GROUP ACTION GRAPHS
AND
PARALLEL ARCHITECTURES

Fred Annexstein
Marc Baumslag, Arnold L. Rosenberg
Computer and Information Science Department
University of Massachusetts

COINS Technical Report 87-133

GROUP ACTION GRAPHS
AND
PARALLEL ARCHITECTURES

Fred Annezstein
Marc Baumslag
Arnold L. Rosenberg
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

ABSTRACT. We develop a mathematical framework that exposes the structural kin-
ship among the DeBruijn, Shuffle-Exchange, Butterfly, and Cnbe-Connected Cycles net-
works, and we illustrate algorithmic benefits that can be gleaned from the expused
relationships. Our framework builds on two algebraically specified genres of graphs:
A group-action graph (GAG, for short) is given by a set V of vertices and a set [l of
permutations of V: For each v € V and each 7 € II, there is an arc labelled 7 from
vertex v to vertex vwr. A Cayley graph is a GAG (V, II), where V is the group Gr(ll)
gencrated by IT and where each 7 € II acts on each g € Gr(Il) by right multiplication.
We call the graphs (Gr(IT), IT) and (V, 1) associated graphs. We show that every GAG
is a quotient-graph of its associated Cayley graph. By applying such general results, we
determine the following.

e The Butterfly network (a Cayley graph) and the DeBruijn graph (a GAG) are
associated graphs;

e the Cube-Connected Cycles network (a Cayley graph) and the Shuffle-Exchange
graph (a GAQ) are associated graphs;

e the n'" version of both the Butterfly and the Cube-Connected Cycles share the
same underlying group, but have slightly different generator sets I1.

By analyzing the algebraic setting, we delimit. for any Cayley graph ¢ and associated
GAG H, a family of algorithms that run as efficiently on H as they do on (the much
larger) G.

1. INTRODUCTION

1.1. Background

We develop an algebraic setting for studying certain structural and algorithmic properties of the
interconnection networks that underlie parallel architectures. Our study and approach find their
origins in three sources.

e Akers and Krishnamurthy [AK1, AK2, AK3| argue that there are significant advantages, relat-
ing to both algorithmic efficiency and fault tolerance, that accrue when one designs a parallel
architecture so that its underlying interconnection network is highly symmetric. They argue
particularly for the level of symmetry coupled with tractability that one finds in Cayley graphs,
i.e., graphs whose adjacency structure is governed by a group.! These papers make a strong
case for their position, which is strengthened by the well-known advantages of well-known
interconnection networks such as the Hypercube, the Butterfly, the Cube-Connected Cycles,
and the ring, all of which are Cayley graphs. However, two factors somewhat mitigate the
eflectiveness of their arguments: First, there are a number of “semi-uniform” interconnection
networks that are promoted as vigorously by their proponents as are the just-enumerated
Cayley graphs; included among these are the Shuffle-Exchange, the DeBruijn, the X-tree,
and the tree networks. Second, well-known group-theoretic results suggest that the “natural”
way of defining Cayley-graph-based interconnection networks - which is the way advocated
in |AK2| and employed here - is almost certain to yield networks that are truly enormous?.
Our first motivation here was to find a genre of graph that enjoys many of the algorithmic
advantages of Cayley graphs, but at a more moderate cost in terms of the size of the graph.
The notion of group-action graph that we develop here captures two of the four mentioned
“semi-uniform” graphs.

e Erdos |[EK1] defines a genre of graph-augmentation problem that is related to the issue just
discussed: Given a graph G with maximum vertex-degree® d, what is the smallest number
of new vertices and edges one must add to G to render it regular of degree d? Solutions
to three variants of this problem appear in [AEH, EK1, EK2|. The issues raised in |AKI,
AK2, AK3| suggest a similar augmentation problem for producing Cayley graphs. One part
of the research reported on here began by studying one approach to this problem, namely by
augmenting a given interconnection network in stages, from an undirected graph to a directed
graph to a “group-action graph” to a Cayley graph. (See footnote 1.)

e The major shortcoming of the (Boolean) Hypercube as an interconnection network is its high
vertex-degrees.! This fact has led to the introduction of several bounded-degree “approxi-

"Detailed definitions appear in Section 1.2.
*Technically, the groups underlying these graphs have large symmetric or alternating groups as subgronps: The
y group: L 9] KTeen|
symmetric group on the set § iz the collection of all permutations of 8, which are |S|! in number; the alternating
K
group on § comprigeg half of these permutations.
“The degree of a vertex is its nmmber «f neighbors: a graph is regular if all vertices have the same degree.
sach vertex of the N-vertex Hypercube has degree bog N.

mations” of the Hypercube, most notably the Butterfly and Cube-Connected Cycles (CCC)
networks. Ad hoc transformations of these large® networks have led to smaller Hypercube-
derivalives, most notably the Shuffle-Exchange and DeBruijn networks, that share the size
of the Hpercube and that afford one computational efficiency (roughly) equal to that of the
Butterfly and CCC, on certain computational tasks. Indeed, many in the parallel architecture
community will attest to the computational equivalence of the four networks just mentioned,
supporting their assertion by exhibiting a class of parallel algorithms that run efficiently on
all Hypercube derivatives (including the four under discussion) that share certain structural
characteristics. Roughly speaking, the processors of these networks have addresses contain-
ing length-n bit-strings. The algorithms in the class have the property that, for each time
step , all communication is between processors whose addresses difer only in the *" place
in their bit-string (but possibly differ in other components of the address as well). Many
well-known, efficient algorithms reside in this class, for such tasks as sorting, computing con-
volutions (using the FFT algorithm [AHU, Ch. 7]), and matrix operations; see [PV, Ul| for
details. Our goal was to find a general mathematical setting that would expose the structural
and algorithmic relationships among these four interconnection networks, with the hope that
such a general framework would help us with the first of our three goals, as well as explain
rigorously the asserted “equivalence” of these networks.

