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ABSTRACT

This paper considers the problem of the recovery of motion parameteérs-of a rigid ob-
Ject moving through environment with constant but arbitrary linear and angular velocities.
The method uses temporal information from a sequence of images such as those taken by
a mobile robot. Spatial information contained in the images is also used. The temporal se-
quence, combined with the assumption of constant velocities, provides powerful constraints
for the motion trajectory of rigid objects.

We derive a closed form solution for the rigid object trajectory by integrating the dif-
ferential equations describing the motion of a point on the tracked object. The integrated
equations are non-linear only in angular velocity and are linear in all other motion param-
eters. These equations allow the use of a simple least-square error minimization criterion
during an iterative search for the motion parameters. Experimental results demonstrate
the power of our method in fast and reliable convergence.

*Now at the Institute of Robotics and Intelligent Systems al the University of Southern
California. '
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1 INTRODUCTION ;
1.1 Background

The interest in temporal analysis of image sequences has sharply risen with the increase of available
computational power {10]. Bolles and Baker argue that equal weight be given to both temporal and
spatial information contained in a sequence of images (frames). Two-image motion algorithms often
use spatial integration [18]. However, in a two-image analysis the only temporal information that
can be used is differential (positions of image points in two close time instances). This information
is too local in scope and too sensitive to errors. In this paper we argue for more extensive use of
temporal information. Temporal information is obtained from measurements of distinctive feature
positions in the image plane in several time instances (images). A distinctive feature is labeled with
both spatial and temporal coordinates and is called an image event. The time coordinate is treated
on an equal footing with spatial coordinates. Thus, the idea of smoothing can be applied to time
coordinate as well, resulting in reduced sensitivity to small errors in spatial coordinates. Another
important feature of our method is the integration of temporal information which is achieved by
solving differential equations of motion. By integrating temporal information over several images
we get more reliable information about the motion trajectory.

There is evidence that temporal integration is performed by humans, as demonstrated in [21].
It is only the integration of temporal information that is discussed here in greater detail.

Computations of displacement fields [1,6,16,17,22,23,24,38,39] by their nature give more weight
to the spatial information in image features. Computations are sensitive to noise in the image
because they rely on derivatives of feature displacements. The motion parameters are obtained
from a set of high-order non-linear equations, resulting in costly computations. low precision and
unstable solutions. The deficiencies of these approaches are especially visible in problems of motion
segmentation and occlusion. Motion algorithms using multiple images [rom an imnage sequence have

been developed by many authors |2,7,10,14,32,34,42|.



The research in this paper has been motivated by the problem formulation of Shariat [34]
finding the motion parameters of a rigid object moving with constant translational and rotational
velocities, under the assumption that five images are equally spaced in time. These assumptions
enable Shariat to propose a set of difference equations relating the positions of features in the
image plane and the motion parameters of the projected point. The solution he obtains is a set of
non-linear polynomial equations in unknown motion parameters. The equations are of a rather high
(5th) order. The motion parameters are obtained using a Gauss-Newton non-linear least-square
method with carefully designed initial-guess schemes.

Our work also relates to that of Broida and Chellappa [13,14] due to the fact that it considers
estimation of motion parameters of a rigid body from several images. Broida and Chellappa [14]
are estimating kinematic parameters of a rigid body and its structure by tracking several feature
points in a sequence of images. The object of their work is to estimate the influence of white noise in
feature positions on the recovery of motion parameters and to find the robustness of the method to
bad initial guesses. This is important because the point feature extraction methods return feature
positions below the expected precision of the algorithm. Their work can be used in the prediction of
the feature positions in the next frame(s). It is based on iterative Kalman filtering techniques [12],
and stochastic estimation techniques. (good references on the theory behind stochastic estimation
techniques used in their work can be found in [20,27]). Wiinsche [41] has a similar approach. The
prediction of the feature in the next frame usually leads to a reduced search space in the feature
correspondence problem, but we have not considered this important issue in the present paper.

