the known .md un-
A
known values of A, respectively. Let W, W, ,,(A) and 4, (A,,) be the sdmple averages of W,,(a), (J\ i)

A A
and d,(A,,, i), respectlively, over the M replications, e.g., ()\,,) = (I/M) 2 (.\,,, i). We estimate the

relative bias of an estimator by the sample average minus the correspondm;_., steady state value divided
by the steady state value, e.g., (d, ()\,,) E[WJ)/ E[W]. If an estimator is unbiased, then this
estimate has expectation zero and converges to zero wuh probability one as the sample size M in-
creases. We also computed the variance of the relative bias in the usual fashion (which is used in

Figures 1 and 3).

:)‘ E[W] using the known value of A for different

traffic intensities p and run lengths n (along with 95% confidence intervals for p = 0.9). As expecled,

Figure 1 plots the relative bias in estimates of

the absolute amount of bias increases as either the traffic intensity increases or the run length de-
creases. Figure 2 shows that, for a particular value of p, the increase in bias due to estimating A is
very slight. Furthermore, estimates of _ E[W] are more highly biased than are estimates of E[W].

As observed elsewhere, e.g., in Reiman and Weiss (1986), Figure 3 shows that the variances of the
estimates of ?dr E[W] are significantly higher than the variance of the estimate of E[W). Again,
however, there is litte difference between the variances of the derivative estimates when A is known
and when it is estimated, i.e., from Proposition 2.4, most of the asymptotic variance of 9,,(3,,), o%/n,
is due to the contribution of a%/n. the asymptotic variance of :i\,,(}\). In this example, the variance is

actually lowered slightly when X is estimated. The slight increase in variance for small n could be due

either to the nonlinear form of the derivative estimate or to an insufficiently large value of M.

Because of the high variance of these derivative estimates, a number of authors (see, e.g., Rubinstlein
(1986)) have suggested using a variance reduction technique such as control variables. The studies

presented here suggest that one should also be concerned about the bias of the derivative estimates,
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especially in small samples. This bias is due to the nonlinear form of the derivative of a ratio. Typi-
cally, the leading term in the bias expansion of such a nonlinear form is given by a constant divided
by n (see Sections 27 and 28 of Cramér (1946), Quenouille (1956) or Tin (1965)). Thus, jackknifing
(see Miller (1974) for a survey on the jackknife) may be applied to remove this term from the bias
expansion. Figure 4 shows that jackknifing significantly reduces the bias of the estimates of E[W]
and % E[W]. As discussed in Miller (1974), there are also straightforward variance estimation

procedures and corresponding central limit theorems based on jackknifing.
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Figure 1

Relative Bias of dE[W]/d\ in M/M/1 Queue
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Standard Deviation of Relative Bias

Relative Bias
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Figure 3

Standard Deviations in M/M/1 Queue (p=0.90)
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Relative Bias in M/M/1 Queue (p=0.90)
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