Aside: To whet the reader’s appetite for the conclusions of Section 3: Figs. 1,2 depict.
the 3-dimensional DeBruijn and Butterfly networks, respectively. It is not clear at first
blush how to map the Butterfly network onto the DeBruijn network in a structure-
preserving manner. Fig. 3 depicts schematically how our framework accomplishes this.

The results we report on here can be viewed as progress toward all three goals. We find this
progress particularly satisfying since each step in our development is dictated by the structure of
the problems studied.

We envision the development here as a first step towards exploring the application of group-
theoretic techniques coupled with graph-theoretic techniques in the design and analysis of parallel
architectures.

1.2. The Formal Setting

A. Graph-Theoretic Notions

We deal with three levels of graph structure.

>

o An undirecled graph G is given by a set V' of vertices and a set of doubleton subsets of V
called edges. The vertices in an edge are said to be adjacent in G. A path in G is a sequence
of distinct vertices, vy, v, -+, vy, with each pair v;, vy, adjacent in G. G is connected if cach
pair of vertices in V appear on some path in G.

“Each uses N - log N vertices to simulate the N-vertex Hypercube.

e A directed graph (digraph, for short) G is given by a set V of vertices and a multisubset of
V x V called arcs.® The underlying undirected graph of G is obtained by replacing each arc
of G by the corresponding unordered set and disposing of the set when it is not a doubleton.
G is connected when its underlying undirected graph is. G is strongly connected if, for every
ordered pair (v, w) of vertices of G, there is a directed path from v to w, i.e., a sequence ol
vertices, v = vy, vg,+ -+, vy = w, with each pair (v;,v;41) an arc of G.

e A transformation graph (tragraph, for short) is given by a set V of vertices and a set & of
transformations of V. For each v € V and each ¢ € ®, there is an arc labelled ¢ from vertex
v to vertex v$.” The digraph underlying the tragraph G is obtained by erasing the labels
from the arcs of G and removing any resulting multiple arcs. A tragraph is connected (resp.,
strongly connected) just when its underlying digraph is.

Tragraphs are well-known in semigroup theory as operands [CP|; the third author studied strongly
connected tragraphs extensively, under the name data graphs ([Rol, Ro2| being the most relevant
for the present study).

We now define the specific genres of graphs that occupy our attention.

A group-action graph (GAG, for short) is a tragraph (V, ®) for which each transformation
in the set @ is a permutation of the set V: For mnemonic emphasis, we henceforth denote the
transformation-set I1.

Clearly, every GAG has underlying it a digraph all of whose indegrees and outdegrees are equal®,
The proofl in [Ko| that every such “two-way regular” digraph can be 2-factorized (cf. |BM|) shows
that this property is sufficient also, in that it can be used to prove the following.

Proposition 1 Given a digraph G = (V, E), there is a labelling of each arc of G with a permutaiion
of the vertez-set V in a way that makes G a GAG if, and only if, there 15 a conslani c such thal
cvery verlez of G has both indegree ¢ and outdegree c.

A little background on groups is necessary before we begin to discuss the highly uniform graphs
that our study focusses on.

B. Group-Theoretic Notions

A group is given by a set S, together with an associative binary multiplication on S (denoted
by a centered dot) that has an identily - an e € S for which s-e =e-s = s, for allse S and
inverses - for each s € S, an element t € S for which s-t=t-s=ce.

A Cayley graph (or, group graph) is a GAG (V, I1), where 1" is the group Gr(I1) generated by
11, and where each 7 € I1 acts on Gr(I1) by right multiplication, so that = € Il “leads” verlex

“Ry neing multianbgets of V x V, we allow multiple arcs, i.e., several arcs connecting a given pair of vertices.

Tu¢ denntes the image of v under the transformation .

B The indegree (reap., outdegree) of o vertex v of (7 is the nmmber of arcs of 7 having » as their second (resp., their
first) element.,

g € Gr(11) to vertex g - 7. We call I the set of generators of the group Gr(I). We denote by
Cay(l1) the Cayley graph induced by the set 11 of permutations.

We call the Cayley graph (G(I1), 1) and the GAG (V, Il) associated graphs.

There is clearly a “natural” way to construct a Cayley graph from any GAG (V, 1), namely,
Cay(l1). Less obviously, there is a “natural” way to construct GAGs from any Cayley graph
(usually more than one).

Given any subgroup ¥ of a group § (i.e., a subset of G, that is a group under the multiplication
in G), the quotient of G by ¥, denoted G /¥, is the collection of all right cosets of ¥ in G: For cach
g € G, the right coset of ¥ containing g, denoted ¥g, is the set of all left multiples h-g of g by
elements h € . It is a standard result that the cosets of ¥ partition G into blocks of equal size.

These notions yield the “natural” construction of GAGs from Cayley graphs.

Let ¥ be a subgroup of the group § = Gr(I1). The coset graph of G with respect to ¥ and 11,
denoted Cos(g; ¥;11), is the GAG (§/X, IT) whose vertex-set is the set of right cosets of ¥ in &,

and whose arcs are given by the action of the elements of Il viewed as permutations of G/¥, this
action being defined by right multiplication: for ¢ € G and 7 € I,

(Hg)m = H(g-)

Our study builds on the fact that a group can be viewed both as an abstract algebraic structure
and as a collection of permutations — multiplication in the latter view being functional composition.
This important [act is formalized in Cayley’s Theorem [Hal:

Proposition 2 [Ha| Every group is isomorphic to a set of permutations.

Let G be a group of permutations of the set S.

o G acls transitively on S (is transitive, for short) if, for all 5,1 € S, there is a g € & such that
sg = L.

e For each s € S, the stabilizer of s in G, denoted St(§;s), is the set of all permutations in G
that fiz s, i.e., for which sw = s. It is a standard result that St(§;s) is a subgroup of §.