Our work concentrates on the computer vision aépect of the problem, and in a different way
proves that using several frames is a good way to detect objects moving in the camera’s field
of view or detect camera movement. We argue, in the sense of Lowe’s [25] uniqueness of the
viewpoint constraint, that the image positions of the same feature in several frames (i.e., several

time instances) provide a powerful constraint on the possible types of object motion. We might



call the time constraint ”the uniqueness of the time sepuence constraint”. This constraint reflects
deterministic motion of a rigid body whose initial position and velocities are known. The time

constraint combined with the Lowe’s spatial constraint is an excellent tool for detection of rigid

body kinematics and shape from motion.

Our approach begins with the set of differential equations describing the motion of a point P on
a rigid body moving with constant translational and rotational velocity through the environment.
The equations are solved analytically, i.e., a set of parametric equations P = (X(t),Y(t), Z(t))
describing the helix-like trajectory of the point P is found. The parameters in these equations are
the initial position and the linear and angular velocity of the point P. Our goal is to determine
these parameters from the central projection of the trajectory of the point P on the image plane.

The central projection of the point P on the image plane is labeled Q. This distinctive feature
is characterized by image coordinates z;, y; and the time label ¢; of the image: Q; = (26, ¥ir ), £ =
1,...,n, where n is the number of considered images. We will call Q; image events. Under the
assumptions of the known projective geometry and constancy of motion parameters, only a few
image events Q; are needed to find the motion parameters of the environmental point P. The
reason is that we know (from the closed form solution for the trajectory) what constraints exist
between image events Q; and the motion parameters of the point P. The constraints are non-linear
only in rotational parameters and the type of non-linearity is known exactly. In our method, there is
no constraint imposed on the time-interval between images, and the equations can be more readily
adapted for motion of non-rigid objects, as well as for accelerated motions by using perturbation
techniques [15,29].

We do not consider the problem of fea.t.ure.correspond(»nce over several images. There are
indications that the correspondence problem can be handled quite successfully under the conditions
of an approximately known displacement path |3,4 ,5,8,9]. Bharwani uses correlation measurements

and the history of the motion to predict the position of a point feature in the next frame using



ths concepts developed by Anandan. This approach has some difficulties in trying to predict the
feature position with accuracy less than a half of pixel, due to the shallow nature of the correlation
measure at this resolution. The feature prediction was proven to be very helpful both for efficiency
and for more reliable feature matching.

Sethi and Jain SET87, for example, use ”smoothness of motion” to reduce the search explosion
of possible correspondences of several image features through several images. Once a good initial
guess for motion parameters is found the search space of correspondences can be drasticaily reduced
and possible correspondences become better defined as the computation proceeds.

We plan to attack the feature correspondence problem by using symbolic features such as lines,
ar;d perhaps regions. In the case of line matching we can choose feature points to be at the
intersection of two lines, and the line correspondence can be established using methods similar
to those in Medioni [28]. In this case the major practical problem is to establish the correct line
correspondence. The extra effort is rewarded by greater robustness to noise.

The other possibility is to choose lines themselves as features. Spetsakis and Aloimonos [36] use
three frames and 13 line correspondences to establish the translational and rotational parameters
of the object whose lines are being tracked. They develop a method resulting in a linear system of
equations, that authors report to be noise sensitive. We plan to develop a theory that will track the
motion of lines through several frames. The theory will have similar structure as the one presented
in this paper and it will be a non-linear theory with an explicit frequency dependence. We expect
the theory to be less noise sensitive than the one reported by [36].

More recently Williams [40] have developed a spatio-temporal grouping algorithm that produces
token-based line correspondences across a sequence of images. This algorithm appears to be robust
and utilizes two other algorithms developed at the University of Massachusetts, a spatial line
grouping algorithms by Boldt and Weiss [11] and Anandan’s algorithm for developing displacement

fields with confidence measures [4|.



In the case of region matching we can track region| centers (like center of mass) as in work by
Price [31]. Use of line and region correspondence should result in a more noise-fobust approach
to the correspondence problem, although we predict some difficulties with the precision of these
methods.

