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ABSTRACT

Paragon, an Interactive, Extensible,
Environment for Typeface Design

September 1987
Lynn Elizabeth Ruggles, B.A. University of Virginia
M.S., University of Massachusetts
Ph.D., University of Massachusetts
Directed by: Professor David McDonald

Typefaces have been designed and used for over 600 years.
As new technology was developed, new methods were designed
to cope with the changes in materials and techniques. The
current century has seen the development of raster output
devices in the form of laser printers, CRT typesetters, and
bitmapped graphics displays. Systems used to generate digital
type designs for these devices generally fall into the category
of copying systems rather than design systems. Little work has
been done to provide the type designer with a system intended
to be used for the design of new typefaces.

This thesis discusses a typeface design system which
has been created to fill this gap. The system, named Paragon,
is an interactive, extensible, typeface design environment
implemented on an interactive graphics workstation. It is an

attempt to integrate the traditional typeface design environment

with the capabilities of interactive computer graphics. It
enhances the traditional environment by providing functions
to aid the design process which are difficult to do by hand, but

easy to do within a computer system. The design system itself is

extensible in that a designer who has little if any knowledge of
computers or programming can create new commands by using
the the primitive operations that are provided and can then
incorporate these commands into the working environment.
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Chapter I

Introduction

The work of a copyist can present only the infelicities and
mannerisms of the former worker, and will lack entirely the
human stamp of life and variety, and the expression of joy so
evident in the old work. No art can live by the continued reviving
or reproduction of the achievements of the past. To what source,
then, or to what quarter shall we turn for suggestions for the new
type creations?

Frederic W. Goudy, introduction to Type Design by D. McMurtrie

Paragon is an interactive, extensible, typeface design system
implemented on an interactive graphics workstation. It is an
attempt to integrate the traditional typeface design environment
with the capabilities of interactive computer graphics. It gives

a type designer sitting at a workstation the ability to design
typefaces directly: there is no provision for entering existing
designs into the system, nor are there any features which enable
a user to do bit-editing of raster characters. All type rendering
is done interactively using a pointing device and a bit-mapped
graphics screen. Features which are specific to type design and
display have been incorporated into the design environment.
The system is extensible in that a designer who has little if

any knowledge of computers or programming can create new
commands by combining the primitive operations that are
provided and can then incorporate these new operations into the
working environment.



The system has been named Paragon, after an early name
for a type font size of approximately 20 points. Prior to the
adoption of the point system in the late-nineteenth century,
type sizes were identified by names which were not assigned
with any attempt at precision. Type sizes were known by names
such as Pearl, Ruby, Agate, Nonpareil, Minion, Brevier, Galliard,
Bourgeois, Long Primer, Small Pica, English, Great Primer, Canon,
and Gros-Canon, with each name denoting a different size. The
names and sizes varied from country to country and came from
many sources; some took their names from the book in which
the type first appeared (e.g. Canon, Primer); others took their
names from the name of another typeface of similar design.
Some took their names from common names of the day, such as
Galliard, which was originally the name of a dance popular at the
time the typeface was designed.

This thesis has been divided into six chapters and two
appendices. Chapter 2 covers the history of the type design
process up to the advent of computer-controlled typesetters.

Chapter 3 continues the discussion with a review of type
conversion systems that were developed to take advantage of
high speed processors, graphics hardware, and digital display
devices. Chapter 4 describes what we mean by an interactive,
extensible design environment, and enumerates the features
which are necessary for a production type-design system.
Chapter 5 describes the implementation in detail and provides
specific examples of both the interactivity of the system and its
extensibility. It also summarizes the successes and limitations
of the system and discusses where these might be optimized or
eliminated. Chapter 6 concludes the thesis with a brief summary
of what we have accomplished. Appendix A provides a lexicon
of typographic terms, and Appendix B contains an explanatory
description of each of the functions provided with the system.
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Chapter 11

The Evolution of Typeface Design

All technical requirements must be considered and regarded
even at the drawing stage. A printing face is the sum of a

series of factors which must be fused into harmonious unity if

a useful type is to result. To be so designed, a type demands

of its designer the knowledge of historical coherence in type
development, artistic perception and an inclusive insight into the
technique of typecasting.

Hermann Zapf, About Alphabets

Many changes have taken place in the design of typefaces
because of technological advancements in the printing industry.
As new printing machines were introduced, new typeface designs
were crafted to take advantage of improvements or changes in
the printing methodology. Some developments in the printing
trade led to changes in typeface designs because of improved
methods of printing. Others influenced the designs because they
modified the characteristics of materials used by the printing
industry. Other inventions prompted changes in the design
process itself.

As is usual when there is technological change, processes
that were indirectly dependent on the new equipment did
not change immediately upon announcement of the new
developments. This delay resulted in inefficiency in the design
process until the new technology’s capabilities and limitations
were explored. When the characteristics of the new technology
were understood, the design methodology changed to make
the design process conform to easier and faster methods of
production.



This chapter will give an overview of the metamorphosis of
typeface design from its early beginning as a trade practiced by
artisans working with simple hand tools up to the development
of computer fonts for phototypesetters. Some typefaces
will be mentioned as examples, but this is not meant to be
an exhaustive survey of all typeface designs that have been
influenced by technology nor of all of the technology that has
led to changes in typeface design. Since much of the actual
operations of printing and typesetting equipment has been
covered in other publications, only a brief mention of it will be
made here; a more detailed explanation of the machines or the

manufacturing methods can be had by consulting the references.

/

Figure 1. Punch and matrix for use with a handmould
for casting metal type.

Early type design

Johannes Gutenberg was the first person to fully develop the
idea of letters cast on the end of a piece of metal, now referred
to as type, and a means of casting these pieces in a uniform and
easily replicated manner. Although not much detail is known
about his early experiments, he had developed the technique

3 3 _3 3 __3 __3 __3
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sufficiently by 1450 to be producing enough type to print

an edition of the Bible. The process of casting type or type-
founding required several steps for each individual character.
The first step was to carve a letter shape on the end of a bar

of steel, called a punch, which was then impressed into a bar

of copper to form a matrix, leaving an impression of the letter
in the copper (Figure 1). This matrix was inserted into a hand
mould into which molten metal (mostly lead) was poured. The
metal filled in the impression in the copper matrix, so that when
the metal cooled and was removed from the mould, there was

a raised character shape, or face, on the end of the piece of
type. After the hardened metal was removed from the mould the
edges were squared off . A punch and a matrix had to be made
for each character from which many individual types were cast.
When a sufficient amount of type had been cast, they were set
or lined up side by side to form words. Many lines of type were
stacked one below another to form a page of text which was
then printed on a printing press [KOCH33, DROS85).

figms aicroe dits venit-in
2 nuits agpbentent qui inkpbicat
reteal meenfu wito - 3 ablcodeour ven-
tans mia  Revdus it 4 file regio - et
mulaplicabitimBida fup bane qud
1 tupibes fup qua audith olim :
ee eeit unpofito vetigto 5 nitc mdes

Figure 2. Typeface from printed Bible, 1455.

Gutenberg modeled his typefaces on the characters written
by the scribes working in Germany (Figure 2). He made no
attempt to design characters which were adapted to the new
means of producing them, he simply tried to model handwritten
forms in a sculpted metal form. It was not until 1470 that
Nicholas Jenson, working in Italy, carved the first typeface on
the end of a hard steel surface, taking advantage of the new
technology by creating delicately crafted letters rather than
imitations of the calligraphic forms of an earlier era (Figure 3).



cogeret:{ponte & gratia {enatus e rem P6peio effemandidam
mitius foret:eligens:ne cum ciuitas feditionibus ags armis diu
in poteftaté unius deueniret. Dixicigi€ {fiam i fenatu.M.Bibu
qua cenfebat folum Pompeium confi ulé defignandii.fofeniut
accipiat PSpeio gubernante:uel meliori feruiat, Cato autem afl
tionem omnii Bibuli {fiam laudauit:a(ferens praftareut quz

g républici fine magiftratu ac prafide manere.Se quidé expect

fibi comiffam laudabuliter tueatur:8¢ gerar.Perhunc modum
Figure 3. Typeface designed by Nicholas Jenson, 1470.

The success of Gutenberg's invention created a need for the
design of characters that were constrained to fit within a small
rectangular box (the surface of a piece of metal type). These
pleces of type had to fit tightly against one another to form a
line of text. Occasionally, in the italic fonts, a character would
overhang its box and overlap the following character (or kern),
but these sorts were the exception rather than the rule (Figure
4).

KERN-de omharpogport:

Figure 4. Kerned type.
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The characters not only had to be designed to fit within a
box, they also had to be placed within the boundaries of the
box so that a row of characters would be spaced evenly when
the the boxes were lined up. As Stanley Morison wrote, ‘The
letters will be so placed upon their respective bodies as to make
up into words with no unlovely gaps and disturbing spaces.’
Since the shapes of the letters varied, great care was taken in the
design of the type, the determination of the appropriate width
of the box, and the position of each character within the box so
that the illusion of equal spacing was achieved. This process
required good visual judgement; if the letters were placed
exactly the same distance apart, the letter spacing would appear
uneven, with adjacent curved letters appearing farther apart than
adjacent straight characters [BLUM35, TSCH66, DOWDG66].

Hmg
Hmg

Figure 5. Difference in character shapes for 24 point
typeface (above) and 10 point typeface (below). The
smaller typeface is bolder, shorter, and wider, but when
it is printed at its true size, it appears to be the same
design as the larger size.




The letter shapes in each size of type varied slightly to
compensate for optical distortion in the perception of small
shapes by the human eye. The smaller types required shorter
ascenders and descenders and had to be cut wider and in bolder
form than their larger counterparts to give the appearance of
being the same design (Figure 5). Early type designs were drawn
in only one size, and it was up to the punchcutter to use his
skill to interpret the design at the various sizes that were to be
cut [MOX058, KOCH33]. In the sixteenth-eighteenth centuries,
most punchcutters cut designs in a complete range of sizes. The
finished fonts were not identical but their shapes conformed to
the spirit of the original letter. It took about six months to cut
a complete set of punches and to strike and justify the matrices
for just one font [POLL71].

In the early years of the printing industry, the designer
and the punchcutter were the same person. When the tasks
became differentiated, the cutting of the design required a
close collaboration between the type designer, the person who
knew what the design should look like, and the punchcutter,
the person who actually produced the final design [CART54,
VANKS57].
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Figure 6. The ‘ideal’ M, designed by the Academie des
Sciences, 1702.
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Some attempts were made to legislate type manufacture and
design but most were unsuccessful. The most notable attempt
was made in France in 1692, when Louis XIV sanctioned the
creation of a new set of types to be used exclusively by the
Imprimerie Royale, then the royal printing house and part of
the Louvre. A commission of experts was appointed by the
Académie des Sciences to study the design of the perfect Roman
letter. Under the guidance of its chairman, Jacques Jaugeon, a
number of elaborate mathematical designs were made which
were drawn with the aid of rulers and compasses (Figure 6). Each
letter fit within a grid composed of 2,304 squares (48 x 48) and
was drawn using a ruler and compasses. When a decision was
made to turn these ideal letters into a font, the punchcutter
Philippe Grandjean was employed to engrave the punches. He
used the designs merely as suggestions, however, and relied
more on his own experience and trained eyes than on the
carefully drawn characters in determining the final shapes of
the punches. The type designer Pierre Fournier later commented,
‘Are so many squares need to make an O, which is round, and so
many circles to make other letters which are square?’ [FOUR30).
Despite a decree issued by the Imprimerie Royale forbidding the
copying of the type, it was so popular that many other typefaces
were modeled on its design although no other designer went
through the elaborate design process employed by the royal
commission. The new design technique, if it can be called that,
was not adopted by practicing type designers.

Changes in materials

The paper that was used with early printing presses was of a
thicker, spongier quality than paper used today. Because of

its toughness and stiffness, it had to be dampened before use

to soften the fibers so that the printing ink would adhere to

it. It was also necessary for typefaces to conform to certain
standards of design so that they would work well with the
available techniques and materials [CAFL83). According to Legros
and Grant, writing in 1916, ‘Handmade paper of long fibre, used
damp and with an elastic back, gave an impression in which

the breadth of the actual lines forming the face of the type
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was uniformly widened, and consequently the hairlines and
serifs were broadened out of proportion to the main strokes,
the external corners at the same time becoming rounded. One
has only to examine old prints with the microscope to see this;
under a suitable power the circumjacent surplus ink appears as a
band, almost detached from the edge of the actual impression
of the type itself. This defect contributed in a rather marked
degree to legibility, for it tended, as has been said, to thicken
the hairlines and thus render more pronounced the difference
between the less dissimilar letters. The highly glazed papers of
today, of short fiber, containing much sizing and mineral matter,
are not adopted for printing from such irregular surfaces; their
want of flexibility requires a hard and true backing, and hence
increased accuracy in the printing surface in order to obtain a
uniformly sharp impression.’

Figure 7. Comparison of letter printed on laid paper
(left) and wove paper (right).

The design of a typeface by John Baskerville in the mid-
eighteenth century (which was first offered for sale in 1758) was
preceded by the production of new paper-making equipment
which could produce wove paper, made on a mould containing
a woven wire mesh that resulted in a finer grain and a smoother
surface than the laid paper, made on a mould with wires laid
parallel to each other and used by earlier printers (Figure 7).
Another refinement at this time was the process of pressing
the dampened paper between hot copper plates after it was
printed. This procedure smoothed the paper even more to create
a silky, shiny surface. Because the process of printing on the
smooth paper rendered typefaces much more clearly than on
the coarser laid paper used by other printers, the shapes of
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Baskerville's types were rounder and more finely drawn than
other contemporary types [WROT38, JOHN30]. The delicately
drawn serifs and the contrast between thick and thin strokes
could be reproduced because the paper provided a sufficiently
smooth surface for the details of the face to be perceived (Figure
8). Despite the care with which Baskerville fitted his types to the
technology, they were often disliked (Ben Franklin was a notable
exception), the claim being made that the shiny paper he used

was too glossy and dazzling to the eyes and the types too light
and delicate to be read easily.

gooQualia nunc hominum producit corpora tellus.

Ille, manu raptum trepida, torquebat in hoftem,
Altior infurgens, et curfu concitus heros.

Sed neque currentem fe, nec cognofcit euntem,
Tollentemve manu, faxumque immane moventem.

Figure 8. Sample of Baskerville typeface.

Another technical achievement that served to provide a
more precise impression on wove paper was the development
of a new printing press made entirely of iron. This press
was produced around 1783 by an Englishman, Earl Stanhope.
The construction of the press was essentially the same as ,
its predecessors which were made of wood, but due to the
finer machining of the parts of the press and the addition of
compound levers instead of a screw mechanism, the printer
could exert a much firmer control over the pressure required
to print a sheet of paper. In addition, the press could print
two pages at the same time, whereas earlier presses required
that a separate impression be made for each page. It was this
invention, coupled with the new paper-making technique, that
provided the impetus for the design of typefaces by Bodoni and
Didot which were much more finely cut than previous designs
(Figure 9). The improvement in technology led to a change in
what could be achieved and this resulted in new type designs
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Quonsque tandem abuté-
" [ ] L [ ] [ ] A

re, Catilina, patientia no-

stra? uamdiu etiam fu-

Devant toi s'inclina cette famille immense.
Que Faspect d'un Bourbon remplissait d'espérance.
Tu découvris ce front empreint de majestie;

Chacun y lut, Valeur, amour, et loyauié,

Figure 9. Sample of Bodoni typeface (above) and Didot
typeface (below).

whose characteristics would not have been noticeable with the
older processes.

It was at this time that proposals were made to standardize
type sizes through a measurement based on the point system.
Up until this time, type designers had no standard measurement
for specifying the height of the letters in a typeface. Each
designer and each manufacturer had his own standards and
names for sizes which did not necessarily correspond to other
manufacturer's names or measurements. The point system was
initially proposed by Pierre Simon Fournier in his book Manuel
Typographique published in 1737. He proposed a system of
12 lines per inch with 6 points per line. Type height would be
measured in points. His proposal was re-introduced by Didot
around 1770 who suggested that the measurement be based on
the pied du roi, or the French government standard foot which
was slightly larger than the English foot.