A cyclic group is a group whose underlying set is (isomorphic 10) Z4 =qer {0,1,++-,d ~ 1} and
whose multiplication is (isomorphic to) addition modulo d. We denote the d-element cyclic group
by Z,, allowing context to distinguish between the group and its underlying set.

The wreath product of cyclic group Zy by cyclic group Zn. denoted Zy @ur Zn, is a group of
permutations of the set
Z7 =gef {0, 1, d - 1}".

Each element of Z4 ®wy 2y, is an (n + 1)-tuple
7 = {; B0, P11 Bn-1)

where a € Z,, and each 8; € Z,. The action of the permutation 7 on the element (63,61, *,0n-1) €
Z7 consists of a modulo-d vector addition of (8o, 81,- ++,Bn-1), followed by a sequence of « left-
cyclic shifts:

(60,61!'“aén-l)(a;ﬂﬂiﬁl""sﬂn—l) = (6(! +ﬂa7"',6n—l + ﬂn—laa(l + ﬂn,"')éa—l + ﬂu-l)

Multiplication in a wreath product is composition of permutations.

1.3. Synopsis of Our Results

Not only can one determine the structure of a Cayley graph Cay(I1) from the structure of its
associated GAG (V, I1) (by looking at the multiplication table of Gr(I1)), one can also determine
the structure of the GAG from the structure of its associated Cayley graph (if the group is presented
as a group of permutations of V).

Theorem 1. Every connected GAG (V, 1) is isomorphic to the coset graph Cos(Gr(11); ¥;11),
where N is the stabilizer of anyve V.

Thus, every GAG is a factor graph of its associated Cayley graph. We use this result to derive a
formal, rigorous version of the old saw, “The Butterfly, Cube-Connected Cycles, Shuffle-Exchange,
and DeBruijn networks are equivalent as interconnection networks.” Specifically, we show that:

e the Butterfly network (a Cayley graph) and the DeBruijn graph (a GAG) are associated
graphs;

e the Cube-Connected Cycles network (a Cayley graph) and the Shuffle-Exchange graph (a
GAG) are associated graphs;

e the associated group of the n*" version of both the DeBruijn and Shuffle-Exchange graphs is
the wreath product Z; ®,, Z,, but their associated Cayley graphs (the Butterfly and CCC,
respectively) have slightly different generator sets I1.

Adding to their structural interest, these correspondences have algorithmic consequences:

Theorem 2. (Informal Version) One can automatically translate any “levelled” elgorithm for a
given Cayley graph into en equally efficient algorithm for its associated GAG.

This result is proved via an algorithm that generalizes and strengthens a simulation algorithm
described in |Ul]. Noting the structural similarity between the Shuffle-Exchange and Butterfly
networks, Ullman shows that any so-called “normal” algorithm® that runs on the Butterfly can
be modified to run on the Shuffle-Exchange in twice the time. Using the relationships we develop
in Theorem 1 between Cayley graphs and their associated GAGs, we derive Theorem 2, one of

“We nge the term “levelled” here, rather than “normal”, to avoid the possibility of comfusion with the notion of
normality in group theory.

whose consequences is that “levelled” Butterfly algorithms run on the DeBruijn network with no
slowdown.

Section 2 is devoted to proving Theorems 1 and 2, in the abstract formulation of this subsection.
Section 3 develops the algebraic structure of the four interconnection networks that are our special
focus, and specializes our abstract results to these networks.

2. MAIN RESULTS: ABSTRACT VERSION

2.1. A Structural Relationship between GAGs and Coset Graphs

The group structure underlying GAGs automatically induces certain uniformities in the underlying
graphs.

Lemuna 1 Every connected GAG is strongly connected. It follows that, if (V,I) is a connected
GAG, then Gr(ll) is a transitive group.

Proof. By Proposition 1, the digraph underlying a connected GAG is a connected digraph with
equal indegree and outdegree at each vertex. By Exercise 10.3.2 of [BM|, every such digraph
contains an Eulerian tour (i.e., a closed directed path traversing each arc exactly once). This tour
yiekls a directed path between any pair of vertices, whence the claim of strong connectivity. To
see that Gr(1l) is transitive, observe that for any pair of vertices (v, w), the sequence of labels on a
directed path from v to w defines (via composition of permutations) a permutation in Gr(11) which
maps vtow. O

We are now in a position to prove that every connected GAG G = (V,11) is a coset graph,
within the strong context of Theorem 1. Since Lemma 1 assures us that ¢ = Gr(I1) is a transitive
permutation group, we can simplify our setting slightly. We are concerned with stabilizers of
elements of V in §. In a transitive permutation group, all stabilizers are conjugate!”®, hence all
isomorphic. Thus, we can refer to the stabilizer subgroup of G, written St(g), without focussing on
which v € V we are fixing. Our formal version of Theorem 1 thus becomes:

Theorem 1 Every connected GAG (V, 1) is isomorphic (as a tragraph) to the coset graph
Cos(Gr(I); St(Gr(IM)); M).
Proof. Let the GAG G = (V, T) and the group ¢ = Gr(I1) be as in the statement of the Theorem.

Pick an arbitrary v € V,!! and let ¥ = St(§;v). Establish the following mapping p from cosets in
G/¥toV:forge g,

"Subgroups ¥y and ¥z of G are conjugate if every right coset of ¥y by any g € & is a left coset of ¥ by the same
element; symbolically, ¥1g = g¥a for allg€ G..
""The specific v chosen is immaterial since G is transitive.

(¥g)u = w if, and only if, (vh)g = v(h-g) = w for each h € X.

i Lthus associates vertex w of G with that coset of G/¥ comprising the permutations in ¢ that map
v to w. Since § is a group of permutations, and since ¥ is the stabilizer of v in G, the mapping
it is well-defined and one-to-one; moreover, since ¢ is transitive (by Lemma 1), the mapping u is
also onto. Therefore, once we show that u preserves (labelled) arcs, we shall be done.