One important issue not considered here is the choice of a good initial guessing scheme. In
this paper we used simple parameter estimation techniques (such as the sign of the path curvature,
direction of motion, magnitude of motion) to predict the initial velocities and position of the tracked
feature. We hope to incorporate more sophisticated techniques of initial estimation similar to those
seen in work of Shariat [34]. The initial guessing methods used by Lowe [25] in his iterative solution
for 2-D to 3-D object recognition are also appropriate for this approach. Lowe’s method is also a
Newton-Ralphson technique (just like ours) and was proven to be very stable and converged to the
right solution in almost all cases. We found that this is the case with our method, too. The good
convergence is probably due to the viewpoint and time constraints discussed earlier. Therefore,
even with initial guesses that are "far” from the correct solution, the methods converge to the
correct solution.

We use a set of noise-free synthetic images to demonstrate the feasibility and speed of the
approach, and its high accuracy in noise free conditions. At the time of the publication of this
report, we have not obtained results for motion sequences from a natural environment. We expect
that the performance will not be as good as reported here, but the use of symbolic features should
greatly improve the robustness of the method.

In Section 2 we establish the relevant set of equations, in Section 3 we give a method of solution,

in Section 4 we present preliminary results and in Section 5 we discuss further work.



2 Establishing the Equations |

In this section, we first derive motion equations for general object motion. We then introduce
the assumptions of object rigidity and cons.t.ant linear and angular velocity and solve the simplified
equations in closed form.

Our analysis of general motion [15] is slightly different from the analysis of a camera moving
through the environment [24], since the possibility of tracking several objects is kept in consider-
ation. Also, our method of solution is different from that of Shariat [34] and the result is more
general. We integrate the differential equations of motion and derive equations that are simpler
and more powerful since they contain exact and explicit information about the body motion and
they are not restricted to equally-spaced time images.

The camera setup and notation are presented in Figure 1. For the purpose of clarity, we
distinguish between 3 coordinate systems: a reference coordinate system with the center at point O
(camera-centered coordinate system); an intermediate coordinate system, which is here a center-of-
mass coordinate system with the origin C and coordinates (Xe,Ye, 2.); and a body-fixed coordinate
system (X3,Ys, Z;) with the origin also at the point C. The center-of-mass coordinate system is
translating with axes parallel to the axes of the camera-centered coordinate system and the body-
fixed coordinate system is rotating around C. The intermediate coordinate system is introduced in
order to allow the separation of rotational motion (and perhaps the motion internal to the body-
fixed coordinate system) from the rest of the motion. The choice of C is arbitrary for our purposes,
and any other point is a valid choice for the center of rotation. Ozy is the image coordinate system.

The position of an arbitrary point P on a moving object is characterized according to F tgure |

by vector R(t) (in matrix notation)
R(t) = (1) + (1) (1)

where C(t) is the current position of C and r(t) is the current position of the point P relative to C



in both the center-of-mass and body-fixed coordinate gystems. Differentation of Eq. (1) gives [15]

(dfi(‘)

gt )mmm is the contribution to the speed of point P coming from the motion of the center-of-
mass coordinate system and the term w X r defines changes in the position of the point P due to

the instantaneous rotation w of the body around C. The term (‘%‘;—1) is the internal velocity

ody

of the point P in the body-fixed coordinate system. This velocity is zero if the body is rigid.

We now introduce the assumptions that the object is rigid, and has constant translational and
rotational velocity. The equation of motion of the point P in the camera-centered coordinate system
is then the solution of the following pair of equations, describing a constant translational motion

V of the origin C and a constant rotational motion w of the point P around C':

(%" ™ oo

and

(d:i(tt))camm =wXr. (3%)

If the translational velocity V' is not changing in time then the solution of Eq. (3a) is
C(t)=Co+V -t (4)

Cy is the initial position of the body-fixed coordinate system.
Let us now derive the solution for the rotational motion, Eq. (3b). For constant angular velocity
the solution of Eq. (3b) can be found in several ways. * We rewrite I3g. (3b) in a slightly different

form

()

31 thank Mark Snyder for a suggestion that led me to this simple solution.



where |

Q= | +ws 0 -ws (5b)