The development of the point system was an attempt to
promote some order upon the chaos of type sizes generated by
type foundries all over Europe, but it was not generally adopted
in most countries until the late eighteenth century. At that time,
the United States and England adopted a measurement based
on the English foot, now called the standard point system,
with 6 points per pica and 12 picas per inch (approximately 72
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points per inch). The French adopted the same unit divisions,
but based their measurements on the (larger) French foot; their
measurements are made in Didot points and ciceros.

This attempt to standardize the printing trade was
adopted well after printing and its associated technology had
been around for several hundred years. Its acceptance was
strengthened by the development of new typesetting machinery
which relied on very precise measurements.

Standardization of type designs

The mid-nineteenth century gave rise to many inventions related
to automated typecasting and typesetting. One problem that had
to be solved before automatic typesetters could be successful
was that of spacing a line of text evenly. When a line of text was
to be justified or set so that both the left and right edge of the
text were flush with the margin of the page, the words within a
line had to be spread out so that the space between them was
evenly distributed. To do this successfully when setting type by
hand, printers employed very small spacing increments which
were sometimes as small as one point thick ( 1/72 of an inch).
The problems involved in doing this mechanically were very
complex and thus hindered the development of a mechanical
means of typesetting.

As an aid speeding up the time it took to hand-set text,

Linn Boyd Benton, working in the United States, and Alois Auer,
in Vienna, each devised similar spacing systems around 1830
[LEGR16, MENG54]. Benton's system was called self-spacing
type. All characters were to be designed according to a unit grid
which was a multiple of a small unit size. Any combination of
characters could be made up to a multiple of the em (a measure
equal to the body size of a font; for example, in a 12-point font,
the em is equal to 12 points) by the addition of spaces which
were also made up in unit sizes.

The idea of a unit grid for use in the design of characters
was not adopted by the printing community at that time because
the limited number of set sizes did not allow for the design of
characters which were sufficiently close in design to those in
popular use. It was, however, accepted for use with automated
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typesetters which were developed about 50 years later. At that
time, use of self-spaced type was one of the crucial factors in
the development of equipment that could set and justify large
quantities of type automatically. To justify a line of text, spacing
material had to be added to a line to fill it out to the desired
width. The spaces had to be distributed evenly across the line
so that the line filled the full column width. Because the widths
of the letters were not standardized, the spaces that needed to
be added to a line could vary in increments of a single point.
The adoption of unit spacing simply increased the size of the
smallest unit. All letters had to be designed to fit some multiple
of this unit, and spacing was available in multiples of the unit
size. The reduction in the number of spacing units that were
needed made the task of justifying text more manageable, and
thus able to be done by machines. The increase in typesetting
speed that resulted from this standardization was more
important to the printing industry than the reduced legibility of
the typefaces that were used with the new machines®*.

The mechanisms of the first typewriters (in the 1830s) were
designed to use metal type (such as that used with printing
presses) to produce an impression of letters on a page. Spacing
of text on a page was difficult to control, though, so these
machines were not very successful. Later models used a version
of Benton's self-spacing type. A counter kept track of how wide
a character was and the carriage was advanced according to
the number of units in the letter that was typed. Eventually,
monospaced characters, or characters that were all the same
width, were used since they solved the problems associated
with spacing a line of text. Since all the units were equal, it was
easier to keep count of the number of letters already typed on a
line, the amount of space left in the line, and the unit size of the
next letter in the line. Additionally, the correction of mistyped
characters was facilitated since corrections could be made

* This change in design is carried over into the design of
typefaces for the current generation of digital printers in that the
widths of digital characters are a multiple of a fixed pixel size.
The pixel size varies according to the resolution of the output
device, but in all cases, each character’s width is constrained to fit
within a unit grid. In addition, the space between characters must
be some multiple of the pixel size.

3
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within the same space as the original error. The only drawback
to this solution was that all characters had to have the same
width, a constraint which resulted in designs with exaggerated
serifs on narrow characters to stretch them out, and wide
characters that were so condensed that there was little space
between their stems. Despite the reduced legibility of these
typefaces, they were accepted by the general public because of
the overwhelming convenience of the writing machine.

2ot A

Punch-Cutting Machine

Figure 10. Pantograph machine invented by Linn Boyd
Benton in 1885.

Benton's patent of the pantograph machine, in 1885, led to
radical changes in the process of designing new typefaces and
the production of metal type. The pantograph consisted of two
parts: a stylus which was used to trace around a large pattern,
and a very fine drill which was controlled by the stylus and used
to cut the pattern in a reduced size on a small piece of metal
(Figure 10).



16

Figure 11. Characters were projected and enlarged
photographically and then traced.

Up to this time, type designs were draw in in a small size
by a designer and were then given to a punchcutter to be used
as a pattern for the typeface when it was cut in metal. Designs
to be rendered by the pantograph had to be drawn in a large
size (typically 10 inches high) and had to be very precise. These
enlarged type designs were produced either through tracing
photographic enlargements or by obtaining original designs
drawn in a large size (Figure 11). As described by Jan van
Krimpen [VANKS7], these drawings went through three stages
before they were cut into moulds. The first stage was done
in pencil so that it could be easily erased and corrected, and
as a result the design was not very exact. The next or middle
stage was also in pencil but the lines were more accurately
drawn. The final stage was in carbon ink and consisted of
filled-in character designs. This final drawing had, according to
van Krimpen, lost most of its interest. It was too mechanical
and precise and showed the least amount of the designer's
intentions. Van Krimpen felt that the dehumanized type designs
which resulted from the mechanical punchcutting did not result
from the mechanization of the punchcutting task, but from
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the mechanized drawings which had lost all semblance of the
sprightliness of the original and thus heralded the movement

of type design from a creative process to an engineering-one
[VANK72].

LINOTYPE
JANSON ‘g*

.127

DRAWING

14[5178 D i
g 182 B

PENCIL / — | 020 |+t

By T

Nl 4

PUNCH

..................... vestsar

BRASS PATTERN

Figure 12. Character drawn for use with pantograph
machine (top), brass matrix of the character (bottom
center), punch cut by the pantograph (bottom left), and
matrix cut by the pantograph (bottom right).

After the designer had created an accurate freehand drawing,
it was then given to a drawing office whose draughtsmen
redrew the letter using straight edges and French curves.
Once the drawings were finished, they were photographically
reduced to exact type size and positioned into words and
lines of text. Adjustments were made to the drawings until an



18

acceptable design was achieved. The designs were then made
into patterns for each of the various sizes that were to be cut
by the pantograph machine (Figure 12). All the measurements
for the design were precisely calculated, and all characters were
drawn so that components such as the stem width, size of the
serifs, and the x-height corresponded to the measurements.
These drawings had to be very accurate, as the pantograph had
a resolution of .0015".

TRANSPOSING
DRASS PATTERN TO PUNCH

Figure 13. Tracing the brass matrix to make a punch.
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After the drawings were finished, the design was cut on
the pantograph. The first stage in the cutting of matrices or
punches consisted of tracing the letter drawing upon a plate;
then, depending on whether a punch or a matrix was to be the
final result, either the background or the character was cut away.
In the second stage of the process, the resulting pattern was
used as a guide for a cutting tool on the machine which either
etched the character shape into a matrix, or carved the shape on
the end of a bar of steel to make a punch (Figure 13).

Type designers were not very happy with the new machinery
and the resulting restrictions imposed on new type designs
and were almost unanimous in criticizing the new means
of producing fonts [WARD35, VANK57, ZAPF65). They were
also unhappy that the collaboration between designer and
punchcutter had now been reduced to a manufacturing process
where a designer was simply the starting point of an assembly
line consisting of an anonymous, insensitive drawing office.
It was at this point that the designer lost control over the
design since he usually did not collaborate with the drawing
office which produced the oversized versions of the type that
were eventually cut on the machine. He also had no control
over design changes when the typeface was rendered in many
different sizes. Eric Gill wrote in his Essay on Typography
[GILL36], ‘It is difficult enough for the designer to draw a letter
ten or twenty times as large as the actual type will be and at the
same time in right proportion; it requires very great experience
and understanding. It is quite impossible for a set of more or
less tame employees...to know what a letter enlarged a hundred
times will look like when reduced to the size of the intended
type.’ In his book On Designing and Devising Typefaces, van
Krimpen complained, ‘The punch cutting machine, having fallen
into the hands of engineers who know nothing about letter
design, is neither being applied nor used in the best possible
way. It certainly seems to be discouraging to try and teach
these engineers to at least understand something about letter
design and then to use their machine in a better way. | have
tried and am trying still but, having a few more things to do I
can not devote too much time to it; and so | doubt I will have
any success.’ William Morris stated it more succinctly, “Letters
should be designed by an artist, not an engineer.”
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In a process contrary to that employed by most designers
working with these machines, Willlam Dwiggins retained control
over his designs throughout the design process [DWIG40]. He
started a design by drawing a couple of control characters,
which he gave to the design office to make into punches and
matrices which could then be cast as type. After determining
that the sample design was worth developing, Dwiggins drew the
remaining characters, sometimes modifying weights and serifs.
His final drawings were all done freehand but at a much smaller
size than that required by the pantograph procedure. Dwiggins
relied on the drawing office to provide the precise drawings
needed for use with the machine.

Typecomposition by machine

In 1884, Ottmar Mergenthaler invented the Linotype machine
which cast an entire line of type in a single operation. Each
character in the line was selected by a keystroke on a keyboard.
Each keystroke released a brass matrix which was then lined

up next to the matrices for the other letters in the line. Special
wedges were inserted by the machine between words. After the
entire line of type was assembled, the wedges were adjusted so
that the line was justified. The line was then cast in molten lead.
Rows of these lines were stacked to make a page of type. Any
corrections to a line required that the entire line be reset and
recast.

To facilitate the use of different fonts within a line, each
matrix contained the pattern for two characters. These letters
had to match in width. The most common pairing used was an
italic type with a roman type. Traditionally, italic types were
narrower than their companion roman type, but since the pairing
of two styles on one matrix required that the two designs match
in width, italic types that were wider than the older versions
were designed for the new machinery. The resulting italic fonts
did not space as well in a line (Figure 14).

In 1887, Tolbert Lanston patented the Monotype machine
which cast single pieces of type to form a line of text. The text
was first typed on a machine consisting of a keyboard and a
paper punch. Character, spacing, and positioning information

1 _31 _31 _ 3 _13
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Figure 14. Alignment of roman and italic type on the
same Linotype matrix (above), type set on a Linotype
(below). Note that the italic is very widely spaced.

was generated on a perforated paper ribbon. This ribbon was
then used to drive the typecaster by means of forced air flowing
through the perforations on the tape. The typecaster contained
a square plate on which was etched a 16 x 16 grid. Each square
of the grid contained the matrix for one character (Figure 15).
A particular pattern of holes in the paper ribbon corresponded
to a character in the grid. When the typecaster detected a
particular pattern on the ribbon, the corresponding character
was positioned on the typecaster so that a piece of type
containing that character would be cast. Special perforations
indicated the amount of space to be positioned between words
to justify the text. (For a more detailed description of the
operation of these machines, see LEGR16, SEYB84b.)

The Monotype machines used typefaces that were designed
according to a unit system; each character's width was a multiple
of a fixed unit size. Unit sizes were specified in units per em.
Common widths were 18-to-the-em and later 36- and 54-to-
the-em (Figure 16). The narrow characters were 6 units wide,
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| -

Figure 15. Letters drawn to an 18-unit grid (left) and
54-unit grid (right).

u

while the widest letters were 18 units wide. The Monotype
system required that a font be divided into several different
width categories each containing a multiple of sixteen characters
to correspond to the sixteen rows in the font matrice. Each of
the characters in a row had to have the same width, although one
width could be used in more than one row. Commonly there was
one row of the narrowest width containing characters such as i, 1,
1, and punctuation, and one row of the widest width containing
ligatures such as fi and fl, with the intermediate rows containing
characters fitted to a unit size somewhere in between (Figure 17).
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Figure 16. Monotype matrix layout. All characters in a
horizontal row are the same width.
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Within a few years, both Monotype and Linotype were well
established and, as a result, the early twentieth century saw
the emergence of typeface alterations on a grand scale. Many
popular typefaces were redesigned so that their dimensions met
the restrictions imposed by the new technology. New typefaces
were designed that could be used with either system or both.
In designing fonts for the Monotype matrix, type designers had
to know where the characters were to be placed on the matrix
before they began the job of designing a typeface. Because
of the restrictions of the matrix, many lowercase characters
were widened while others were narrowed, some to an extreme
degree. Although the Linotype machine did not require that
fonts be sized according to a unit system, many of the fonts
designed for use with the machine corresponded to a unit
system so that they could also be used with Monotype machines.

Some typefaces were designed to be used with several
different machines. One such type was Sabon, designed by Jan
Tschichold in 1960, which was designed to be used not only
by linecasting (Linotype) and single-type (Monotype) machines,
but also for hand-composition in foundry types [DREY68]. One
design was to be used in all methods. To further restrict the
problem, the type was to be modeled on a sixteenth century
typeface but ‘modified to suit contemporary taste and needs.’
Because of restrictions imposed by the new technology, the
roman and italic designs had to match in width (they were both
positioned on the same matrix for the Linotype machine), and
the design had to be adapted to the smooth machine-made
paper and the electric-powered printing mechanism of the
present day. The working drawings were made for use with a
modern pantographical punchcutting machine in a size twenty
times as large as the first trial fonts.

With the development of high-speed printing presses used
for the production of newspapers, the technology changed again.
Newspaper type had to be legible in small sizes, sturdy enough
to stand up to the high pressure of the electrified presses, and
thick enough to print legibly on low-quality newsprint. With
these considerations in mind, typefaces were designed that
had thicker stems and heavier serifs, had a larger x-height
for legibility, and were narrower so that more letters could
be fit into one column of text, thus increasing the amount of
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information that could be packed into an article. The Times of
London, in the early 1930s, commissioned Stanley Morrison to
design a typeface specifically to meet the criteria imposed by
the presses they were using at the time. His resulting design,
Times New Roman, remains one of the most used typefaces
today, for both newspaper printing and other typesetting such as
books and advertisements. The Times later changed their press
machinery and with it the typeface used to print the paper.
Many newspapers continue to use typefaces designed for
earlier technologies despite the fact that their equipment and
paper stock have changed a great deal since the typefaces were
designed. As a result, these newspapers are not as legible as
they could be. A mitigating factor may be that there simply
are no other typefaces that stand up to the printing equipment
as well the ones designed for it many years ago. Because of
the wide variety of printing machines used today, no one
typeface would be suitable for use in a majority of printing
houses. Perhaps it is for this reason that no one at this time has
commissioned a study similar to the one Morrison undertook
to produce a typeface suited to the newspaper technology
used today. (For a detailed study of newspaper typefaces, see
GURTS85.)

Phototypesetting

The application of photography to typesetting was originally
proposed by William Friese-Greene in 1898 in a patent entitled
‘Means for Composing Characters by producing Photographic
Negatives therefrom’ [MORI59]. Friese-Greene, however,
decided to devote his time to ‘Kinematography’ or motion-
pictures and thus abandoned his efforts at phototypesetting.
The next patent was taken out by Arthur Dutton in England in
1919, followed by one in 1923 by Albert Bawtree. Because the
integration of photography with printing was neither expedient
nor inexpensive at this time, neither of these devices was
commercially successful.

3 3 _3 _3 3 ‘_1}

-3 3 3 _3 _3

3 __3



25

The next generation of phototypesetting machines was
produced in the late 1940s and first exhibited in 1950. These
machines, considered to be ‘first-generation’ phototypesetters
since they were the first machines to be commercially developed,
generated type images on photographic film or paper but
otherwise did not differ in their mechanics from metal
casting machines and thus were still constrained by the same
restrictions that bound their earlier counterparts. The pot of
molten metal was replaced by a strip of photosensitive paper
and the matrice was replaced by a film negative. The mechanism
for setting type and for designing and using it remained the
same. It was at this time that the term hot-type began to be used
to distinguish the older typesetting machines which still relied
on heated metal to cast type from the new machines whose
typesetting process was completely photographic (and thus
cold-type).