Say first that, in the GAG, there is an arc labelled 7 from vertex u to vertex w. By definition,
then, 7 is a permutation in IT for which umr = w. Now, for every permutation g € ¢ that maps v
to u (i.e., vg = u), the permutation ¢ - 7 maps v to ur = w, via the equations

= un = (vg)m = v(g - 7).

It follows that there is an arc labelled 7 from vertex uu to vertex wu in the coset graph.

Finally, say that, in the coset graph, there is an arc labelled 7 from vertex ¥ f to verltex ¥g
(f,g € §). By definition, then, we have the equation

Hg=¥(f-m)

on the right cosets of ¥. It follows that for each permutation h € ¥, we have

v(h-g) = (vh)g = vg = v(f -7) = (vf)x

since X is the stabilizer of v in G. But the latter equations imply that there is an arc labelled »

[

from vertex vf to vertex vg in the GAG. O

We have already noted that the choice of the stabilizer ¥ in Theorem 1 does not affect the
structure of the GAG, but it does change the correspondence between the right cosets of ¥ in ¢
and vertices of G.

The next two corollaries of Theorem 1 exhibit useful relationships between a GAG G = (V, 1)
and its induced Cayley graph Cay(IT). The first result indicates that certain simple structures in
G replicate in Cay(IT) with the multiplicity suggested by Theorem 1’s structural characterization
of GAGs as coset graphs.

Corollary 1 Each directed tree'? T that is a subgraph of the GAG (V,II) appears with multiplicity
| St (Gr(M))| as a subgraph of Cay(I1).

Proof. Let the directed tree T be a subgraph of the GAG G = (V.I1). The mapping p in the
proofl of Theorem | associates each vertex v of T with a unique right coset ¥gq, where g + G'r(il)
and where ¥ = St(Gr([1); w) for some fixed but arbitrary w € V. As we noted earlier, all of the
candidate cosels have common size | St (Gr(IT))|.

"2A free is a connected undirected graph that has a nnigue path hetween every pair of vertices; a leaf in the Lree is
a vertex of unil degree. A direeted free is o digraph whese nnderlying graph i= 2 tree with o designated roof vertex,
all of whese ares are oriented from poot to leaf.

sonsider now an arbitrary arc labelled = € Il from vertex u to vertex w in G. In Cay(I1), the
permutation 7 induces a bijection (via right multiplication) between the cosets p~ (u) and p~ ' (w).
Thus, each arc in T spawns | St (Gr(I1))| distinct arcs in Cay(I1). Since no two arcs in the tree T
enter the same vertex, this replication of arcs suffices to establish the result. (1

Note that one cannot extend Corollary 1 very far, since a cycle in the GAG G may not result
in a cycle in the induced Cayley graph: the “initial” and “final” arcs in the Cayley graph will start
- and end (respectively) in the same coset, but not, necessarily at the same vertex in the cosel.

Theorem 1 also affords us a general upper bound on the diameter!® of a Cayley graph, in termns
of the diameter of an associated GAG.

Jorollary 2 The diameters of the connectéd GAG G = (V,1) and its associaled Cayley graph
I' = Cay(ll) satisfy the relation

diam(T) < diamy(T') + diam(G),

where ¥ = St(Gr(I1)) and diamy(T) is the diameter of the subgraph of T' induced on the verlices of
4. Moreover, if X ts generated by a proper subset ¥ of 1, then

diam(T") < diam(Cay(¥)) + diam(G).

Proof. At an intuitive level, we are asserting that one can travel from vertex u to vertex v in I’
by using copies of GAG-arcs to travel from the coset containing u to the coset containing v, then
using copies of the arcs that stay within ¥, hence within each coset defined by ¥, to get to v.

More formally, we note that, becanse of vertex-transitivity, the diameter of T is just. the maxi-
mum distance of any vertex from the identity vertex e (the identity of the underlying group Gr(I1),
that is). A path between e and any other ¢ € Gr(Il) can be found as follows. Say that g is in
the coset ¥a in Gr(I)/X. As in the proof of Theorem 1, for each g € Gr(Il) and each 7 € II, I’
contains |¥| parallel arcs labelled 7 connecting the vertices in coset ¥g of Gr(I1)/¥ (in a one-to-one
fashion) to the vertices in coset ¥(g - 7): These parallel arcs correspond to the arc labelled = in
the GAG G, from vertex Xg to vertex ¥(g - 7). One follows a path of such inter-coset arcs in I',
of length at most diam(G), starting at vertex e (which is in coset ¥) and ending at some vertex in
coset ¥a. In general, inter-coset arcs will not take us directly to g, so we must then follow a path
of intra-coset arcs to attain vertex g, all the while staying within coset ¥a. The traversed path is
guaranteed to work and has length at most diamy (I') + diam(G), whence the result. The second
inequality follows by the same reasoning, when ¥ is generated by a subset of I1. O

13The distance between vertices v and w of a digraph G is the length of the shortest directed path from » b w; the
diameter of G is the longest of these shortest paths, for any pair of vertices.
"The induced subgraph comprises all vertices of ¥, plus all arcs of I' that connect vertices of ¥.

2.2. Algorithmic Consequences of the Structural Relationship

The development in Section 2.1 has algorithmic consequences that often allow one to trade signili-
cant savings in the number of processors in one’s array for a modest increase in computing time. For
a special class of algorithms, which includes certain algorithms for sorting and computing the FFT,
one can obtain the savings in processor count with no:time loss. We now describe the algorithmic
setting, which generalizes an analogous discussion in [Ul].

Say that we are given an algorithm A that runs in synchronous mode on a parallel architecture
whose interprocessor communication structure is given by a digraph G. Say further that Algorithm
A runs on G in the following format:

There is a partition of the set of vertices of G (which are the processors of the array)
into sets V1, V;,...,V,, such that, at each moment of time, the active set of processors
involves at most one processor from each set V;.