~wy twg 0

is the matrix specifying the rotation of the body. The solution of Eq. (5a) is
r(t) = e - ro. (6)

ro is the initial position of the point P in the body-fixed coordinate system. Here, we make an

important observation that the matrix £ satisfies the relation
@ =~ w0 (1a)
where || w || is the norm of the angular velocity w = (wz,wy,wz)
| wl’=wi +wj +w;. (76)

This observation enables us to simplify the matrix equation (6). We find, using Eqgs. (7), that the

solution of Eq. (5) is

r(t) = [[+S(w,0)- 0+ Clw,1)- %) -ro (8a)

where I is the identity matrix and we introduce shorthand notation

S(w,t) = —_Sinl(|||w“|‘|| h, (85)

C(w,t) = (1 _ COS(” w ” '))

PIE (8¢)

Egs. (8) are similar to Rodrigues formula [19]. The use of functions S(w.t) and C'(w,t) is par-

ticularly convenient for small rotations, when these functions are approximately independent of

-



The motion of a point P of a rigid body moving Wwith constant translational velocity V' and

constant rotational velocity w, with point’s starting position Rp

Ry =Co+ro 9)

is then derived by combining the solutions for translational motion (Eq. (4)) and rotational motion
(Eq. (8a)):

R(t)=Ro+V-t+ [S(w,t)-mc(w,t)-n?] o. (10)

Q is given by Eq. (5b) and S(w,t) and C(w, t) are given by Eqs. (8b) and (8c).
Without loss of generality we can assume that Co = 0, i.e., that the center of rotation and the
camera coordinate system coincide at time ¢t = 0. * With the assumption ro = Ry the equation Eq.

(10) becomes:

R(t)=Ry+V - t+ [S(w,t)-ﬂ-i-C(w,t)oﬂzl Ro. (11)

This equation describes helix-like trajectory of the point > moving with constant translational and
rotational velocity.

There are 9 parameters in Eq. (11) three for each of: the initial position of the point Ry, the
translational velocity V, and the rotational velocity w. The non-linearity in w is evident from the
rotational (third) summand.

Let Q = (z(t), y(t)) be the central projection of the point P on the image plane. The components

of R(t) = (X(t),Y(t), Z(t)) satisfy the following set of equations
fX(@)-=z(t)Z(t) =0 (12a)
fY(®) -y)z() =0 (12h)

where [ is the focal length of the camera, assumed to be the unit of length (f 1). We assume that

Z(t) # 0, for all ¢. Since there are 9 unknown parameters we need at least 5 images to determine

“The search for parameters is slightly more difficult when this assumption is not naed.
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the motion parameters of a single point, P. (Each image supplies two equations for the unknown
parameters.) Input parameters are image events Q; = (=, v, t:) = (x(1;), y(¢;)) for some arbitrary
times#;,t = 0, 1,...,4. Some other combination of the number of images and the number of points
belonging to the same rigid body can be used as long as there are enough equations to solve for
the unknown parameters. However, a larger number of images gives a more reliable prediction
of motion, and is thus preferred to a large number of points, unless there is a danger of feature

disappearance during the time interval considered.

3 Method of Solution

In this section we use a generalized version of Newton’s iterative method to solve the equations
for the motion parameters which we developed in the previous section . We can foresee some of the
advantages of the proposed solution, Eq. (11). The known type of non-linearity ma‘a.kes the method
converge fast and be more stable. It is quite possible that there is an especially suitable numerical
procedure for this type of non-linearity, although we have not found one yet.

The initial position of the point P is determined by the 3 parameters Xo, Yo, and Zg. Since Egs.
(12) are homogeneous equations of the first order in X(t), Y (¢), and Z(t), the solution is determined
up to a scale factor - usually referred to as the loss of depth during the central projection. We can
set the scale factor equal to an arbitrary constant, Zy, supplied in practice by some other method
(e.g., from laser range data). The first image in the sequence then provides enough information to

determine the two unknown parameters

Xn = IE(]ZH. ('3(1)
Yo = yoZo. (13b)

Thus, we are left with six unknown parameters labeled as a group

E€= (Vz’vyy Vz Wzawy,wz) (14)

11



for which we need at least three more images. In the work presented here we were not concerned
with the determination of the structure of the moving body. One method for determining the
structure can be found in the work by Broida and Chellappa [14]. Their method results in eight
unknown parameters and computes the structure of the moving body.