Because the technology remained pretty much the same,
many types were designed for use with both hot-type machines
and phototypesetters. Some of the original phototypesetters
could provide enlargements or reductions of fonts from an
original master through the use of magnifying lenses and
would also produce italic, back-slanted, shaded or condensed
characters through photographic distortion. The two major
hot-type machines, the Linotype and the Monotype, were both
adapted to phototype becoming, respectively, the Fotomatic and
the Monophoto. Each of these typesetters was constrained by
the same conditions imposed on its predecessor: the Fotomatic
used a matrice containing two equal width characters on it; and
the Monophoto used a matrice containing characters that fit
within a unit-spacing system. Both machines were capable of
magnifying or shrinking the size of the characters that were
typeset from one original pattern. The Monophoto machine
could set type from 6 to 24 point and the Fotomatic could set
type in certain sizes from 6 to 36 point.

With the advent of phototypesetting, type was no longer cut
in a myriad of sizes by a skilled punchcutter or punchcutting
machine; instead it was drawn in about four sizes and
photographically scaled to the needed size. In fonts that
were magnified or reduced, the density of the resulting image
was sometimes altered, thus resulting in a character whose
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components were too light or dark, irrespective of the design
of the original (in effect, the characters were under- or over-
exposed). To compensate for this, the typesetters could adjust
the amount of light by increasing or decreasing the number of
times they flashed the light beam when setting these characters.
This method of sizing characters lead to a degradation in

the quality of typesetting made from phototypeset material
especially in the sizes that required the most enlargement or
reduction from the original. Other changes in phototypesetting
fonts were the result of the photographic technology which
burned away the edges of the type, thus producting letterforms
that were thinner than their earlier counterparts. To compensate
for this, the weights of phototypes had to be made heavier
than letterpress types to achieve a comparable image quality
[SEYB84b].

Second-generation phototypesetting machines stored a
selection of masters on a medium such as a revolving disk (the
Photon), a grid (the Linofilm), or film strips. The characters were
still designed according to a unit-system, but in many cases, the
units were smaller. This reduction in unit-size provided for a
wider range of widths in the characters. The requirements of
type designed for these machines varied considerably. A few of
the machines required the use of unit-count or unit-cut fonts.
The font widths were wired into the logic of the typesetter. The
width of a particular character was the same for all designs ofa
specific size so that an ‘a’ was always four units wide, regardless
of the typeface. This required that all fonts to be used on the
machine be designed to conform to the widths stored in the
machine.

Third-generation phototypesetters are characterized by
machines that do not use photographic masters, but instead
reproduce the characters electronically by scanning them across
the face of a cathode ray tube (CRT). The early models of CRT
typesetters relied on photographic masters of characters stored
on grids, which were then scanned and painted on the face of
‘the CRT screen (Figure 18). Later models incorporated the use of
stored digital data that was converted on the fly into a character
on the CRT screen. The machines utilizing digitized data were
capable of generating cleaner images since the results did not
depend on a technique that scanned a photographic master—a
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process that was noisy since it tended to add nicks and warts
to the output image when any irregularities were encountered
along the edges of the original image. )

Figure 17. Character scanned on the face of a CRT.

For the first time, character images were reduced to a
number of small elements which were then put together to
produce characters [HOLL67]. This resulted in designers
using a new design technique in which these small elements
were manipulated to form type designs. This also led to the
development of computer systems for automating the process.

The first typefaces designed specifically for a CRT
typesetting machine were produced between 1976-78. These
were the designs Marconi and Edison, by Hermann Zapf, Demos
and Praxis, by Gerard Unger, and Video by Matthew Carter
(Figure 19). Zapf and Unger designed their types for a typesetter
manufactured by Hell-Digiset, which originally had a resolution
of 600 lines per inch, although later designs were able to
produce a much higher resolution. In order to maintain a high
quality in the type design, each of the letters was designed by
hand on a raster grid. One design was made for each letter; in
order to produce different sizes of the design, this design was
either reduced or enlarged by changing the size of the
grid-square that was drawn. If the design was enlarged, the
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resolution was reduced, since the machine was drawing larger
grid-squares; correspondingly, if the design was reduced,

the resolution increased, because each of the grid-squares

got smaller. If the original em-square was 100 x 100, (at 600
lines per inch, that is equivalent to a 12 point font), a 6 point
character produced from the grid would actually be printed
at a resolution of 1200 lines per inch resulting in less jaggies
or jagged edges, and a 24 point font would be printed at a
resolution of 300 lines per inch resulting in more jaggies, since
each of the characters had exactly the same number of pixels
in it. In the design of fonts for the current technology, this
characteristic is reversed: the pixel shapes are more jagged at
lower sizes, and less jagged at larger sizes.

ABCDEFGHIJKLMNOPQRSTUV
WXYZ 1234567890
abcdefghijkimnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUV
WXYZ 1234567890 |
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUV
WXYZ 1234567890
abcdefghijkimnopqrstuvwxyz

Figure 18. Typefaces designed to be used with a CRT
typesetter: Video by Matthew Carter (top), Edison by
Herman Zapf (middle), and Demos by Gerard Unger
(bottom).
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To design the Demos typeface, Unger studied the
characteristics of the CRT machine carefully so that he could
take advantage of the shapes that it could render more -
successfully [UNGE79]. The design of the serifs, the angle of
the joins, and the thickness of the strokes were all based on
careful study of the curves that the machine produced. Unger
chose those that most closely reproduced the curves that he
had drawn in the original design. Because the CRT beam tended
to round the edges of the serifs and fill in the junctions of the
stems, he adapted the design so that it had rounded serifs and
joins that were not very deep (Figure 20). He also studied the
gradation of the edges of the characters to make sure that the
curves generated by the CRT matched the curves drawn in his
original design. He was not trying to match the curves exactly,
but he wanted to make sure that the digital curve produced a
pleasing character shape (Figure 21).

. !

Figure 19. Etching away of edges and filling of notches
as a result of the phototypesetting process (left); design
of Demos’ corners and notches are rounded to prevent
photographic distortion (right).

Other designs made for phototypesetting machines
took into account other factors of the reproduction process
[SCHU70, GORT77a, MORI32]. Because type designs were
now photographically enlarged or reduced to the desired
size, the subtle adjustments that were made to a design so
that all sizes appeared to be the same were no longer part
of the type production process. To compensate in part for
this omission, Bram deDoes designed his typeface Trinité in
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Figure 20. Comparison of digital character with actual
character produced by CRT typesetter.

three styles (roman, bold, and italic) with three variations of
each (condensed, normal, and wide) and with three lengths of
ascenders and descenders (referred to as 1, 2, and 3, for the
short, medium, and long extruders, respectively). In chosing
a type size and style for the smaller sizes, a typesetter could
select a wider, shorter, and bolder version which corresponded
more closely to the appropriate design for the type at that size
[DEDOI.

While each of these technological developments has had an
effect on the type design process, none of them has resulted
in the development of letterforms that are radically different
from those used with an earlier process. With each new printing
device, though, the letterforms have changed to fit the available
technology. Nowhere is this difference more apparent than
in the changes that letterforms are now undergoing in their
adaptation to a digital medium, first introduced in the early CRT
typesetters.



Chapter 1II

Computer-Aided Type Design Systems

Available programs for interactive graphical input have neither
surpassed the power of early systems, nor provided the subtle
and diverse control of pencil and paper. The explicit action-
response pattern of the computer dialogue is sufficiently
cumbersome and distracting that the designer usually sketches
his design away from the machine, using pencil and paper as his
medium of externalization. The designer will bring his sketch to
the computer for evaluation or transformation only when the
design reaches a stage that warrants the overhead of digitizing
it.

C. Herot, Sketch Recognition for Computer Aided Design

With the development of high-speed, computer controlled
processors and high resolution graphics devices such as display
screens and laser printers, new methods of encoding information
have been formulated to take advantage of the new technology.
These technological advancements have contributed to the
increased use of digital information in place of traditionally
analog forms, an example of which is the use of digital typefaces
for the display of textual information.

Typefaces for digital output devices are created by
converting a black and white image into a matrix of black and
white pixels (from picture elements). The matrix is called a raster
or bitmap and can be stored as binary information. A typeface or
letterform that has been stored as digital information is referred
to as digital type and can be used by phototypesetters, CRT
displays, ink-jet printers, laser typesetters, and other output
devices capable of utilizing digitized images. The resolution

31



32

of the output device varies considerably and is determined

by the number of pixels per inch that the device is capable

of rendering. Available resolutions range from about 60 to
2400 dots per inch. There is a direct relationship between the
resolution of the output device and the legibility of output
produced by the device, with the legibility factor increasing as
the resolution increases.

Converting letters to digital shapes

Conversion of a letterform design into digital information is
usually done in one of two ways. Neither method is completely
satisfactory, and both require that the design of the typeface
be completed before the characters are converted into digital
images.

Scan conversion

The first conversion technique is that of scanning a character
with a high resolution optical scanning device. Characters can
be scanned as either outlines or as solid shapes. The process
consists of several steps. First, the scanner passes a beam

of light repeatedly over the character image, with each pass
covering only a small band of the image. The dark parts of

the image are converted into dark pixels, the light parts into
white ones. The scanning width of the beam can be very small,
sometimes as fine a few microns in width, thus producing

a very high resolution raster image. The process is limited,
though, by the resolution of the scanning beam and the precision
with which the characters have been drawn. Often, small
imperfections in the shape result from scratches, dirt, dust and
blurred edges on the character drawing, all of which contribute
noise to the scanner. These imperfections result in dropouts
and pickups that are small indentations or bumps on the interior
and exterior edges of the digital character and must be removed
before the characters can be used as digital data (Figure 21).

An additional problem is a staircase effect along the edge of

a letterform, a phenomenon also known as the jaggies. This
problem occurs on any edge that is not aligned exactly vertically
or horizontally, such as curves or diagonals, and also affects
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lines that should be parallel or perpendicular to the baseline but
are not lined up exactly with the direction of the scanner beam.

Figure 21. Scanned character (left) and fixed up
character (right).

In the next step of the scanning process, the matrix image
of the character must be hand edited to remove any digitization
errors. To facilitate this process, the image is printed in both a
large and small size. The large size is used to determine which
pixels need to be corrected (either turned on or off) and the
small image is used to see what the character will look like at
its true size. This step is crucial and is done by trained letter-
drawing specialists on either a graphics display screen or on a
printed copy of the raster image. Any corrections to the digital
form are then entered into the system.

Outline contours

The second means of digitizing typefaces for computer output
relies on adaptations of techniques formerly used in making
punches or matrices with the pantograph machine. A character
whose edges have been drawn with a very fine line in a large size
is first marked with control points along its interior and exterior
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edges. These control points usually indicate the boundaries
of straight edges on the character, curve transition points,
inflection points, and corners. The marked character is laid on
a digitizer tablet that is connected to a selection device such as
an electronic puck containing a set of buttons and an alignment
window enclosing two crossed wires. The marked control points
along the edge of the character are entered by selecting their
positions with the puck: the crossed wires, or crosshairs, are
lined up with each control point and one of the selector buttons
is pressed (Figure 22). Different buttons are used to indicate
different types of edge points. The coordinates of the point
are determined by an electronic grid in the tablet that senses
the position of the crosshairs. The points are then connected
by some sort of curve (such as splines or arcs of circles) by the
program. Use of the tablet and puck to enter character data
typically takes from 20 minutes to several hours per character.
Input of the contour data does not take long, but the resulting
forms still have to be edited because of irregularities in the
bitmaps when the contour data is converted to digital rasters at
different sizes and resolutions.

Figure 22. Outline characters with control points
marked. (Artwork by Kris Holmes).
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An alternative method of entering points uses either a
program or a fixed set of data to describe or list the coordinates
of the control points. Additional instructions are given -
specifying how points are to be connected through the use of
straight lines and curves.

Once an outline has been entered, it is used to produce
bitmaps of the characters, possibly in several different masters
or sizes (Figure 23). Scaling the outline, though, may result in
distortions to characteristics of the form, such as the serifs (the
finishing strokes on a letter), the hairlines (the thin parts of
the strokes), and the stem widths (the main vertical strokes in
the letter). Some features on the resulting masters may be too
light in the smaller sizes and too heavy in the larger ones. If the
distortions are very bad, each of the new images must be hand-
edited.

Figure 23. Bitmaps produced by the Ikarus system from
the outlines in Figure 22.

Type designs must now be created to correspond not only
to the specific resolutions of particular printers; they must
also be tuned to the printing technology and its characteristics,
whether it be liquid ink used with ink-jet printing or dry toner
used with electrostatic devices. Each resolution and each
different technology requires that typefaces be designed to take
advantage of the particular characteristics of the machine the
typeface will be displayed on. For particularly low resolution
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devices, the type designs may need to be hand tuned using a
bit-editor program, one that allows the designer to turn on or off
individual pixels in the raster.

Outline designs provide the most flexibility if the letterforms
are to be altered in various ways. Designs can be stretched,
rotated, slanted, or emboldened by manipulating the control
points. Interpolation can be done between two different designs,
resulting in a range of designs that are part way between the
two originals; for example, a medium-bold face can be created
by interpolation between a normal weight text face and a bold
face.

Bitmap editors

Some digital designs have been created by a designer who first
draws the characters on a piece of graph paper and then creates
digital fonts with the designs by using a bit-editor program.
Typically, such a program provides a display containing a
digital rendering of a character and allows the designer to
turn individual pixels on and off by selecting them with a
mouse or other pointing device. These bitmap editors are
popular programs on various computer systems, but they do
not provide a satisfactory solution to the problem of creating
digital typefaces; they neither provide the fine tuning that is
needed in font design, nor the means of efficiently producing
large numbers of designs since all characters created in this
manner must be created bit-by-tedious-bit.

Early design systems

Early efforts at computerized type design systems were not
particularly successful in producing quality output. The systems
had primitive forms of input and crude graphics. There was
little attempt to involve a type designer in the creation of the
systems, so they are characterized by the fact that they were,

for the most part, written by and for computer programmers, not
type designers. The input method was usually slow and tedious,
and allowed little variation in the letters that were produced.
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In 1967, two different typeface conversion systems were
created [MATH67, HERS67). Both systems used card data to input
data containing coordinates for points along the edges of the
characters. These points were then connected by straight line
segments. The fuzziness of the display medium and the low
resolution of the output devices available at that time tended
to round out the straight lines making up the letter to give a
smooth edge (Figure 24). Although the input method was slow,
these systems did produce higher quality output than was
available on other systems current at the time and they also
provided an easy means of creating new shapes that could be
saved for later use.
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Figure 24. Letters drawn with vectors on a CRT screen
from [MATHG67].
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Another system created about the same time used a different
approach. ITSLF, or InTeractive Synthesizer of LetterForms, was
designed by H. W. Mergler and P. M. Vargo [MERG68]. The authors
isolated certain characteristics in a particular typeface such as
the height, width, stroke weights, and serif shapes and thought
that they could use these characteristics to produce different
typeface designs. The characteristics could be generalized
to a set of parameters so that modification of the parameters
was the only step necessary to produce different designs. The
authors felt that if they limited the designer’s role to that of only
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specifying certain parameters instead of the entire design of
d to consistency in the overall design

each letter, this would lea
of the characters. Although it sounded like a good idea, it really

didn’t produce very attractive letters (Figure 25).

e e N\ X

Figure 25. ITSLF character with its parameters and
some of the variations produced by varying the
parameters.
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Work done in 1975 by Phillippe Coueighoux for his PhD
dissertation also used the idea of characterizing an alphabet by
generating descriptions of the characters and then modifying
those descriptions by the use of parameters [COUE75]. He
developed a system called Character Simulated Design (CSD),
that was a program for the generation of high quality digital
characters. He studied the structure of the characters and tried
to quantify or extract the consistency in type fonts both between
one letter in different fonts and between all letters in one
font. He derived primitives such as stems, arms, and noses and
defined the spatial relationships between them (Figure 26). From
careful evaluation of these primitives, he generated a grammar
to describe the implicit structure of the characters in a font. This
grammar included rules for specifying the relationship between
the parameters, and rules for describing how the primitives were
combined within a font. To output a letter, a routine containing
a description of the letter was given parameter values for the
primitives in the letter.
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Figure 26. Character parts used by Coueignoux.
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In 1978, David Kindersley and Neil Wiseman at the University
of Cambridge developed a letter design system named ELF
[KIND79, WISE78b]. It consisted of an interactive display
with a keyboard and lightpen and was used for the creation,
manipulation, measurement, or copying of images. The system
allowed a user to sketch a design on the display surface using
the lightpen, modify the image, and then convert the finished
drawings into raster fonts. Output from the system was on a
laser display plotter.