We call each set. V; a block of the graph G, and we call Algorithm A an (€-)block-structured algorithm.
Consider now the following modification of the scenario just described.

e Label the vertices/processors of G in any way that assigns a different label to each processor
in each block V;; clearly N =q¢r max; |V;| labels suffice.

e Construct the {-vertex graph/processor array G' that has a vertex v; for each block Vi in the
partition of G, and that has an arc from vertex v, to vertex v, just when, in G, some vertex
in block V;; has an arc to some vertex in block Vj. Give each vertex v; of G’ the capability to
simulate each processor in the block V; of G. (This is easy with arrays of identical processors.)

e Modify Algorithm A to obtain Algorithm A' that operates as follows. Each message gencraled
by Algorithm A’ is a message generated by Algorithm A, augmented with the label (address)
of the processor of G that the message is intended for.

e Run Algorithm A’ on graph G’ as follows.

— If an initial message M of Algorithm A would go to processor v in block Vi of G, then
Algorithm A’ tags Message M with the label of v and sends it to processor v; of GG'.

— When a processor of G’ completes a task of Algorithm A, it tags each message M that
it has generated with the label of the processor v (in block Vi) of G that Algorithm A
would send the message to on G. It then sends the message to processor v; of (7'

i

® A processor v; of G' uses the label attached to incoming messages to determine which processor
in block V; of G to simulate during a given step of Algorithm A’. The block-oriented character
of Algorithi A guarantees that a processor of G! is never asked to simulate more than one
processor of G at a time.

10

It is transparent that Algorithm A’ is functionally equivalent to Algorithm A; moreover, the only
overhead for running the former algorithm to simulate the latter resides in the process ol appending,
sending, and decoding the processor-labels, which can be assumed to be bit-strings of length at
most log N. This overhead allows us to simulate a large processor array with an f-processor array.

When the graph G is a Cayley graph Cay(I1), and the graph G’ is a coset, graph Cos(Gr(I1); ¥; 1)
of G by the subgroup ¥, then the scenario just described is often simplified somewhat, for each
block V; of G has the same number of processors, |¥|. Thus, the effect of Algorithm A on array G
is obtained on a processor array of size |G|/|¥|. In this case, we say that Algorithm A is ¥ -blocked.

In certain instances, we can do even better. Consider, for illustration, executing the FFT
algorithm on the Butterfly network (a Cayley graph whose structure matches the data dependencies
of the algorithm; cf. Section 3.1.B and [AHU, Ch. 7)). This algorithm runs on the network level
by level (using the natural levelling of the network): At each time ¢, each processor at level ¢ of the
network takes in inputs z; and z3 on its two input ports, using the source input ports to distinguish
xy from z2; it computes two linear functions L (z;,72) and L3 ¢(z1, z2) of the inputs; it sends Ly
out. on its first output port and Ly, out on its second output port. Thus, at any specific moment,
only one level of processors in the network is active. One sees that this computation is so carefully
choreographed that no addressing mechanism is needed to determine what a processor is to do: A
processor can determine what role to play - i.e., for which ¢ to compute Ly, and Lz, merely by
keeping track of the time. Generalizing from this example, we call an ¥-blocked algorithm for the
Cayley graph G orchestrated if one can label each processor in each block of G (i-e., coset of ¥)
with a set of time-stamps that indicate the times when that processor is active while exccuting the
algorithm, independent of the input data. As with our example, one can execute an orchestrated
blocked algorithm on the coset graph using only a clock (either global or one per processor) to tell
each processor of the coset graph when it is to play which role.

In the very special case of our example of the FFT algorithm on the Butterfly network, we
encounter the potential for even further simplification: In the FFT algorithm, the differences
among the various linear functions L;;, as varies, reside in a parameter w; that enters into the
computation of L;¢. Since each w = w?_,, a further algorithmic simplification is possible: If
we have each processor square its current parameter before computing its linear functions, then
we shall have just two fixed linear functions Li(z1, T2; Weurrent), ¢ = 1,2, that are computed by
every processor in the Butterfly. In this case, there is no need for a processor of a coset graph
to maintain any information about its “identity”: Every processor, in every block/coset, performs
the same compulation at every step as does every other processor. In the case of such oblivious
algorithms, therefore, we do not need any global or local clocks, and we do not need to devote any
time to processing addresses or time-stamps: We save a large factor in hardware at no eztra cost

in compulation time'S.

We close this section with a formal analog of Theorem 2 whose proof is contained in the preceding
discussion.

Theorem 2 Let Cay(T1) be a Cayley graph, let ¥ be a subgroup of Gr(11), and let A be an ¥ -blocked

"We do, however, lose the ability to pipeline computaticns (2ne per level on the Butterfly).

11

algorithm for Cay(I1).

(a) Algorithm A can be run on the coset graph G = Cos(Gr(IT); ¥;11), slowed down by the factor
O(log | ¥]).

(b) If Algorithm A is orchestraled, then t steps of the Algorithm can be run on the coset graph G
in O(tlogt) steps.

(c) In either of the previous circumstances, if the processors of Cay(I1) operate on “large” quantitirs,
then the slowdown on the coset graph G is only O(1).

(d) If Algorithm A is oblivious, then it can be run on the coset graph G with no time loss.

As a final remark in this section, we note that the Cayley graph Cay(IT) can be enormous
compared to its associated GAG (V,[T). Even if I1 consists of two permutations, one of which
cyclically permutes V and one of which switches two elements of V' while holding all others fixed -
so that the undirected graph underlying the GAG (V,II) has only |V| edges — the group Gr(I1) can
contain |V|! elements. Although we do not know of any Cayley graph - GAG - algorithm matchups
that apply Theorem 2 to such an extreme situation, it is conceivable that such do exist.