The closed form of the solution enables us to simplify the formulation of the minimization
problem in that the error becomes a linear function of point coordinates. Namely, assuming no
over-determined system of equations, we can use a generalized Newton iterative procedure [37] in

the form
J(En) = (€n+l - En)'e(fn)’ n=0,1,... (15)

where the error of the solution is

( X(t]) - :E]Z(tl) )
X(tz) - zgz(tz)
X(ts) — z32(t3)
e(§) = (18)
Y(t1) -9 Z(l)
Y(t2) - y22(t2)

(Y (t3) — y3Z(ts) )

én+1 is a new, better set of values for the unknown motion parameters. J(§,) is the Jacobian

matrix

ae,'

L i,j=1,...,6 (17)
&,

Jij(&n) =

which is easily computable from Egs. (16). Note that since we already know the explicit dependence
of the coordinates of P on the motion parameters, we do not have Lo minimize expressions of the

form

o X))
€ A ' (18)
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often found in optic flow (differential) computations. By formulating the minimization problem in
this way, Eqs. (16)), we avoid additional non-linearity of equations and are headed for faster and

more stable convergence.

4 Experimental Results

In this section we give preliminary results for experimental runs designed to test the ideas and
feasibility of our approach. The results demonstrate the generality of the method and its very fast
convergence.

The algorithm is implemented in Common Lisp on a TI-Explorer. The algorithm takes only a
few seconds to compute motion parameters. The sequence of images in Figure 2 shows centrally-
projected trajectories after each step in Newton’s iterative procedure for a point moving with
constant linear and angular velocity. In each of the images in Figure 2 there are three different
types of trajectories. One, labeled with squares, represents the correct (goal) trajectory. Each
square is centered around the image coordinates (z;,y;), of the point moving with the correct set
of motion parameters £ = (V; w). Image events Q; = (zi,yi,%), ¢ = 0,1,2,3, are provided as
input parameters to the iterative algorithm. An initial guess for motion parameters & produces
the trajectory labeled with crosses. The trajectory which represents the motion with improved
motion parameters &, s = 1,2,3,... (after each step s of iteration) is labeled by triangles. Note
that the initial position of the point Rp is found, according to Egs. (13), from the first pair of
image coordinates (zo,yo). This is the reason that all the trajectories start from the same initial
point (labeled as ”0”).

To demonstrate the generality of the method, we choose to detect motion of an arbitrary linear
and angular velocity. Figure 2 illustrates experiments which detect motion of a point on a body

moving with linear velocity V = (0.1,0.2,0.3) and angular velocity w :- (0.3. -0.2,0.2), i.e.,

£oo = (0.1,0.2,0.3; 0.3, -0.2,0.2).

13



The unit of length is f = 1 and the unit of time is 1. |

Convergence to the correct solution is highly dependent on the choice of the initial guess. Even
a very rough and easily obtainable estimate of the motion parameters (e.g., the sign of the z-
component of the linear and angular velocity) drastically reduces the amount of search. As can be

gseen in Figure 2, our initial guess & = (0.0,0.3,0.4; 0.2,0.0,0.2), is ”far” from the correct solution

€0 = &ooll/ll€ooll = 50.8%,

but has the same sign of the curvature and direction of motion in one direction. After the first
iteration we get

step1: & =(0.21,0.42,0.48; 0.50, —0.36,0.25). (Figure 2a)

This is shown as the trajectory labeled with triangles in Figure 2a. In each of the subsequent figures
we show the current trajectory (triangles) after the second, third, and fourth iteration, together

with the initially guessed, and the correct, trajectory.

step2: € = (0.07,0.25,0.47; 0.33, -0.25,0.25), (Figure 2b)
step3: &3 = (0.09,0.21,0.30; 0.31, -0.20,0.21), (Figure 2c)
stepd: € = (0.099,0.201,0.300; 0.300, —0.200,0.201). (Figure 2d)

Thus, after only 4 iterations the relative error in the motion parameters is

"64 - Eoo"/"foo” = 0.3%.