Another system that appeared in 1978 was the PM Digital
Spiral developed by Peter Purdy and Ronald McIntosh [PURD78].
Their approach appears to be a modernization of a process
proposed by Legros and Grant to draw smooth outlines for a
pantograph machine [LEGR16]. The PM system read in scanned
character patterns and displayed them on a high-resolution
screen. A designer traced around the digitized letters by
manipulating a computer-stored logarithmic spiral that was
displayed on the screen. The spiral was used as a guide that
was fitted to the contours of the letter. When the spiral was
positioned so that part of its edge matched the desired contour
of the character, the designer specified the start and end points
of the match. These coordinates were then saved. Irregularities
such as dropouts and pickups inherent in the digitizing process
could thereby be removed. The letters were thus converted into
a list of curve sections, or links, corresponding to positions on

the spiral (Figure 27). After the edges of the letter had been
smoothed, the coordinates of the outline were stored and later
used to recreate the image. The combination of the spiral with
the high resolution screen gave a very sharp edge.

Contemporary design systems

One of the most sophisticated design systems created
specifically for letterforms is the lkarus System, developed by
Peter Karow at the company Rubow Weber in 1973-74 [ELSN80,
ELSN81] and updated extensively since then. Ikarus is one

of the few typeface conversion systems to be marketed as a
commercial product. It provides a method of converting data
with smooth contours, such as letterforms, into digital data
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Figure 27. Character produced with the PM Digital
Spiral.

through the use of a digitizing tablet and an associated selection
device. Characters are entered into the system using the outline
contour method described earlier.

Ikarus has quite sophisticated routines for adjustment of
character shapes. It allows groups of characters to be controlled
by universal parameters such as height, width, horizontal and
vertical alignment, or slant. Characters can be stretched or
shrunk in either a vertical or horizontal direction. Editing of
characters can be done either to the character displayed on a
video screen via cursor or keyboard entries, or to a listing of the
data representing a character. This listing is in a format that is
readable by a designer. Special functions provide interpolation
between weights and rounded or shaded versions of a design |
(Figure 28).

Metafont is another sophisticated design system that
originally appeared in 1979 [KNUT79]. It was subsequently
extensively updated by its author, Donald Knuth, which resulted
in an entirely new version that appeared in 1985 [KNUT86).
Metafont is a programming language in which character shapes
are specified through x and y coordinates of control points
and information pertaining to how the points are related and
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Amecrica
America
America

America
America
America

Figure 28. Interpolation between light serif face and
bold sans serif face done by the lkarus system.

connected. The letterforms are described using a mathematical
notation by specifying either a pen nib and the path of the
nib, or points along the edge of the character outline that can
be filled in. Special curve algorithms were developed to draw
‘pleasing shapes’ using Bezier curves whose control points lie
along the edges of the character. Additional routines provide a
filling algorithm that has been specially tuned for the design of
typefaces. The designer can incorporate parameters within the
description to provide global control over the character shapes.
Different settings of the parameters can produce variations
of the characters for different resolutions, weights, slant,
proportions, or orientation (Figure 29). Along with the ability to
specify parameters, the designer can also specify subroutines for
character parts and then use these parts within any character.
Metafont is a very powerful tool but it does have some
drawbacks. To obtain a high quality reproduction of an existing
face, a Metafont program must be written for each character in
the face, a process that can presently take several hours or days
per character. This conversion does not include the specification
of parameters that would allow the design to be changed to fit
different sizes or resolutions. Parameter specification is not
built into the system; it is different for each typeface and thus
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Figure 29. Letter drawn using Metafont and adjusted
through the use of parameters for different point sizes:
cap height 5mm (left), cap height 2.5mm (middle), cap
height 1.25mm (right) (design and programming. by
Richard Southall).

must be specially designed with the typeface. The concept of
parameterization is not a familiar one to designers and failure to
understand how to use it may hinder their full use of the system.
Another drawback is that interaction with the system can be
slow because the system is declarative rather than interactive,
requiring the designer to first create the Metafont program
containing a mathematical specification of the letterforms, and
then to run the Metafont system with the letterform program.
Modifications to a character are made to the program, and then
the system is rerun.
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The Letter Input Processor, or LetterlP, was developed
by the Camex Corporation [RICH82, FLOWS84]. A modification
of a system developed for the composition of display ads
for newspapers and magazines, LetterlP is used to convert
outline drawings of typefaces into a digital format for use by
phototypesetters. It consists of three components: a character
digitizer, an interactive character editing system, and a batch-
processed data base for storage of the letterform information.
It has a high resolution vector display connected to a digitizer
tablet with a menu and a puck. The process of entering and
editing a character is done at the display terminal by a trained
designer. A puck is used to enter control points along the edge
of the character or to select one of the editing commands listed
on a large menu to the left of the digitizer tablet. As each point
is entered, it is displayed simultaneously on the screen. When all
the points have been entered, an outline of the character appears
on the screen. '

Once the letter has been entered, it can be edited
interactively. Several features are provided with LetterlP to aid
in the editing process. A grid can be displayed along with each
character to aid in the adjustment of the heights or widths of
the images. A library is provided for the storage of character
parts that can then be called up and used either as is, or the
parts can be rotated, scaled or reflected before use. Functions
to zoom and pan an image from half to double size are also
available. Additionally, a gauge or ruler is provided for the
measurement of stem widths, distance between points, or the
angle between the ruler and the vertical axis, thus ensuring the
accurate measurement of proportions of different characters.
LetterIP can also display up to three characters on a screen for
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the designer to check on the appearance and spacing of the
letterforms.
Experimental work on type design systems includes work o

done in Switzerland by Eliyezer Kohen on a Lilith machine

[KOHES8S5], and work by Kathy Carter on Imp, a system for

computer-aided type design [CART85a]. Both systems were =
written by a member of the research group that helped develop

the workstation on which the font system was implemented.

This was a contributing factor in the design of the font systems "]
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since they were each optimized to take advantage of the
hardware and software facilities on a particular workstation.

Imp was designed to run on the Rainbow workstation
developed at the University of Cambridge [WILK84]. It is a
system that allows a designer to sketch using a mouse or a
stylus and a graphics tablet. The system tries to organize the
complexity of an interactive system by providing a hierarchy of
windows corresponding to the organization of information by a
designer. This implementation was specifically designed to work
with the Rainbow Workstation, a color raster display employing
special hardware to support fast window manipulations. With
Imp, a designer is able to sketch shapes on the monitor screen
by drawing with the stylus on the tablet, then to interactively
specify an outline shape by positioning and connecting points
along the edges of the character sketch. Font designs are stored
as outlines or rasters and can be edited in either form. Although
the graphics of the system are very impressive, the system is
somewhat limited in its handling of character data: no curve
drawing routines are provided and all curved edges are rendered
with straight line segments; there is no way to align an outline
image with a raster to insure that the character parts digitize
evenly. An advantage that it has over other type design systems
is that it uses the spacing algorithm developed by Kindersley
[KIND76] so that spacing of characters can be done automatically
without any specification of sidebearings by the designer.

The Lilith font editor is geared for generation of fonts in
the middle resolution range, or between 100 and 500 dots per
inch. The system works in four stages: first, the outline of a
character is input through the use of contour data that is then
digitized; next, the curves of the characters are contour edited,
after which rasters can be generated in several sizes; and finally
the bitmaps can be fine tuned (Figure 30). Guidelines that are
used to determine the character pattern include ascender and
descender lines, the middle line (the x-height), and the right
and left line (sidebearings). Implementation of the font editor
was done in Modula-2 and took advantage of the Lilith window
software and an extensive library of subroutines for the display
and manipulation of data. The system has been optimized to
provide a a rapid redisplay of the screen image when objects
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Figure 30. Contour and raster character from the Lilith
font editor. (lllustrations courtesy of Rachel Hewson).

are dragged across the screen and to fill objects with closed
contours.

Evaluation of current techniques

Each of the systems surveyed can be classified according to
several criteria. Here we review these categories and summarize
their assets and their drawbacks:

« Input of data — All these systems generally fell into one of
two categories with respect to how the letterform images were
entered into the system. The first group used an encoding

of a specific pattern of pixels that were then manipulated in
one of two ways: either the digital image was edited using
features of the system, or it was used to derive a descriptive
image after which the digital image was discarded and the
description was saved. The second category of systems started
with a description of a character shape from which the raster
pattern or bitmap was be derived. This description was entered
either through descriptive commands to the system or through
specification of coordinates of points along the edges of

characters. The description could be modified to produce
changes in the letterforms.
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* Emulation of pen and paper - A design system may attempt

to emulate the actions of a designer by providing tools or
commands that are similar to the use of a pencil and paper.

The motion of a pen on paper was a common metaphor of

these systems, although the type of pen varied. Metafont, for
example, used this approach by providing an analogy to pen-
drawn letters. Movement of the pen was controlled by specifying
the points through which the center of the pen passes, thus
producing ductal forms that look like pen strokes. The pen angle
and the shape of the nib could be varied to produce variations
in the characters. Imp allowed a designer to sketch with a flat-
nib pen at a user-specified width and angle, but final character
shapes had to be specified through outline data. Other systems
provided an outline model, where points were specified along
the edges of a character and then connected to create outlines
of the characters that were later filled in. Use of this approach
allowed a designer to draw letters that could not be duplicated
with only single strokes of a pen. Metafont allowed both the pen
metaphor and the outline metaphor to be used.

» Visual feedback - Only a few of the early systems provided
visual feedback, but all of the later ones did. Some of the
systems, such as LetterlP, Imp, and the Lilith editor provided
interactive manipulation of character features through use of

a high-resolution display screen and a pointing device. Other
systems required that manipulations to the data be done through
editing of the data points.

» Target users - The users to which these systems were
addressed and the environment in which they were used affected
both the quality of the letterforms generated and the success of
the system in an environment outside the original development
testbed. Some of the systems, such as ITSLF and CSD, were only
experimental and thus were never used by anyone other than
the authors, or at any site other than the one where they were
developed. Other systems, such as Ikarus, were marketed and
licensed to companies that used them for the production of
digital designs. All the systems, however, provided only input
and editing capabilities; the systems were optimized for the
copying of existing designs and required that new typefaces be
drawn with pencil and paper. Input of data into these systems
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was not usually done by the designer but typically was done

by persons trained to use the system and who might have

only a rudimentary knowledge of letterforms. This lack of
expertise may have lead to degradation of the design when it
was digitized, as the subtleties of a design can be lost if they are
not perceived or understood by the system operator.

» System designers - Systems for the design of letterforms

fall into two categories: either they are experimental systems
that have been designed by persons whose background and
experience has been largely with computers, not with type
design, or they are production systems, designed for the large
scale production of typefaces. In either case, little has been done
to create a system for the designer. With the first type of system,
the author made little attempt to reconcile the designer’s model
with the world of computers and in the second type of system,
the emphasis was on fast, efficient production of digital letters
from pre-existing character shapes with no attempt to facilitate
creation of new designs.

« Curve handling - The conversion of a curved analog image
into a digital one was not an easy process. The designer, when
drawing a letter shape, does not think about whether the curves
are cubic splines, arcs of circles, or parts of a predefined curve
such as the PM Spiral. Translation of a design into a description
involved conversion of curves in the image into a representation
of those curves so that they could be easily manipulated as

the design was modified. The type of curve chosen had to
satisfactorily reproduce the curves needed by the designer,

but was not allowed to control the design process. Satisfactory
results were obtained with each of these three types of curves,
but no one of them has emerged as being obviously better than
the others.

« Design by parts — Throughout the history of type design,

there has been speculation (usually not by type designers)

that typefaces are simply a collection of parts that have been
arranged to produce a uniform set of letters. If a set of parts
could be designed, and a set of rules developed to combine
them, the process of type design could be simplified. A designer
needed to design the various parts and the combinations would
be taken care of automatically [GOSH83). This idea is too
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simplistic, however, as there are subtle changes to the various
pieces when they are combined to form character shapes.
ITSLF and CSD developed within in a computer environment,
attempted to employ this innovative approach to letterform
design. Although they both provided an unusual consideration
of the problem, they were not very successful in creating
beautiful designs. There may be a viable solution to this
problem, but these systems did not achieve it.

 Use of parameters — Many of the systems had the essential
design of a typeface built into them and then allowed
manipulation of the design through the control of parameters
that controlled various features of the letter such as their size,
weight, slant, or the use of serifs. This use of parameters within
a design made it easy to create uniform shapes when typefaces
were created since the designer was allowed to control the
dimensions of the typeface independent of the letter designs
themselves. These dimensions might include such measurements
as the x-height or height of the lower case letters, the cap-
height or height of the upper case letters, the height of the
ascenders and depth of the descenders, the stem width, and the
slant. If parameters were used to specify certain characteristics
such as height or slant, then a change in any of the parameters
was applied to all of the characters that were controlled by that
characteristic.

Defining the parameters that controlled a design was a
difficult task. A type designer does not think about parameters
when creating a new typeface, so it is difficult to quantify
or measure the exact relationship between one letter and
another. ITSLF allowed the designer to specify the values
of certain parameters for the letter E and then used those
values to modify knowledge already stored in the system to
create the remaining letters of the alphabet in a similar style.
Metafont provided the most flexibility of any of the systems,
allowing the designer to specify both the parts and the letters
and the relationships between them. Changing one of the
relationships (or parameters) had the effect of changing one of
the characteristics of the typeface.
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« Copying of typefaces — Most of the systems discussed so far
can be classified as ‘copying’ systems since only two of them
allow a designer to actually use the system for designing original
typefaces (Metafont and Imp). These copying systems allow
the input and modification of character shapes through use
of an input device, but they do not provide an interface that
allows a designer to duplicate the design process interactively.
The provision of an interactive design environment seems
to be a crucial step in making the transition from the older
technology of the pantograph to the new technology of a
computer workstation with a high resolution bitmap screen.
The systems that do provide sufficient means for designing
new typefaces have other drawbacks that have already been

discussed.

We have reviewed here some of the past and current systems
used for the generation of digital typeforms. It is clear that none
of them fully satisfies the need for a design system that can be
used by a type designer who is familiar with traditional design
techniques, but who may not be familiar with new computer
hardware. We describe in the next chapter what is needed in
a system that takes into account the type designer’s needs
and the means he uses to create typefaces that are not only
aesthetically pleasing but are also designed to be used with the

new generation of digital printing systems.
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Chapter 1V

Adapting the Past to the Future

In reorganizing or readapting an art or a skill to new conditions
and new ways of thought the most obvious source of inspiration
is in the work of the masters of the past.