3. MAIN RESULTS: CONCRETE VERSION

In this section we demonstrate the usefulness of the development in the preceding section, by
applying it to four families of graphs that are benchmarks among interconnection networks for
parallel architectures:

e the Butterfly network
e the Cube-Connected Cycles network
e the DeBruijn network

e the Shuffle-Ezchange network

All four families are bounded-degree “approximations” to the Hypercube network. We prove that
the first two are families of Cayley graphs, both having the same wreath products of cyclic groups
as underlying groups, but with slightly different generator sets; we prove that the second two are
families of coset graphs of the former two families. Thus we characterize precisely and rigorously
the structural similarities and differences among these families. We then discuss the implications
of Theorem 2 for the correspondences we have exposed.

At virtually no extra cost, we establish our results for generalized versions of the four studied
networks.

12

3.1. DeDBruijn and Butterfly Networks

A. DeBruijn Graphs

Let d, n be positive integers. The base-d n-dimensional DeBruijn graph A(n;d) is the digraph
whose vertices comprise the set Z7, and whose arcs connect each vertex az € Z7, where o € Zy and
x e Z,'i"l , to each vertex of the form zf € Z7 for some. 3 € Z;; see Fig. 1, where the conventional,
base-2, DeBruijn graph is depicted, and [dB, Fr, ISOJ.

By Proposition 1, every DeBruijn graph can be arc-labelled so as to be a GAG. One way to do
this yields the correspondences we seek. For each B € Z;, define the permutation n|8;d| of Z} (n
being clear from context) by

(a)(8; d] = 7(a + Amod d)),

for cach o € Zgand z € Z7~'.'® Label each arc of A(n; d) of the form (az, zf) with the permutation
#|A - a(mod d);d]. We leave to the reader the easy verification that the described arc-labelling
renders A(n;d) a GAG.

Let M2 =qer {x[B:d] | B € Za}.
Lemnmna 2 For all d, Gr(I12) is isomorphic to the wreath product Zy Qur Zn.

Proof. Note first that for each base d and integer B € Z,, the permutation 7{8;d| € 14 is
equivalent to a modulo-d vector addition of (8,0,---,0) to the argument string/vector, followed
by a one-place-left cyclic shift of the digits of the argument; 7[8;d| is, thus, equivalent to the
permutation

. (l;ﬁ,O,---,O)
in Zy ®ur Zn. It follows, therefore, that Gr(ﬂ‘?) is a subgroup of Zj ®wr Zn.

Next, consider an arbitrary permutation

n= (a;ﬁmﬁh"'aﬂ"'l)

in Zi ®uwr Zn. As we noted in Section 1.2.B, the action of 7 on an element of Z} consists of a
modulo-d vector addition of (8o, 81, * *, Bn-1) to the argument, followed by « left-cyclic shifts. The
action of 7 is, thus, equivalent to the action of the product!?

#|Bo; d|7[B1; d) - - - 7 [Bn-1; d| (7 [0; d])*

of permutations from Il 2: the first n permutations effect the vector addition, while the last o cffect
the cyclic shift. It follows, therefore, that Z4 @ur Z, is a subgroup of Gr(ﬂf .

The Lemma follows. O

Far all d, the permutation 7[0;d] is just a cyclic-shift of the argument string. The permutation w|; 2] is terme
a perfect shuffle, and the permutation m[1;2] is termed a shuffle-czchange.
1711 the product, (70;d])" denotes a sequence of « instances of w[0: d].

- 13

Lemuna 3 For all d,n, the base-d, n-dimensional DeBruijn greph A(n;d) is isomorphic to the
Coset graph
Cos(G; X; 114

where g = Z“ Qur Zn and ¥ = {0} @wr Zﬂ‘

Proof. Since A(n;d) is a connected GAG, the Lemma will follow from Theorem 1, once we determine
the stabilizer of Z} in Z; ®yr Zn. By Theorem 1, it will suffice to determine the stabilizer of
the clement (0,0,---,0) € Z}, which is transparently Gr(x|0;d]) (i.e., all possible shifts, with no
additions). Using reasoning analogous to that in the proof of Lemma 2, one verifies that Gr(r|0); d|)
is isomorphic to the subgroup {0} ®y, Z, of Zy Qur Z,. O

B. Butterfly Networks
Let d,n be a positive integer. The base-d n-level Butterfly graph B(n;d) has vertex-sel

Vn;d = Zn X Z(?.

The subset V) = {€} x Z} of Vg (0 < € < n) is the £ level of B(n; d). The edges of B(n; d) form
d-bulterflies (or, copies of the complete bipartite graph K 4) between consecutive levels of vertices,
with wraparound in the sense that level O is identified with level n. Each butterfly connects cach
vertex

(€, BuBy -+ Be-10Bes1+*Pn-1)
on level € of B(n;d) (0 < € < n; & and each 8; in Z;) with all vertices
(€+ 1(mod n), Bofy---Be-1wBes1 -+ Pn-1)

on level €+ 1(mod n) of B(n;d), for all w € Z,;.'®

There is a natural way to turn B(n; d) into a tragraph whose arcs are labelled with permutations
from T14. First, we form the directed version B(n;d) of B(n;d), by orienting each edge of B(n;d)
from level £ to level £ + 1 (before reducing ¢ + 1 modulo d). Next, we form the tragraph version
B(n; d) of B(n;d), as follows. For each £€ Z, and a,w € Z,, we label the arc from vertex

(€, BoPr:+Pe-10Pesr1 -+ PBn-1)

to vertex
(€+ 1(mod n), BoPi - Pe-1wBe+1 " Pn-1)

with the permutation 7w — a(mod d); d|; see Fig. 2.

Lemuna 4 For all d,n, the basc-d n-level Butterfly network B(n; d) 1s isomorphic (as a tragraph)
to the Cayley graph Cay(1%).

"BRor d = 2, B(n;2) can be viewed as the FFT nefwork with 1he input and entpnt vertices (i.e., the top and hotlom
levelr) identified.