Note, in particular, that components V, and w, were first initialized to ) but are still correctly

computed. Good convergence was also found for many other types of motions and initial gnesses,

b Discussion

As expected for any set of non-linear equations, there are initial guesses for which the convergence

is poor and the expected solution is not found. The situation can be compared with finding the
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roots of the equation 2® — 1 = 0 in the complex plane; Depending on the initial guess any of the
three roots can be found. Although the solution is usually the root which is the closest to the initial
guess, there are some cases where a different root is found.

The problem can be sometimes resolved using over-constrained systems (more image events
than necessary). We are currently working on exploring the relation between the type of motion
and the value of the initial guess, in order to devise appropriate initial guessing schemes.

In a forthcoming paper we will present a detailed analysis of the algorithm for both synthetic and
real images, and for several types of motion. We are presently exploring a number of important
issues, before applying the method to a sequence of real images. One problem is the feature
correspondence over several images. A larger distance between image features will better define
the trajectory and recover motion parameters more accurately. Unfortunately, distant features are
more difficult to correlate between images. A strength of our method is that it allows arbitrary
time intervals between successive images. Allowing larger time intervals between images facilitates
the separation of different motions with similar projections.

Another issue is the sensitivity of the solution to the positional error of the image features.
The idea of smoothing [30] applied to the time coordinate, together with error analysis similar to
[14,26,35] could be used as a promising start. The Newton iterative method is easily generalized
to over-determined systems, so as to insure greater robustness to noise. A related problem is the
non-uniqueness of solutions of the non-linear equations. This is the case, for example, when the
trajectory has a much larger || w || than expected, but passes through the same space-time events,
a phenomenon that could be called the ”stroboscopic” effect. 5. In a =ense it is an undersampling
in the time domain, that could be corrected. Over-determined systems have a potential to solve
this problem as well. If we can assume that angular velocity is small. then the solution space of

the iteration procedure can be restricted and multiple solutions can be avoided.

*remark by Yigal Gur
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If the rotational frequencies are very high, a completely different problem arises: it becomes
increasingly hard to track the motion of a single feature due to its periodic disappearance. Our
approach is suitable for high frequencies since it does not require the constant time interval between
the time frames. However, some estimation techniques of the feature positions will have to be
incorporated.

We also plan to investigate the motion of several objects simultaneously, as well as that of several
features on a single object. Tracking of several features on a single object can produce an estimate
of the 3-D structure of the object or it can be used to facilitate motion segmentation. Another
very interesting direction for investigation is the derivation of equations (in a manner similar to the
one presented in this paper) for structures more complex than a point, i.e., to lines, planes, and
other surfaces of a rigid body [25,36,40]. Finally, using perturbation techniques these equations can
be generalized to motions of bodies with slowly changing shape, and/or slowly :changing motion

parameters.

5.1 Conclusion

In conclusion we have used a spatio-temporal analysis of image events to present a quite general,
robust and computationally efficient method for the recovery of motion parameters of moving
objects under the formulation posed by Shariat [34] of constant motion. The closed form solution
(containing exact and explicit information about the body motion) has other advantages: solution
strategies can be adapted to the known type of non-linearity resulting in faster and more reliable
convergence; the initial guessing scheme can exploit constraints derived from the proposed solution;
a generalization to more images, more features, and/or variable time intervals between images is
readily available; and, finally, the constraint of constant motion parameters can be relaxed, using

perturbation techniques for slowly varying parameters.
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Figure 1: Motion of arbitrary rigid body, and coordinate systems.



FIG 2a

FIG 2b
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FIG 2d

Four iterative steps in the recovery of motion parameters for the trajectory labeled
by squares. Crosses label initially guessed trajectory £o, triangles label trajectories
after the step s (trajectories §,, s = 1,2,3,4) of the Newton iteration method
described in text . Squares label the correct solution f.m

Figure 2: Convergence of Tterative Method in Recovery of Motion Parameters.