Nicolete Gray, Lettering as Drawing

Having set the stage by describing the traditional methods of
type design and the changing technology associated with this
field, we are ready to describe the development of a system

for the creation of digital typefaces that attempts to bridge the
gap between the two. The system we designed, which we have
named Paragon, will allow a designer to develop new techniques
for manipulation of typefaces within a computer environment.
Within the system, we provide:

« a highly interactive, easy to use type design system modeled
on the designer’s traditional tools

« a graphics interface, allowing graphical communication and
graphical manipulation of objects

« a variety of basic tools that have been tuned to the type
designer’s specifications or needs, not a general design
system

« enhancements to the basic tools where we can take advantage

of the computational and display capabilities of a computer
workstation

51
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« a means of creating extensions to the basic tools to
accommodate new techniques, yet remaining within the
paradigm presented

« a simple world view consistent with a designer’s perceptions
with hiding of features a designer should not be concerned
with such as storage of library functions or typeface data

Research Contributions

The development of this system has provided contributions
in three areas related to the integration of the font design
process with research in the field of computer science. Qur
first contribution is an understanding of the visual process of
designing a typeface and a translation of that understanding into
a computer metaphor that mimics the process. Current systems
for the generation of type designs are geared toward achieving a
final product; they do not concern themselves with the beginning
of the process, only the end. We chose to study the initial
design stages and to model a system that allows a designer to
create digital designs directly. In addition, we provide raster
versions of the designs as the material with which a designer
works from the beginning of the design process rather than
restricting their use to the final stages of design, as they are in
commercial software. We are concerned here with the design
process rather than the design results. The metaphor that we
have developed could, conceivably, be applied to other types of
design problems (such as, perhaps, graphic design, mechanical
design or architectural drawing) that are concerned with the
translation of a visual idea into a written one.

To achieve this goal, we first had to decide how to automate
a task that is very idiosyncratic, depends primarily on visual
feedback and is not easily explained to someone not familiar
with the problems associated with the creation of very small
but very precisely drawn objects. We needed to analyze and
define this process so that we could create a metaphor for a
set of design tools that could then be used as the basis for
a computer design system. This process of definition and
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analysis is generally known as knowledge engineering, our efforts
were focused on standardizing the tools and actions of many
designers into a single consistent model. Our analysis was
predicated by the statement made by Herot over 10 years ago
when describing future design trends, ‘It is not sufficient that
the system be merely possible to use, it must be sufficiently
comfortable and easy to operate that the designer can integrate
it into his design strategy. This new class of user will rightfully
demand more amenities of the system, amenities that it must
provide if it is to be an effective design tool.” [HERO76]. By
working and talking with type designers, we developed a
consistent and workable model that was used in the design and
implementation of Paragon.

Our second contribution is a model of a design system that
can be enhanced by non-technical users. Rather than designing
and implementing a static design system whose functions
are completely specified before the user begins working with
it, our system is dynamic in that it is built upon primitive
actions so that new functions can be defined interactively by
the people who are using the system. This approach allows
the user to develop tools that are more closely suited to those
he is familiar with and thus allows each individual user to
customize the system to suit his own standards. What makes
this system different from existing extensible systems is that the
customization process is entirely graphical; that is, all extensions
are made through an interactive graphics interface.

To create this model, we had to determine how to provide
the means by which the functions within the system could be
augmented by the users of the system. Around the same time
as Herot's work, Negroponte suggested that ‘if a system is to
be person oriented, that person should at least design it and
should be able to change it at a moment’s notice’ [NEGR76).
Licklider concurred when he wrote, ‘It will be necessary for the
designer to view the prospective user as a design extender and
the delivered system not only as an application package but as
a kit of design-extension and incremental-development tools.’
[LICK76). Although we provided a single model for the design
process, we also wanted to provide a means of customizing the
system to cover individual models within the design metaphor.
This provision allowed each designer to develop a working
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model that fit with his design paradigm and thus allowed him to
create a system that was closer to his true working environment.
The customization process is implemented via a Threaded
Interpreted Language (TIL) built into the system and invoked
entirely through graphical means.

This model differs from earlier systems such as Smalltalk
[GOLD83}, Emacs [STAL81], and Rehersal [GOUL84] in that it
allows a novice user to extend the repertoire of the system
without any knowledge of programming or programming
language constructs. Because designers have an almost native
distrust of computers and other mechanical devices, one of our
objectives in designing this system was to provide the means
for the system to grow without requiring the user to have any
knowledge of programming metaphors. The customization
process is a simple macro definition facility but we have
implemented it in such a way that a designer sees it as an
integrated part of the design system and can access and use it
without any prior programming or computer experience.

The third contribution of our research is the development
of new tools for designers that enhance and expedite the
digital design process. These tools are adapted to existing
computer technology and allow a designer to take advantage of
the sophistication and fast processing available on the current
generation of computer workstations to speed up the design
process.

To solve this last problem, we needed to specify functions
that would span the gap between the techniques used by
designers which are associated with an older technology and
ones more suited to the current technological developments.
Rather than automating a process that was closely associated
with a previous generation of printing machines, we wanted to
provide a means for the transition between two technological
generations, thus bringing type designers solidly into the
twentieth century. The process of automating an existing
(although not well understood) process that was already
outdated was not seen to be either a step forward or a viable
topic of research. We wanted to avoid the possibilility that we
might find ourselves in the same situation as the White Queen
and Alice, that is, running just as hard as we could to stay in the
same place. By including functions that allow a designer to view
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and proof a design that is rendered in the same format as it will
be printed on the current generation of laser printers, we would
provide the means for designers to develop new techniques for
the design of digital typefaces for raster output devices.

Current Printing Technology

There are a variety of output devices in use today for the display
of digital letterforms including ink-jet printers, laser printers,
phototypesetters, and dot-matrix impact printers. Each type of
output device differs in how ink is actually deposited on the
surface of the paper, or, in the case of phototypesetters, in how
marks are made on film.

In the past, type designers had to take into account the
printing technology and the paper quality when they designed
a typeface. These considerations have not changed, but the
technology has, so there are a new set of problems to be dealt
with in creating and evaluating a typeface design. We no longer
have to consider wear on the surface of the type, a factor that
in the past led to the use of heavier serifs and sturdier hairlines
that stood up to the high-pressure, high-volume presses used,
for example, in the production of newspapers; instead we have
to consider the type of internal marking engine used with
today'’s printers. ,

A laser printer contains a laser beam that sweeps
horizontally across a metal drum as the drum rotates. An electric
charge is deposited by the beam on the surface of the drum so
that when the drum rotates past a toner cartridge containing
fine black carbon particles charged to the opposite polarity, the
particles cling to the drum in the places where the two charges
attract. A piece of paper is then passed between the drum and
a heated cylinder that fuses the carbon particles onto the paper
[AYALS84].

There are two basic types of laser printers available today.
In a writes-white device, the laser beam de-charges the drum
in the areas of the page that are to remain white. In a writes-
black printer, the beam charges the areas of the page that are to
become dark. Because the charge on the drum spreads a little
due to the characteristics of charged particles, the writes-white
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device de-charges an area slightly larger than the actual white
area on the page, thus reducing the dark areas a small amount.
This produces lighter pages than a writes-black device, on which
the charges in the dark areas spread out. The result is that
character bitmaps printed on a writes-white device tend to be
lighter than the same bitmaps printed on a device that writes
black. Both types of devices leave a slightly fuzzy edge on the
resulting letterforms.

An ink-jet printer shoots a continuous stream of small
electrically charged drops of ink through a very fine nozzle at
a piece of paper [KUHN79]. Because of their electrical charge,
these drops can be deflected to land in the proper position on
the page, or to drop into a tray positioned to collect surplus
ink. Because a drop of ink, no matter how small, tends to spread
slightly when it hits the paper, and because the positioning of
each drop is not precise, letterforms produced on these devices
tend to be slightly darker and blobbier than letters produced
on a laser printer. This has some advantages, notably that the
spreading of the ink tends to reduce the appearance of the
jaggies on diagonal edges, but it also gives a less crisp rendering
of the letterforms.

Phototypesetters of today are usually Cathode Ray Tube
(CRT) devices; that is, they have a beam of light that writes
not on a screen, but on a piece of film. The beam etches the
characters onto the film in the places where the beam hits the
film. Because the beam is round, it tends to round out the edges
and corners of the letterforms. Depending on the type of film,
the device can produce either a white on black image (a negative
image usually on transparent film) or a dark on white image (a
positive image usually on photopaper). These typesetters are
capable of very high resolution output, extending from around
700dpi up to 5000dpi.

The design of typefaces for display on CRT screens (such
as terminals found in a computer environment) requires
consideration of issues not addressed here [HOLL67]. These
typefaces are usually quite low resolution (less than 200 dpi)
and their rendering is sometimes dependent on the speed at
which a beam can be turned on or off as it is deflected across a
CRT screen. Since this is really a different medium altogether, we
have chosen to disregard them in this system.
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It should be noted that the production of fuzzy, squishy,
blobby, or other imperfect renderings of the letters does not
mean that there is something wrong with a printer; it is simply
a characteristic that must be taken into consideration when
designing letter shapes to be used with that device. One may,
of course, choose to buy a printer for which these distortions
have been minimized but in none of the printers are they
nonexistent. There have been no machines in the history of
printing that render an exact letterform image as a result of the
normal techniques of printing. Letterforms printed on early
presses had ink-squash around their edges where the liquid
ink squished out from under the edges of the metal type when
the type was pressed onto a piece of coarse paper. When the
paper surface became smoother, letters could be rendered with
more precision, but they were still not exact replicas of the
typeface shapes. Because we are now using new technology, we
have a new set of problems; it is these distortions that we must
compensate for when we draw a new type design. Designs of
the past solved problems that existed with old technology; if
we hope to produce high quality typographic output using the
technology of today we need new designs that can overcome
today's problems.

Because of the differences in the output produced by
different types of printing devices, it is imperative to proof a
new typeface on the output device on which it will be used. This
process consists of printing the characters at their intended size
and in various combinations so that both the interaction of the
character shapes and their spacing relative to each other can be
judged. Evaluating output from one type of printer in order to
produce the same results on equipment employing a different
marking engine will not be successful. It is important also to
evaluate the typeface when it is printed via a true marking
device, or one that actually puts marks on paper, as contrasted
with a display device on which the designs are displayed as
video light patterns. Designs destined for paper output, when
displayed on a terminal screen, are often distorted due to
inconsistencies in the aspect ratio of the screen, or the ratio of
the horizontal size of the screen pixels to the vertical size of the
pixels. In addition, a typeface must be evaluated at its true size
to determine whether the design is successful at that size. The
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bitmap pattern of the character can be displayed on a screen, but
there are currently no screens with a resolution as fine as that of
current marking engines on which to display a design at its true

size.

Task Analysis

We have seen that changes in the design process evolve from
earlier techniques to meet the needs of the current technology.
It appears that this transition phase is a useful way to reconcile
the means of dealing with a new form of technology with the
forms and functions associated with an earlier one. What we
would like to provide, therefore, is a system that can mimic
the current means of rendering a design, yet also allow these
methods to metamorphose into those more suited to the
creation of digital designs. We need to supply the means for a
designer to work with a familiar environment, but one that can
also grow to meet unforeseen needs or demands brought on by

changes in technology that dictate changes in the design process.

Because this process is quite complex, the task of determining
just what we needed within the system was not an easy one.
Although each designer has his own methods of rendering a
design, there are many similarities in how different designers
work. Out of their myriad skills and methods, we had to build
a system that would allow each of them to develop a design
metaphor that was familiar and easy to use. If the principles of
the traditional design stages can be maintained, the resulting
system is more likely to be used by a designer familiar with the
old methods. If the designer is also provided with tools that
are specific to the computer environment and she is allowed

to incorporate these tools into her design technique, then the
potential exists for her to develop a new means of designing
that is more tuned to the new medium in which she works.
One aim, therefore, of our research is to provide a means for
effecting the transition from the traditional methods of creating
typefaces to new techniques specific to the raster revolution.
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Interactive Design

An interactive typeface design environment utilizes
developments from many overlapping areas: interactive user
interfaces, adaptive or extensible systems, graphics systems
allowing manipulation of objects, man-machine interactions,
human visual perception, and ergonomic design. We want

to provide synergy, or a combination of these areas within a
creative environment to form a new approach to the design
process.

Since we are creating an interactive design system for use by
persons whose profession is the production of graphic objects,
it would be incongruous to provide a system that does not take
advantage of the current research in user interface design that
emphasizes visual interaction and manipulation of objects. The
use of icons and an interactive graphics display screen with a
mouse or other pointing device to provide selection of objects
on the screen has now become commonplace. One of the first
systems to use this approach was Pygmalion, a system created
by David Canfield Smith for his PhD thesis [SMIT75) which was
implemented in Smalitalk, and was an attempt ‘to provide an
artistic resource which computer scientists can use to create.’
Smith had a broad view of a compmer scientist, applying the
term to anyone who knew how to do something and wanted
to use the computer to do it. With Paragon, we would like to
provide a computer resource that graphic artists can use to
create.

Paragon falls into the category described by Sheil [SHEI83]
as viewer-based tools, or those in which information needs to
be retrieved quickly, displayed effectively, and modified easily.
The users have a limited knowledge of the inner workings of the
system with which they deal.* We cannot, however, rely only on
the use of visual feedback and graphics to achieve an acceptable
result. As stated by Foley and Wallace [FOLE74], ‘The clarity
and vividness of computer graphic communication is not an

* He contrasts these with knowledge-based tools, or those that
must know a significant amount about the content of a user’s
program and the context in which it operates, such as in an expert
system.
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automatic consequence of the mere use of drawings. Conscious
design effort must be applied by an application programmer

to provide clarity and vividness in the user’'s communication
with his machine. In computer graphics, the effort must be
applied to designing the action sequences by which the user
communicates his desires to the machine, and the pictures by
which the machine communicates responses. The objective

is to make both paths of communication natural to the user

to increase his productivity in technical or artistic tasks. This
design effort is sometimes described as human factors design or
ergonomic design.’

This idea is expanded by Bennett [BENN76] when he suggests
that the quality of graphic interaction language may be examined
in terms of what the user sees at each interaction point, what
he has to know in order to interpret what he sees and what
actions he can take at the interaction point. He states that ‘the
most fundamental part of user orientation is the one involved in
determining the basic constraints that will define and structure
the repertoire of graphic forms and graphics operations, that
will limit it to a learnable and usable size.’ He felt that a system
should be designed so that a user could avoid boredom, panic,
frustration, unexpected long delays, confusion, and overload of
information. The response of the system to user interactions
should be immediate and visual.

We have already discussed the way a designer works and
ways in which to recreate a designer’s environment. This
process of evaluating the actions performed by the users of the
system, was labeled task analysis by the Star development group
[SMIT82). Before we began the work of designing the internal
workings of Paragon, we evaluated the tasks that a designer
performs in a working environment so that a set of smaller and
more syntactically simple actions could be extracted to form a
base repertoire of operations upon which more complex actions
could be structured.

By providing visual counterparts to every aspect of the
system including the commands and the display of information,
the implementors of the Star system tried to relieve the user’s
short-term memory from having to ‘remember’ too many details.
They decided that visual communication was more efficient for
the display of information so they chose to make all objects and
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actions in the system visible. Everything to be dealt with and
all commands and effects had a visible representation on the
display screen or on the keyboard. Commands were generalized
to provide similar actions no matter what objects they were
invoked on. For example, the move command moved documents
to the printer queue, mail to a mailbox, characters within a

document, or icons on the screen. We have chosen to model our

system along these same lines.

The user interface can be compared to the dialogue between
the system and the designer. A friendly system will converse
in a language that a designer can easily learn and understand,
whereas a system that has not been written with the interface
as a major concern may be complex, frustrating, and not easily
learned or used. We must provide both a graphics interface and
an integration between the use of the system and the extension
of the system.

Design Environment

Borrowing from Barstow’s definition of an interactive
programming environment [BARS84], we can state four
requirements that we would like to satisfy in our design
environment: first, we want to provide a large set of tools,
most of which are specific to the purpose for which the system
is written; second, we want to use an underlying structure as
an organizational tool; third, we want to allow incremental
program development both in the design and the maintenance
of the system; and last, we want to create a highly interactive
environment and provide a fairly rapid response rate between
the user and the environment. We also want to tailor the
appearance and the interactions of the users with the system
so that it is easy to learn and easy to use. There should

be provisions for incremental learning, so that as a user’s
sophistication with the system increases, his use of the system
can also increase in complexity.