14

Proof. We show that the natural correspondence between vertices of B(n;d) and vertices of
Cay(N%) yields the desired isomorphism. By Lemma 2, the latter set of vertices comprises just the
elements of Zy ®uwr Zn. Let each vertex

(za ﬁ()ﬂl . 'ﬂn-l)

(€ € Z,; each B; € Z3) of B(n; d) correspond to the element

(e; ﬂo,ﬂl:' * '7ﬁn~l>

of Zy @ur Zn (cf. Section 1.2.B). Since this mapping is well-defined and onto, it is one-to-one also.
To complete the proof, we need only verify that our correspondence preserves (labelled) arcs. To
simplify exposition in this verification, let us agree that all addition in the remainder of this proof
is modulo d.

lvery arc labelled n[y;d) € 113 in Cay(I14) leads from a vertex

¢ = (e; ﬂ(hﬁh""ﬂﬂ—l)

to vertex ¢ - 7[y;d]. To determine the image of this latter vertex in B(n;d), we must consider the
action of ¢ - w[y;d] on an arbitrary vector (60,61, 6n-1), each & € Zy. By definition, this action
consisls qf

e addition of the vector (Bo,f1, -+, Bn-1) followed by a sequence of ¢ left-cyclic shifts,
which is the action of ¢, followed by
e addition of the vector (v,0,0,-:+,0) followed by a single left-cyclic shift,

which is the action of 7|v; d]. This is easily seen to be identical to the action of the permutation

(€+1; Bo,B1,+++» Be-1,Be+ 7, Bear,*+» Bn-1)

of Z4 ®ur Zyn. There is, thus, an arc labelled 7[v;d] in é(n; d), from the vertex corresponding to ¢
to the vertex corresponding to ¢ - 7[v; d].

Every arc labelled n[y;d] in B(n; d) leads from a vertex.

v= (¢ Bobr-* Be-1BeBex1***Pn-1)

to vertex .

(€+ 1, BoPr--Be-1(Be + 7)Bexr - Prn-1)

By our correspondence, this latter vertex corresponds to the element

n= (e+ l; ﬂOaﬁl)"'sﬂl—l’(/3£+ 7)»ﬂt’+la"'rﬁn-—l)

15

of Z,®ur Zn. Il we let ¢ denote the element of Z; ®yyr Zn corresponding to vertex v, then reasoning
similar to that in the previous paragraph verifies that n = ¢ - m[y;d|. This verifies that labelled
arcs between vertices in B(n;d) betoken like-labelled arcs between the corresponding vertices of
Cay(I1). O

Lemmas 2, 3, and 4 establish our first sought concrete correspondence; see Fig. 3.

Theorem 3 For all d,n, the base-d n-dimensional DeBruijn graph A(n;d) is a cosel graph of the
basec-d n-level Butterfly network B(n;d).

Our development to this point allows us to infer, using Corollary 1, that Butterfly networks
contains a lot of disjoint large trees, thus yielding a simple algebraic proof of a combinatorial result
from [BCHLR].

orollary 3 The base-d n-level Butterfly network E(n;d) contains n disjoint copies of the height-
(n - 1) complete d-ary tree.

Proof. 1t is trivial to verify that the DeBruijn graph A(n;d) contains the height- (n - 1) complete
d-ary tree as a subgraph. The result, therefore, follows directly from Theorem 3, Lemma 3, and
Corollary 1.

Finally, the advertised algorithmic consequences of Theorem 3 follow from Theorem 2 (uuplul
with an analysis of the structure of the cosets of the group'® {0} @yr Zp in the group Zi Owr Zn.
It is not hard to verify that each such coset has the form {£} Qu, Z,, for some £ € Z,. It follows
that the & such coset. corresponds, using the correspondence of Lemma 4, to level ¢ of If(n d).
The reader can readily supply the details.

3.2. Shuffle-Exchange and CCC Networks

A. Shuffle-Exchange Graphs

Let d, n be positive integers. The base-d n-dimensional Shuffle- Ezchange graph £(n;d) is the
GAG whose vertices comprise the set Z7, and whose (labelled) arcs are specified by the permuta-
tions n(B;d) of Z} (8 € Z4 and n being clear from context) defined as follows. 20 For each o € Z,
and x € ;'l,

(az)n(0; d) = (az)x|0;d] = za
and, for 8 # 0,
(ra)n(B;d) = z(a + B(nod d));

see Fig. 4, where the conventional, base-2, Shuffle-Exchange graph is depicted.

Let, " “def {n(ﬂl d) ‘ﬂ e 7J}

|'|iy L@lnnn Z this is Ilw ~lnl Wre |||> II| 1 vwhl~ the stenctare of the DeBrnijn graph.
e permutation a(1;2) is rermed an exchange.

16

Lemma 5 For all d, Gr(T1%) is isomorphic to the wreath producl Zy ®uwr Z,.2

Proof. By Lemma 2, it will suffice to prove that for all d, Gr(N}) = Gr(M%). To this end, note
that for all d: x|0;d] = n(0;d), and for § € Z, - {0},

7(8;d) = n(B; d)x(0:d);

and

m(B8;d) = x|3; d](r[0;d))" !
(see footnote 16). O
Lemma 6 For all d,n, the base-d n-dimensional Shuffle-Ezchange graph E(n;d) is isomorphic lo

the Cosel graph
Cos(§; ¥; T13)

where § = Z4 Qur Zn and ¥ = {0} Qur Zn.

Proof. 'The proof is virtually identical to that of Lemma 3, so is left to the reader. O
B. Cube-Connected Cycles Networks

Let d, n be a positive integer. The base-d n-level Cube-Connecled Cycles graph (CCC graph, for
short) C(n;d) has vertex-set
Vn;d =2n X Z;

The subset V,iﬂ = {€} x Z7 of Vpuq (0 < € < n)is the ¢th level of C(n;d). The edges of C(n;d) arc
of two varieties. First there are the inter-level edges that connect each vertex

(€, BoPr-Bn-1)
on level € of C(n;d) (0 < € < n; & and each f; € Z,;) with the corresponding vertex
(e + l(mOd n)’ ﬂOﬂl ++Bn-1)

on level £+ 1(mod n) of C(n;d). The remaining, intra-level, edges form d-cligues (or, copies of the
complete graph Kg), as follows: On each level 0 < £ < n, each vertex

(€, BoPr++Be-r10Besy - Pn-1)

(« and each f; in Z,) is adjacent to all vertices
(€, BoPy+++Be-1wBes1+**Pn-1)

for all w € Z4.