As the system is running, it must provide immediate visual
feedback for every selection on the screen; the user must not
be left to guess what the results of the action were. At the
very least this can take the form of messages displayed that
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describe the state of the system at that particular point. These
messages can provide tutorial information, help information,
error messages, or prompts.

Jacks [JACK70] suggests that a graphics system should
provide facilities for providing a group of descriptive geometry
operations that may be applied to the design on the screen
and that are analogous to a set of subroutines provided in a
program library. In addition the system should provide sequence
recording where the system has the capability to remember a
sequence of operators and the facility for the sequence to result
in a new operator. The resulting operator should appear no
different to users than the primitive operators in the system.
There must be a facility for remembering and naming operations,
for defining the input and output to and from an operation.

In defining the graphics operations that we have chosen,

we have attempted to follow the guidelines set out by Scott

in her book Introduction to Interactive Computer Graphics
[SCOT82]. There, she describes the components of an interactive
graphics system: first, it contains a command language that is a
set of rules by which the user and the computer carry on their
conversation such as command selection: activating an available
graphic operation; positioning, or supplying information about
location and size; and pointing, or identifying existing objects;
second, the system must be able to handle lots of data for
graphic objects; third, it must respond instantly by visually
displaying the result of each user; fourth, it must provide an
input technique that is simple and direct; and last, it establishes
an ‘intimate’ association between the graphic and non-graphic
data. In addition, a graphics system should provide facilities
for geometric transforms such as translation, or the uniform
motion of an object along a straight line, scaling that increases
or decreases the dimensions of an object, and rotation where
each point on the object moves in a circular path around the
center of rotation.

Traditional Design Practices

A type designer’s traditional tools include paper, pencils, and
erasers, and sometimes a pen or brush. The first stage of letter

3 3 _3

—3 3

! il

I



63

design is sketching of letterforms, serifs, or related shapes.
These sketches might be done with a flat or fine nib pen, but if
the character shapes begin by being recognizably calligraphic

or characteristic of the drawing implement, they usually do not
end up so; the path of the pen provides merely a skeleton that is
then fleshed out by continuous smoothing and refinement.

Once an idea has been developed, the characters are drawn
with finer lines and smoothed edges. At this point, they are
probably drawn in a size larger than that of the final design size,
although it is not uncommon for a designer’s first sketches to be
done in very small sizes. The second stage drawings are usually
outlines, typically from 3 to 10 inches tall, since it is easier to
modify outlines than to change filled shapes. The outlines are
drawn on very smooth transparent or translucent paper and
the edges are refined by the designer: a shape is drawn on one
side of the paper and modified by erasure and redrawing until a
satisfactory drawing is obtained; the paper is then turned over
and, using the shape seen through the paper as a guide, the
edges are refined. By using both sides of the paper, the designer
can modify the previous version without having to erase the
edge being changed, and he can avoid drawing on top of what
might turn out to be a better edge. The designer alternates
drawing on the front and back until either the shape is finished
or the paper begins to wear out. In the latter case, the shape is
traced onto a new sheet of paper and the process begun again.

Each character is drawn in this way, but since one of
the characteristics of a typeface is its salient features, or
those features that distinguish it from other typefaces, parts
of characters that have been designed can be traced onto
other characters, thus facilitating the production of the final
design. This is particularly true of serifs, stems, bowls and
arches (Figure 31). Some of these parts are merely shifted to
accommodate different characters; others must be rotated or
reflected to achieve the desired result.

Usually before any character is drawn in its final shape, the
dimensions of the typeface have been determined so that the
size of the characters and the features within them will match.
These metrics are all offset from the baseline, or the line upon
which all the characters rest. The other measurements include:
the x-height, or the height of the lowercase x and thus the height
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Figure 31. Salient features of a typeface.

of the central part of the lower case letters; the ascender height
and descender depth; the cap-height, or the height of the capital
letters which is not necessarily the same as the ascender height;
and the o-height, or the amount a curved or angular edge will
overhang the nominal height. These edges are drawn taller (or
deeper) than their squared counterparts to compensate for the
visual perception of curved or angular edges as being shorter
[LEGR16, GILL80). Other horizontal guidelines may also be used
but need not be.

Within the current systems for specifying letterforms, the
practice of fitting each letter within a box and then lining up the
boxes to form words has carried over from the days of metal
type. Each letter must be placed within its box so that when
it is aligned with other characters, it appears to be centered
between them. To facilitate this adjustment, vertical guidelines
called sidebearings are used. These indicate the left and right
edge of the bounding box for the character. Two characters are
spaced by aligning the right sidebearing of the letter on the left
with the left sidebearing of the letter on the right (Figure 32).
Each letter has only one set of sidebearings, so the boundaries
chosen must permit the letter to space well with all the other
letters. Difficult-to-space letter combinations may be kerned
if the output system permits it, in which case the spacing for
a particular letter pair is individually adjusted. Other letter
combinations may be designed as ligatures, or letter pairs (or
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Figure 32. Characters with sidebearings lined up.

triplets) drawn as one glyph; for example, the letter ‘f’ followed
by the letter ‘i’ is usually drawn as a ligature.

When several key letters have been designed, a test word is
constructed. Key letters usually include one from each shape
category—an ascender, a descender, a letter that fits within the
x-height, a letter with curved edges, a letter with straight edges,
and a letter with diagonals. Each character is traced from its
proof letter (the perfected drawing) onto a clean sheet of paper
and the outline filled in. The characters are then aligned and
the drawings taped together so that the spacing between them
is even. Then the entire construct is taped to a blank wall and
the designer stands away from the letters as far as possible and
evaluates them. The objective in moving far away is to see the
letters as small as possible, with an optimum viewing size being
that for which they are designed (text faces are usually designed
for an optimum size of 10 or 12 points). Since it is difficult to
find a room long enough to perform this process reliably, the
designer often studies the shapes by looking at them through
a reducing lens, which is, as may be supposed, the opposite
of a magnifying lens—it makes the observed objects smaller.
The goal of this exercise is to see what the letters will look like
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at their intended size so that deficiencies in their shapes can
be determined before a significant amount of work has been
expended.

These test letters are then refined and modified. When they
are acceptable, work continues on the rest of the alphabet.
Evaluation of the drawings is done repeatedly throughout the
design process. Uneveness in the letterforms, both within
a character and between characters, is removed so that the
typeface as a whole retains continuity between its features and
its overall presentation. A well-designed letter is of little use
without a well-designed set of counterparts to accompany it.

Once the typeface design is finished it must be turned into
a font that is a representation of the design at a particular size
and resolution. Although there are several processes extant
for doing this, the one we are concerned with converts the
letterforms into bitmaps, or digital renderings of the design,
via an input and conversion system. Each bitmap is a pattern
composed of small, discrete elements, or pixels. The bitmap is
created by converting an outline representation of a character
into a raster pattern similar to that produced by drawing the
character on a piece of graph paper and filling in the squares
that fall inside the character outline. These bitmaps can be
printed on digital output devices such as laser printers or CRT

phototypesetters.

The digitization process averages about 30 minutes per
character. The edges of each letter shape are first marked with
control points and then, one at a time, the drawings are placed
on a bitpad and the control points are selected by lining up the
crosshairs on a puck with each point and pressing an indicator
button. The location of the control points will vary depending
on the input system used, so that a drawing marked for one
system will need to be marked differently for use with another
system. Typically, control points indicate the beginning and
ending of straight line segments, the beginning and ending of
curves, points along a curve, and corners. Once the points are
entered into the system, they are scan-converted into outline
renderings of the letter that are then digitized or converted into
a bitmap representation of the letter shape. This digital shape
can then be printed on a suitable output device and evaluated
by the designer. The typeface features need to be individually
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tuned for each different marking engine for which the typeface is
intended to be used.

The entire process of design, refinement, digitization,
evaluation, and design modification usually takes a minimum
of two years from the start of the initial drawings to a finished
typeface. The sophistication of computer input systems has
not simplified the designer’s task; it has merely made it faster
to achieve the final digital result. This, however, has been the
case throughout the history of type design: the designer’s tasks
have changed over time, but because his task is defined by
the means of rendering the design into a finished product, he
remains subservient to its production, whether it be done by
a punchcutter, a punchcutting machine, or a workstation and a
bitpad.

Modeling the Design Process

Having enumerated the tools and tasks of a typeface designer,
we can now specify what must be provided by a computer
design system. First, we must have some capability of sketching
or drawing. To provide this, we must have access to an input
device that allows freehand movement of a cursor on a screen.
Ideally, this device should resemble a pen, which leads one to
speculate that a stylus or light pen would be the closest solution
available with today’'s technology. Barring access to one of
these, either a mouse and tablet or puck and bitpad would also
provide free access to cursor movement. It is not clear how

well a designer can adapt to using a device that is positioned

in the palm of the hand and moved in a manner similar to that
of rubbing your palm on the surface of a table rather than a
more upright device that more closely resembles a drawing
implement. It is possible that although it may be initially rather
clumsy to use, a designer can get used to this different sort of
movement and it is probably also the case that much depends on
the individual designer. A secondary question is whether such a
device can be positioned accurately, but here, only actual use of
the device can give a satisfactory answer.
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If we can draw with the device, we can also erase. This
leaves only the surface on which to draw lacking from our
model. A high resolution bitmap screen can provide the surface,
and a method of overlaying bitmaps or planes can supply both
the transparency for fine tuning a design (allowing a designer
to draw on one sheet, yet see another sheet underneath) and
the different sheets necessary for drawing individual characters.
Lacking that, simply erasing and redrawing shapes on the screen,
although slower, would be sufficient.

Curved Edges

The rendering of curved shapes within a letterform requires

a very precise means of specifying the edges of a character
shape: the final outline drawings when done by hand may be
done to a precision of a hundredth of an inch. Slight variations
from this pattern could unacceptably change the characteristics
of the design. We would like to use a standard algorithm for
generating, duplicating, or displaying curves but will need very
high precision or very specialized control along the curved
edges. Current typeface conversion systems use a variety of
curve-generation techniques with some success, so it must

‘be possible find algorithms that will closely approximate the
designer's wishes.

Curve algorithms in current use with font-generating
software include conics, which are used by the LetterIP system
in use at Bitstream, by Ikarus output routines, by a contour
fitting font editor developed by Pratt [PRAT85], and by an in-
housefont development system at Imagen [BRAD87]; parametric
cubics that are used by Metafont [HOBB85a] and storage of curve
information within Ikarus; Bézier splines used by Fontographer
[FONT87], lllustrator [ADOB87] and the in-house font design
system at Adobe; and Hermite cubics used in work done at Xerox
Palo Alto Research Center (PARC) on the automatic fitting of
curves to rasters [PLAS83].

In selecting a representation for curved edges in our model,
we must consider two properties: the order of continuity of
the joins between edges and the location of control points
that define the edges. In modeling a complex shape we will
use several line segments joined at their endpoints. This
congruence of two endpoints is often referred to as a knot. The
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line segments may be curved or straight and the joins between
them may be smooth or angled. If two line segments are joined
at an angle such that the slopes of the two segments at the knot
are not equal, then the join has zero-order continuity (Figure
33a). If the line segments are tangent at the point of intersection
they have first-order continuity (Figure 33b); and if the curvature
of the two line segments is the same at the knot, they have
second-order continuity (Figure 33c). We would like to employ

a model that allows up to second-order continuity.

Figure 33. Zero-order continuity (left), first-order
continuity (center), second-order continuity (right).

The location of control points to define the path of the
curve is our second consideration. We will examine several
types of curve modeling to determine their suitability for our
purposes. Drawbacks to each of the models will be examined as
we describe each of the types of curves.

A Bezier curve is defined by at least four control points.

The first and the last points lie on the endpoints of the curve;
the second and third points control the shape of the curve but
lie off of it (Figure 34). To change the shape of a Bézier curve,
one must adjust the control points that lie near the piece of the
curve to be changed. Only the piece of curve that is under direct
control of these points (that segment of curve that is between
two knots) will be affected; changes will not affect other pieces
of the curve. Control within the piece, however, is not localized,
moving any point will change the shape of the entire piece. This
has distinct disadvantages for a designer desiring to change only
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a small section of an outline; changes to one control point may
affect the entire outline with unpredictable results.

Figure 34. A Bezier curve and its four control points.

To produce a complex curve, several Bézier curves can be
pieced together. Order of continuity can be achieved through
the positioning of control points that coincide or lie along a
straight line: zero-order continuity is achieved simply by having
two endpoints coincide; first-order continuity is achieved by
having the first edge of the first curve be collinear with the
last edge of the second curve; and second-order (and higher)
continuity can be achieved through further geometric constraints
upon the control points. Since we do not plan to incorporate
constraint solving in Paragon, maintenance of continuity would
have to be done manually by the designer.

The use of spline functions allows a higher level of continuity
to be achieved automatically. These functions also provide the
use of localized control: changing the position of a control point
changes only the portions of the curve that are located near
the point; it does not affect the curve as a whole. The b-spline
algorithm only approximates matching the endpoints rather than
matching them exactly in its attempt to fit a curve to a set of
control points and does not necessarily pass through any of the
points (Figure 35). It does, however, guarantee that the curve
that is generated has both first- and second-order continuity.
The use of b-splines reduces the need to piece curve segments
together; control points can be added without affecting the
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degree of the curve, which is a measure of how difficult it is to
control. Multiple control points that coincide can be specified

to achieve regions of high curvature. A disadvantage to this
model is also apparent: a designer needs to control exactly
which points a curve will pass through; an algorithm that only
approximates the control points is not close enough when one is
making a precise drawing of a character shape.

Figure 35. A b-spline curve and its control points.

Conic curves and the means of using them in the
specification of outlines for letter shapes have been discussed
by Pratt [PRAT86] and Pavlidis[PAVL83). These curves can be
computed quickly, and are fairly easy to specify but require
a little more understanding by the designer as to just how to
control the shape of the curve than spline curves. The user must
position three points for each curve segment: two endpoints and
one point that controls the shape of the curve, often called the
tangent point (so called because a line drawn from that point
to each of the endpoints is tangent to the conic curve at each
point). In addition the sharpness of the curve can be specified,

a factor that controls how close the curve passes to the tangent
point. Continuity of the curve at a point that anchors to two
different segments is not guaranteed but can easily be achieved
by aligning the two tangent points and the anchor point.
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Another form of curve modeling was developed by John
Hobby as part of his thesis [HOBB85a]. This model uses
parametric cubics with a means of computing the curves through
a system of linear equations. First-order and approximate
second-order continuity can be achieved. Control points are
specified that lie on the curve with additional freedom provided
by the ability to specify tangent directions at each control
point. This model also provides for approximate locality so that
changes to one part of the curve will not adversely affect other
parts of the curve (this is approximate in that it provides for an
exponential decline in influence relative to the distance from the
knot rather than limiting the decline to within a fixed number
of knots). In addition, curves generated with this algorithm are
invariant to changes of scale, degree of rotation, or angle of
reflection. Because this curve model was specifically designed
to be used with the font-generating capabilities of Metafont, it
has been tuned to correspond to a designer’s needs and thus
most closely models the environment that we want to achieve
with Paragon.

A further advantage of his curves are that they pass through
all of the specified control points. This is very useful for a
designer who wants to be able to accurately position points that
will lie on the contour of a letter. It is much easier to position
and move points when the user knows that there is a direct
relationship between the points that he specifies and the curve
that will be drawn. With conventional b-spline, Bézier splines or
conics, the user must specify or move additional control points
that do not lie on the curve that is drawn.

The specification of Metafont curves differs in a subtle way
from other curves in that with splines or conics, the shape of
a line passing through a particular point is determined by the
type of point, i.e. whether is is a straight or a curve point. With
Metafont, the designer specifies the shape of the path between
two points. Although this difference does not affect the final
shape of the outline, it does affect how the user specifies what
the outline should look like.

Because of the ease with which curves can be specified
with the Metafont algorithms and their closeness to the design
paradigm that we wanted to achieve, we chose to use Hobby’s
splines within our system.
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Guidelines

When designing a typeface, a designer may want to display
guidelines for the baseline, the x-height, the ascender height,
the descender depth and the left and right sidebearings. Since
these are not absolutely required by the designer (depending

on how the designer works or what sort of characters are being
designed), they are not displayed automatically, but are added
by the designer as they are needed. In addition, other guidelines,
either vertical or horizontal, may be drawn. Angled guidelines
are useful when the designer is working on any shape that
contains angled edges, or when working on a typeface that is not
oriented in a strictly horizontal alignment such as an italic or a
slanted roman face.

Rulers :
We would like to provide a means of measuring the components
of a typeface using a variety of different metrics. The
measurement of font sizes and features is usually done in points
(approximately 1/72") or picas (12 points = 1 pica). Additional
measurement units that we might want to provide include
millimeters, inches, Didot points (and the related cicero used in
many European countries to measure font and type sizes and
equivalent in use to our point and pica though not equivalent in
size), dots per inch, dpi, for a particular point size and resolution
and dpm, or dots per em, a space equal to the square of the body
of the type used. To provide the means for measuring different
features, the ruling device should be movable by the designer
to any orientation; that is, it should not be restricted to just
horizontal or vertical measurements. It may also be helpful to
provide a protractor for measurement of angles and a means of
comparing two or more measurements.

When an outline typeface design is converted into a
bitmap representation, or digital typefont, the guidelines
(especially x-height and the sidebearings) must align with the
pixel boundaries. This will usually result in an adjustment in
the positions of the guidelines with respect to their original
positions. This adjustment should be automatic so that the
designer does not have to worry about aligning each character
with the different guidelines, but the adjustment will need to be
monitored by the designer to insure that the resulting characters
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are not grossly distorted. The coordinates of the new alignments
must be stored with other data specific to the font.

Scan Conversion
Because scan conversion of the outline shape is such a crucial

step in the process of creating digital characters, it will be
worthwhile to take a closer look at it. There are many obvious
problems in this process, and some not so obvious. Because we
are dealing with particularly small objects, and ones that will
not withstand much distortion, we must be especially careful
in providing the means for careful tuning of the final character
shapes.

The process of converting outline characters into digital
bitmaps is not simply a process of filling a contour as is done
for outline shapes in many graphics systems. Letterforms
have certain properties that dictate that techniques that work
sufficiently well on large, relatively imprecise objects do not
work well on small, finely designed letterforms. The property
that most affects this situation is the small size at which these
objects are generated. When the final size of the character must
fit in a box that is less than twenty pixels square, the difference
of a few pixels here and there can make quite a difference in the
final result.

When a typeface is designed, it is usually designed as a
family of related styles; a roman, a bold, and an italic are the
most common faces, although some designs include variations
such as condensed, slanted, expanded, or ultra-bold. The
relationship between these styles must be such as to allow the
difference between them to be readily distinguished, since they
will be used in conjunction with each other to provide contrast
in the textual appearance of a document. An obvious example is
the use of roman text for the body of a document, with emphasis
on specific words indicated by the use of either a bold or an
italic font for those words.

When creating a typeface design, the designer usually has
taken into account characteristics such as the stem width and
the width of each of the characters when distinguishing one
style from another. Bolder characters are often wider overall
than their roman counterparts; the stem widths of the characters
will be wider, and other features may be exaggerated. This care
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in the design, however, can be thwarted by the peculiarities of
matching a design to a particular grid size. If, for example, a
roman style letter has been designed with a stem width that
ideally would fit into 2.5 pixels, but after conversion rounds to
3 pixels, and the matching bold design ideally fits into 4.3 pixels
but instead gets rounded to 4, the resulting font may not have
enough contrast between the two styles to make them readily
distinguishable on a page of text.

In fonts generated for medium resolution laser printers
(240-400 dpi), this situation is not uncommon. For a 10-12 point
font, the stem width of the lower case letters is usually only
3-4 pixels wide. If one is trying to generate both a roman and
a bold face at this size, it would be helpful to know in advance
what stem width will be used at a particular size for a particular
resolution so that critical dimensions can be determined early in
the design process.

The situation is actually even more complicated, since a
designer wants to generate not only different styles, but several
different sizes of a font. A one pixel wide stem is generally too
narrow to be used for any letter size due to the vagaries of
printers in printing such fine lines, so a minimum stem width
usually starts at 2 pixels. If we wish to generate fonts in sizes
ranging from 5-6 points up to 14 points, there are not enough
increments in whole pixel sizes to give us a different stem width
for each size, given that we want to create a classic text face, or
one that is intended to be read at small sizes and in quantity
such as those used in the printing of books, or column copy in
newspapers and magazines.*

If we were to increment the stem width by one pixel for each
point increment, the stems of our largest characters would be as
wide as the total width of the smallest characters. (Note, we are
not suggesting an increase in the total width of the character by
one pixel with each increment; w¢ are suggesting an increase in

* A display face, by contrast, is designed in larger sizes
and usually attempts to attract attention; it may, therefore,
have gross character distortions, tight inter-character spacing, or
ornamentation built into the design; although a great deal of care
and precision goes into the design of a display face, it is not
necessarily designed to be easily readable.
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the stem width of the characters. In the case of the lower case
‘m’, this could mean an increase of 3 pixels in the total width of
the character—one for each stem.) In this case, a more important
measurement than dpi is that of dots per em, or dpm. If we
know how wide the body size is in pixels, we are better able to
estimate the widths of various character parts. To accommodate
all the various font sizes while maintaining the design, we may
need to create several different sizes with the same stem width,
and use other distinguishing characteristics to indicate the
differences between them (changing the vertical dimensions of
the characters, for instance, or the distance between the stems).
The objective in creating digital letterforms is to fill an
idealized outline, one that has in itself no width. If we were to
determine an outline of a character and draw that outline with
a one pixel wide pen, then fill the outline, the resulting bitmap
would be one pixel too wide between each pair of edges in the
character (Figure 36). This is also known as the off-by-one
phenomenon. This difference is unacceptable when dealing with
objects whose total width may only be a few pixels wide to begin
with. For this reason, we must provide a conversion algorithm
that fills to the edges of a given outline but not beyond it.
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Figure 36. A bitmap that includes the outline when it is
filled is one-half pixel too wide on each side resulting in
the off-by-one phenomenon (light hashing); bitmap that
correctly fills the outline (dark hashing).

-
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Another consideration when generating bitmap characters
from outlines is the position of the outline in relation to the
underlying grid. Slight changes in the alignment of a character
upon the grid can have significant effects in the final rendering
of the bitmap. The dimensions of parts of the characters can
vary depending on their placement on the grid (Figure 37). In
particular, one feature that is affected by the grid position is
the amount of overhang of the curved and angular shapes—if
we are digitizing on a very coarse grid one pixel can be quite
large relative to the character height (Figure 38). We may not
want to overhang the edges of the character at both the top and
the bottom of the x-height, but instead just overhang one or the
other (and at the same time maintaining consistency between the
letters within the typeface). We must, therefore, provide a means
of either shifting the outline or shifting the grid to better align
the edges of the characters with the edges of the grid.

Ll 1] Ll 1] Ll 1] Ll 1L

Figure 37. Uneven stem weight results from mis-
alignmentof outline character upon grid.

Displaying Bitmaps

Displaying a bitmap that has been derived from an outline
character introduces several problems that need to be resolved.
The first obstacle is that the coordinates that define the outline
may not map evenly into coordinates that define the grid. This
has been mentioned before in the example of a stem width that
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Figure 38. Overhang of curved edges produces
acceptable results at high resolutions (left) but results
in letters that are too large at low resolution (right).

should be 2.5 pixels wide; we must decide whether to round
down to two pixels or up to three. A further problem develops
when we try to display the outline representation of a character
along with a digital representation of the character at the same
size as the outline on a bit-mapped screen. To help elucidate the
problems that this process presents, we will describe a detailed
example. All computations are approximate (rounded to either
one decimal place or an integer value).

In the following discussion, a raster character is an outline
character that has been scan-converted into a bitmap. The size
of all characters within a font is the total vertical dimension
of the font, or the measurement from the depth guideline to
the height guideline. We also need to distinguish between
the resolution of the raster character, or the resolution of the
projected output device (here referred to as real pixels), and
the screen resolution, or the resolution of the display that we
are looking at (here referred to as screen pixels). In the current
implementation, the screen resolution is 100 dpi, with each paper
window encompassing a 600 x 768 area on the screen (three-
quartersof the available screen dimensions). Thus the maximum
screen size of any character is 600 screen pixels.
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Given an outline representation of a character, with
coordinate knots marked, we want to convert the glyph into
a 12 point raster character for a 300 dpi printing device. The
height of a 12 point character at a resolution of 300dpi is 50
real pixels (at 300 dpi, 72.27 points per inch, and a 12 point
character, size=300/72.27 x 12 which is 49.8 pixels. Because we
cannot print partial pixels, this is rounded to 50). Now suppose
we want to superpose the raster image over the outline image.
To do this, we can magnify the pixels in the raster so the raster
image is the same size as the outline. If the size of the character
is 400 screen pixels, we can display each raster pixel as an 8 x
8 square on the raster screen (400 screen pixels/50 real pixels
= 8 screen pixels per real pixel). This example works out very
well. Suppose, however, that we want to generate and display
a 10 point raster from the same outline. The size of the raster
in this case is 42 pixels (300/72.27 x 10=41.5 which rounds to
42). When we try to display this, each real pixel is represented
by 9.5 screen pixels (400 screen pixels/42 real pixels=9.5). If we
round this either up or down, the raster image will be 5% larger
or smaller respectively than the outline we started with (Figure
39). It is here that we have to make some decisions about what
we are going to display.

If we decide to scale the outline to fit the raster, the outline
of the 12 point character will no longer match the outline for the
10 point character. If, however, we do not scale the outline of
the 10 point character, the raster will not appear to fit within the
outline.

An alternate representation would be to present both the
12 and the 10 point rasters with the same size pixels (so that
instead of displaying the 12 point character with 8 x 8 pixels
and the 10 point character with 10 x 10 pixels, we would display
them both with pixels the size of the larger character, thus 8x 8
pixels). In this case, the absolute size would not match, but the
relative sizes would be drawn to the same scale.

ldeally, we want to provide a selection for the various
representations that the designer might like to see. These
choices include:
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Figure 39. Raster image is larger than the outline image
due to rounding of pixel size.

= scaling the outline image to the raster if there is a difference
of more than a certain percent; that is, we will adjust the
coordinates of the outline image (and the guidelines) so
that they match the raster grid. This means that if the
raster is 5% larger than the outline, we will also enlarge
the outline by 5%. Because the difference is dependent on
the chosen resolution and point size, the mapping only
applies to the screen display and not to the coordinates
of the knots that are stored in the database. Those knots
will remain independent of the raster conversion process.
This representation will most likely be used by a designer to
compare outlines to bitmaps.

—
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» selecting a master size and displaying all rasters at that
size; that is, all rasters will be displayed with the same size
screen pixel that is calculated for the master size. This
representation is most useful for comparing bitmaps to
bitmaps.

Another problem occurs if we try to scan-convert a character
and the resulting raster character is of a higher resolution than
the screen resolution. For example, if we try to generate a 72
point character at 720 dpi the raster size of the character is 717
real pixels. If our screen is only 600 screen pixels tall, we are
unable to display the entire raster character at one time on the
screen. The system, at this time, is limited to those sizes that
can be displayed in their entirety on the screen.

Spacing

Once several characters have been designed, we must be able

to evaluate them when they are displayed in a line of text with
other characters. This requires that we provide some means of
specifying and possibly displaying the spacing of the characters.
There is one traditional way to space digital characters and two
less common ones, each contingent on the mechanism that will
be used to typeset the characters. The formatters TgX, Scribe,
Troff and most other computer typesetters maintain a model

of letters as being enclosed in little boxes and consequently
contain routines to line up the boxes along a common baseline.
The more complex systems allow the boxes to be overlapped
along their edges, but to use this technique with one of the
current typesetting systems, the amount of overlap would

have to be specified for each pair of characters. This is not

a practice that we want to encourage as it is simply too time
consuming and too complex to specify the spacing for every pair
of characters.

An alternative spacing mechanism has been developed by
David Kindersley and Neil Wiseman [KIND69, KIND76] for their
Logos system. The spacing between characters is calculated
automatically and requires no specification of sidebearings
by the letterform designer. Logos spacing uses mathematical
calculations for determining the optical center of each character
and a standard width is then used between the centers of
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adjoining characters (Figure 40). The precise formulae for
determining the character centers is a trade secret, so only
typesetters who have licensed the calculations can actually set

characters using this algorithm.

Figure 40. Spacing of characters as determined by the
Logos system.

A third form of spacing allows characters to have uneven
boundaries, with the boundary of one character butting up
against the boundary of the next (Figure 41). This approach
has been called sector-kerning [NAIM85). The advantage of
this method is that the boundary can vary along the height of
the character so that a character such as ‘V’ with a wide upper
boundary has wide spacing at its top, but narrow spacing at its
bottom. If it is aligned with another character whose height is
the same as the V, the upper boundary will determine the space
between the two, but if it is aligned with a smaller character (one
that does not go above the x-height), the small letter will butt up
against the narrow part of the V and will thus space closer to it,
which is how it should be. As with the Logos system, however,
there are currently few typesetting systems that allow this sort
of spacing to be used.

No matter which spacing algorithm we choose to employ,
the grid size is still a limiting factor for any spacing that is
specified for a character; that is, the boundary specified by the
spacing mechanism must conform to the resolution of the final
character grid. If we generate a character at 300 dpi, we must
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Figure 41. Uneven character sidebearings allow for
adjustable spacing.

also space the character at 300 dpi. This indicates that final
spacing determination and evaluation must be done at the font

resolution, not at the outline or ideal resolution of the character
drawings.

Interpolation

One feature of existing input systems that has been found to
be quite useful is the ability to interpolate between designs

to create a typeface lying between two extremes, such as the
creation of a bold face, given a roman and an ultra-bold. This
technique usually requires that control points on the two
extremes be matched and of an equal number so that the system
knows which points to interpolate between. Work has been
done to develop a more sophlstic;ﬂted algorithm for use by the
Ikarus system which allows interpolation to be done between
characters with an unequal number of control points.

Library Functions

In addition to providing storage for data, we want to save
any additional functions that a designer has defined. This
customization should allow the designer to create new

commands, add them to the system, then have them saved
automatically when he finishes with a design session. The
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functions should become part of the system repertoire so that
they are included in the actions window each time the user runs
the system. One user's functions, however, may not be suitable
for another user of the system. We want each user to be able to
create a personal version of the system without interfering with
another user’s version.

Database Facilities

Once the designer has created some typefaces or typefonts, they
need to be saved in an orderly fashion without requiring that the
designer know too much about the organization of this data. The
internal organization of the data must be easily accessed and
updated, and must put no constraints upon the designer such
as requiring that letters be designed or retrieved in alphabetical
order. We must also provide storage and access for glyphs that
are neither letters nor printable characters, but may be merely
pieces of characters that must, in some way, be identified in a
consistent and coherent manner.

To provide a sufficiently rich and varied view of the data
that needs to be saved, we need to identify the different sorts
of information that a designer might want to store, and provide
a means of identifying it without forcing the designer to be
too cryptic. We do not, for example, want a designer to have to
refer to ‘serif type X986.3". We would, however, like to provide
different categories of data so that we can incorporate some sort
of organization on large amounts of information, but we must
be sure that the categories are of sufficient depth and breadth to

cover any organizational possibilities that a designer might want.

An obvious hierarchy is to provide a means of saving individual
typefaces, within which are individual fonts (characterized

by a specific size and resolution); each face or font may have
individual characters (alphabetic, numeric, or pi) associated with
it (each of which is part of the repertoire of recognized printing
characters), in addition to which there may also be glyphs, or
character parts such as serifs, stems, bowls or arches.
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The use of component parts as salient features within a
typeface could be supplied by graphics software that contains
graphic manipulation routines for reflection, rotation or copying
of selected areas on the display screen. Other transformations
that would be useful are the ability to enlarge parts of the
drawing (to ‘zoom’ in on it), and t6 move or delete parts.