2phe set M5 is often called the standard set of generators for Zi ®we Zu.

17

There is a natural way to turn C(n; d) into a tragraph whose arcs are labelled with permutations
from Ilf. First, we form the directed version C-f(n; d) of C(n; d), by orienting each inter-level edge of
C(n; d) from level € to level £+ 1 (before reducing £+ 1 modulo d); then, we replace each intra-level
edge of C(n;d) by mated opposing arcs. Next, we form the tragraph version C(n;d) of C(n;d), as
follows. First, we label each inter-level arc with the permutation m(0; d); then, for each ¢ € Z,, and
a,w € Z,, we label the arc from vertex

(€, BoB1---Be-10Bes1+* Bn-1)

to vertex

(€, BoPr--Be-1wPes1+ Pn-1)

with the permutation 7(w - a(mod d): d); see Fig. 5.

Lemma T For all d,n, the base-d n-level CCC network C(n;d) is isomorphic (as a tragraph) lo
the Cayley graph Cay(I1%).

Theorem 4 For all d,n, the base-d~n-dimensional Shuffle-Ezchange graph £(n;d) is a coscl graph
of the base-d n-level CCC network C(n;d).

Proof Sketch. The proofs of Lemma 7 and Theorem 4 are almost identical to those of Lemma 4
and Theoremn 3, respectively, so are left to the reader; see Fig. 6.

ACKNOWLEDGMENTS: This research was supported in part by NSF Grant DCI-87-96236.
It is a pleasure to thank Dave Barrington for helpful advice and technical assistance. Adi Shamir
and Don Coppersmith pointed us toward a number of useful group-theoretic results. Comments
and suggestions by Tom Leighton and Charles Leiserson helped us improve the presentation.

4. REFERENCES

[AHU | A.V. Aho, J.E. Hopcroft, J.D. Ullman (1974): The Design and Analysis of Compuler
Algorithms. Addison-Wesley, Reading, MA.

[AK1 | S.B. Akers and B. Krishnamurthy (1984): Group graphs as interconnection networks. 14th
IEEE International Conference on Fault-tolerant Computing, 422-427.

[AK2 | S.B. Akers and B. Krishnamurthy (1986): A group-theoretic model for symmetric inter-
connection networks. Intl. Conf. Parallel Processing, 216-223.

[AK3 | S.B. Akers and B. Krishnamurthy (1987): On group graphs and their fanlt tolerance.
IEEE Trans. Comp., C-36, 885-888.

18

[AEH | J. Akiyama, H. Era, F. Harary (1983): Regular graph containing a given graph. Elem.
Math. 38, 15-17.

[BCHLR | S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, A.L. Rosenberg (1987): Opti-
mal simulations by Butterfly networks. Typescript, Univ. Massachusetts.

[BM | J.A. Bondy and U.S.R. Murty (1976): Graph Theory with Applications. North-Holland,
New York.

[CP | A.H. Clifford and G.B. Preston (1967): The Algebraic Theory of Semigroups, II. Mathemat-
ical Surveys No. 7, American Math. Soc., Providence, Rl.

[dB | N.G. DeBruijn (1946): A combinatorial problem. Proc. Akademe Van Weteschappen {9,
Part 2, 758-764.

[EK1 | P. Erdds and P. Kelly (1963): The minimal regular graph containing a given graph. Amcr-
ican Math. Monthly 70, 264-274.

[EK2 | P. Erdos and M.S. Krishnamoorthy (1987): On regularizing graphs. Typescript, RPI.

[Fr | H. Fredricksen (1982): A survey of full length nonlinear shift register cycle algorithms. SIAM
Review 24, 195-221.

|[Ha | M. Hall, Jr. (1959): The Theory of Groups. Macmillan Co.

[(ISO | M. Imase, T. Soneoka, K. Okada (1985): Connectivity of regular directed graphs with small
diameters. IEEE Trans. Comp., C-34, 267-273.

[Ko | A. Kotzig (1969): The decomposition of a directed graph into quadratic factors consisting
of cycles. Acte FRN Univ. Comment. Math., XXII, 27-29.

[PV | F.P. Preparata and J.E. Vuillemin (1981): The cube-connected cycles: a versatile graph for
parallel computation. C. ACM 24, 300-309.

[Rol | A.L. Rosenberg (1971): Data graphs and addressing schemes. J. CSS 5, 193-238.

[Ro2 | A.L. Rosenberg (1974): An extrinsic characterization of addressable data graphs. Discrele
Math. 9, 61-70.

[U1] J.D. Ullman (1984): Computational Aspects of VLSI. Computer Science Press, Rockville,
MD.

19

Figure 1. The DeBruijn graph A(3;2) as a GAG.

100 010 110 001 101 011 111

Figure 2. The Butterfly network B(3;2).

x'
o)
ya

,,

/

E(

S
-
"

..

0
N

Clo

2).

f B(3;

Figure 3. Nlustrating A(3;2) as a coset

e
101

D
e

Figure 4. The Shuffle-Exchange graph £(3;2) as GAG.

PWL
000 .
LEA 100 010 110 001 101 011 111

Figure 5. The Cube-Connected Cyeles network (1‘(3; 2).

\\\\\\ 000 100 010 110 001 101 011 11
LEVEL
o (oo00 001 100 101 010 o1t 110 m

CIacIcicICICIC

2 (o000 100 010 110 001 101 011 "

Figure 6. Tlustrating $(3;2) as a coset graph of C(3;2).