Summary

We have evaluated the task that we are planning to emulate
and have proposed a variety of tools that we will use in the
implementation of a digital type design system. These tools
span the gap between the familiar and the innovative in
providing a variety of functions to a designer using the system.
We must now devise a mapping between these tools and our
workstation environment. In the next chapter, we describe the
system that we have designed to meet our objectives.



Chapter V

Architecture of the System

We should recognize that some applications are best thought of
as design problems, rather than implementation projects. These
problems require programming systems that allow the design to
emerge from experimentation with the program, so that design

and program develop together.
B.A. Sheil, Power Tools for Programmers

The organization of Paragon's design environment is based on an
underlying model that roughly corresponds to the functionality
of the system. Currently, it consists of a basic design system,
a database of glyph information, a library of actions, and a
customization toolkit. The basic system contains primitive
operations directly implemented in C code. Some of these
operations are specific to type design while others which are
more general include graphics commands used to manipulate
data and operations to retrieve and save information in a
database. Design-specific operations include provisions for
specifying guidelines (such as baseline, x-height, height and
depth), selection of different point sizes or resolutions, and
selection of specific glyphs from the database. The database
allows a designer to save individual character data as well as
glyph, font, or typeface information (a glyph is a character
part such as a serif or stem, or a combination of other glyphs).
The library contains user-defined commands that are built up
through use of the customization toolkit. The toolkit package
contains functions that allow a designer to create a personalized
type design system by combining primitive operations into
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new functions and then adding these functions to the design
environment.

Implementation

Paragon has been implemented on a Sun workstation with a
high-resolution display monitor (100 dpi, a low resolution for
output devices, but a high resolution for screen display), 2
megabytes of memory, a keyboard, and a mouse with three
buttons. The two means of user input are the keyboard and the
buttons on the mouse. The mouse provides control of a cursor
that is displayed on the screen and thus used to point to objects
on the screen which are selected by pressing one of the mouse
buttons.

When we began work on this project, a Sun was the only
machine available to us that had the hardware and software
for interactive graphic applications. Other machines with
appropriate computing power that were available were large
scale multi-user multi-processing systems but these had no
provision for the display of graphics or interactive manipulation
of graphic data. The available graphics software on the Sun at
that time was not very satisfactory, but since our experience
with machines of this sort was not very extensive and the
number of machines with the necessary resources was so
limited, we had little to compare it to and thus did not realize
until late in the implementation just how extensive the
problems were. Many of the problems we encountered in the
implementation of Paragon were not directly related to the brand
of machine but due to the infancy of its software.

The system that we began with was a preliminary version
of the software that was eventually released as the Sunwindow
package. Use of Sunwindow had a tremendous impact on the
final design of our system, an impact that we were unable to
anticipate or to alleviate once we were aware of it. One of its
features that we had to contend with was the mechanism by
which the programs processed input from either the keyboard
(key click) or from the mouse when one of its buttons was
pressed or toggled. The system could track mouse movement
by means of a cursor displayed on the screen, but could not be
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programmed to respond to mouse movement unless there was
an accompanying mouse selection.

The biggest disadvantage in using a Sun was the unstable
working environment that we had to deal with over a period of
about five years. We began working with one of the first Suns
available on the market. The accompanying software included
a complete Unix operating system but graphics support was
minimal. For the first two years, there were additional releases
of the software that made the earlier systems obsolete. Even
at the later stages of the development of our system, the Sun
graphics software continued to change and eventually reached a
state where the next upgrade was incompatible with the earlier
version that we were using. Because we could not spend our
time keeping up with the various releases, we chose instead to
freeze the Sun graphics software that we were using until we
finished development on Paragon. Although the Sun software
now appears to have reached a stable state, because of our
dependence on graphics support software which is no longer
available, our final system will not run under the most current
version of the software. Paragon was thus obsolete when it was
finished.

Another limiting factor in our use of a Sun was the amount
of memory available on the machines. We wanted to use some
features of the window package that would allow us to do rapid
redrawing of the display screen, but due to the limited amount
of memory we were using, we were unable to take as much
advantage of this feature as we would have liked. At the time
we started the project, we thought we had a sufficient memory
allocation, but as the system grew, we became more and more
limited with what we could do with it.

The final limiting factor in our use of a Sun was the resulting
system’s dependence on Sun software. Although we originally

planned to design the system so that all graphics software
was isolated in one module, thus facilitating conversion of
the system to run on other devices, we had to abandon this
modularity along with some of our early ideas about system
design when we decided that it was more important to get any
version of the system running on any machine available than it
was to maintain future portability.

él
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Another piece of hardware that we considered using with our
system was a bitpad with a high resolution input pad and a puck
with five buttons. The bitpad would have provided more precise
input data than the mouse, but it was not as easy to manipulate
since it required that the user watch the puck and not the screen
and did not provide continuous cursor movement. Feedback
from the puck was provided only at each button click resulting
in only one set of coordinates. This did not allow tracking of
a cursor on the screen, dragging of objects on the screen, or
drawing functions such as those needed to mimic the action of
moving a pencil across a sheet of paper.

In retrospect, the Sun had a reasonable working
environment. If the choice of machine were to be made today,
it would be difficult to choose a system from the many similar
systems now available. Each provides some outstanding features
yet each also provides drawbacks, ranging from screen size,
availability of development packages, accurate display of
information, to ease of implementation.

Interface Design Decisions

We wanted to build an interactive, extensible design system
for graphic designers who are unfamiliar and, in some cases,
uncomfortable with computers. For this reason, we decided
that all input to the system would be through movement of
the mouse and selection of mouse buttons with the exception
of items such as file or glyph names which would be entered
from the keyboard. The users of the system are classified as
novices, that is, they have little experience with computers and
no knowledge of programming. ~

Keeping these goals in mind, we built and tested several
preliminary systems before deciding on form of the final system.
While testing some of our design ideas, we discovered that
it was difficult to implement our initial ideas for interactive
environment with the Sunwindow package. Many of these
problems were due to early versions of the package. Two of the
problems that we encountered were:
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« Popup-menus did not cross window boundaries so if the
user positioned the cursor close to the edge of a window,
the menu was clipped. We did not want to require the user
to always select menus while positioned in the center of the

window.

« If a new window was opened, we had to finish all processing
in that window and close it in order to return to the previous
window. We could not have multiple active windows or
switch between overlapping windows.

As the result of several experiments, we decided not to use
popup menus, but instead we decided to display all selections as
static displays, that is, they would always be on display. Because
of the difficulty of getting new windows to work independently,
and the confusion that a designer might have in trying to
differentiate between windows used for different functions,
we decided to have one large window divided into three fixed
areas with specific options always displayed in the same area
of the screen. The three main areas are paper, actions and
messages. There are, in addition, two subwindows for glyph-
savingfunctions and toolkit operations. These subwindows are
selected, used, and closed before other processing resumes.

We attempted to test different possibilities for an interactive
dialogue with the system in our initial design phase, but we
soon realized that our rate of progress was too slow to ever get
beyond testing interactive ideas to actually developing a working
design system. At that point, we decided to select an interface
based on our original ideas, develop it and try it out. The details
that we were worrying about were not our major research
considerations; we were not developing the system to find out
whether font designers preferred popup-menus or static ones
but to discover whether it was possible to translate the design
process as a whole to a computer medium. The motivating factor
behind the methods we decided to use was that of minimizing
confusion by minimizing the number of decisions a designer had
to make that did not have to do with the actual design process.

3

|

13



91

One of our design decisions was to use only two mouse
buttons although the mouse we were using had three buttons.
After analyzing the design process, we decided that the user
needed to add things to the screen or take them away. If we
could have fit a third button into this scheme gracefully, we
would have done so, but every time we tried to fit a function in
with the third button, we discovered that it was easier and more
understandable to fit the function into the two button metaphor.
The result of this decision is that we have a few more functions
than originally planned, but selection of objects is facilitated
since the user only needs to remember that one button adds an
item to the screen and the other deletes it. '

System Design

In analyzing the design of Paragon, we have divided the system
into the external design factors, those concerned with the
system as the user sees it, and the internal design aspects, which
are those parts that support the external features but are hidden
from the user. We will discuss each of these parts separately.

External Organization _

The layout of the screen display of Paragon has been divided
into three basic windows or panes (Figure 42). Each window
has specific information that is displayed in it. In addition to
the basic windows, there are two overlay windows used for
display of information that is used less often. The three basic
windows initially display actions, used to select different actions
to be performed or objects to operate on; paper, on which all
drawing and designing is done; and messages that are either
system messages or help information. The overlay windows are
used to display database functions such as commands used to
select typeface, font, character or glyph information and the
customization toolkit, used to add, delete, or modify primitive
or user-defined actions.

When implementation of Paragon was begun, the original
intention was to have all information in the system displayed
on the screen at the same time, thus precluding the possibility
that a designer would be confused by different overlapping
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Figure 42. Screen layout of Paragon.

windows. Unfortunately, it became apparent that there was too
much information to display it all on the screen at the same time.
Use of overlays provides a coherent display to the designer in
that the layout of the screen and the size of the individual panes
remains constant although the contents of the windows change.
Because the functions in each display have been chosen to be
mutually exclusive, there is no need to switch back and forth
between the overlay and the display that it hides. If the overlay
is selected for display, any options in the basic window that
have been selected are remembered when the overlay is closed
and processing is resumed from the original window.

The Option Windows

The actions window, the glyphs window, and the toolkit window
all contain icons or labels used to invoke actions or select
objects within Paragon. To implement these option windows, we
had to build our own display mechanism rather than using the
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option window package provided within the Sunwindow system.
Option windows provide the user with lists of options from
which to choose. The Sun package provided routines to display
the lists in a fixed format, specify the contents of the lists, and
define the function each operatiofi invoked. Unfortunately, all
this information had to be specified at compile time which did
not allow new functions to be added to the lists interactively. In
order to add functions to the system, we needed the ability to
add new functions to these lists, or modify the appearance of an
existing function (the icon or name representing the function)
interactively, thus precluding our use of the Sunwindow option
package.

We chose instead to implement our own display and
selection mechanism. To provide sufficient flexibility, we read in
all the data displayed in our options windows from an external
setup file. This stricture allows us to control the addition or
removal of information from these windows while the system
is in operation by changing the data saved in the database
related to window display and redisplaying its contents. The
versatility that this gives us allows new features or operations to
be created and included in the database without reconfiguration
or recompilation of the entire system. Operations that can
be performed on the data include deletion, addition, or
modification. If the content of the database is changed, the
screen display will change to reflect these modifications when
a refresh of the display is requested. When the system is exited,
any changes are saved in a new version of the setup file.

We have divided the setup file into five different categories
of presentation objects. Each of these objects provides a
different, though not exclusive, means of specifying an action.
These presentation objects include:

» switch items - switches feature on or off

= function items - selects one function out of a list of either
text objects or icons

« value items — selects one value out of a list of either text
objects or icons
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« menu items — selected operation is a function that is
executed immediately

« labels - accepts keyboard input and is used to identify
objects

Within the setup file, each object is identified by a type,

a label, and a list of actions, each of which is identified by a
name, an operation code (or op-code), and an optional icon
bitmap. The icon is used to represent the item in the display
window, but if it is not present, the function’s name is displayed.
Within the screen display, selection of an operation is achieved
through clicking of the left mouse button while the cursor is
positioned within the boundaries of the icon or label after which
the selection is highlighted. Data for switch items includes two
bitmaps, one for the on state, and one for the off state. Selection
of a switch icon changes the state of the feature and results in
the reverse icon (the one corresponding to the new state) being
displayed.

Selection of one of the functions in the actions window
determines what action will take place in the paper window.
Available functions are either passive, that is requiring some
input from the designer before the action is performed, or
active, ones that are performed immediately when the action is
selected. Passive functions include ones to place and position
points, connect points, draw outlines or filled shapes, and
align points; active functions include actions such as erasing a
sheet of paper, cycling through a stack of paper, or displaying
guidelines.

Any function, value, or menu item can be displayed as
either an icon or text. Unfortunately, due to the limited size of
Paragon's windows, display of all items using their names takes
up too much space, so that all of the information will not fit in
the window. As there is no means of enlarging the window, the
icon form is currently used for most functions. Labels, however,
must be displayed as text names since icons are too obscure for

things like file names, and switch items must be icons since both
the on and the off state must fit in the same screen space.

—3 3
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Positioning of presentation objects in a window is
determined by their position in the setup file, modulo a little bit
of space optimization. For example, each list of function items
and value items appears on a separate row in the window (or
rows if the number of individual items is too long to fit on one
line). The first switch item is placed on a separate row from the
item that appeared just before it in the setup file. Subsequent
switch items, however, are positioned in the same row as the
first switch item until the row is filled up. The next switch item
is then positioned according to its location in the setup file, with
subsequent switch items again positioned in the same row until
the row fills up. Because icons are relatively narrow compared
to the window width, we could easily run out of room in the
window if switch items were each given a separate row in the
window. We have tried, therefore, to compact the placement of
these objects since we could easily do so.

In the basic system, the actions window contains functions
to manipulate sheets of paper, to edit outline sketches, to add
guidelines, and to remember a series of commands (Figure 43).
It also contains switch items to turn the help function on or
off, to display or remove grid or guide lines, and to change the
characteristics of the top sheet of paper from transparent to
opaque. Value items are provided for selection of a fill color,

a point size or a resolution size. (For a detailed list of these
functions, see Appendix B.)

To change the display of objects in the actions window, we
need only change the contents or ordering of the objects in the
database. These changes can be done through the use of the
customization toolkit, invoked through selection of a menu item
that results in a customization overlay being displayed in the
paper window. This overlay provides access to functions that
can be used to modify the behavior or appearance of any of the
items in the action window. ‘

The toolkit contains operations to add, insert, modify, delete,
reorder or select an existing function, in addition to an icon
editor. It permits a designer to make changes to an item without
affecting the original item, then allows these changes to be saved
and installed once they are finished. This installation can later
be revoked if the changes are not satisfactory. An existing item
can be modified by adding or changing its icon representation,
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Figure 43. Functions provided in the Actions (left) and
Glyphs (right) windows.

changing its name, or changing the function that it invokes if it
is a user-defined function (a non-primitive).

The contents of the glyphs window are controlled by
the glyphs that have been saved in the typeface file. The
window contains as a default the names of all single characters
present on the keyboard, a list that includes letters, digits, and
punctuation. When a typeface file is read in, characters that are
in the file are highlighted so that the designer knows which
of the characters listed are actually present in the file. If the
designer saves new glyphs, he can specify their names either by
selecting them from the default list, or by typing in a name. If a
new name is typed in, the name is then added to the character
list. In addition to items used to select glyph names, the window
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contains functions to save, retrieve or delete glyphs, to save or
retrieve files, and to specify file names.

The Paper Window
The paper window is used for creation or modification of
character designs. Operations that take place in this window
include drawing, editing, copying, rotation, reflection, scaling,
filling, smoothing, and specification of guide or grid lines.
Selection of these operations is made in the actions window.
Each of these operations is discussed in more detail later.
Selection of a function in the actions window may result in
a specialized cursor being displayed when the cursor is within
the boundaries of the paper window. These special cursors are
used as an aid to help the designer remember which function
has been selected. Different cursors include ones for drawing
(a small pencil), knot placement (a knot cursor), measurement (a
ruler), placement of guidelines (crosshairs), and selection of an
object (a highlighted knot). If deletion or removal of an object
is selected by pressing the middle mouse button, the cursor
displayed is the same as the standard one for that operation but
it is surrounded by a box drawn with dashed lines.

The Message Window

While a designer is using Paragon, the message window provides
informational messages about the state of the system. These
include system messages or prompts to the user. In a few cases,
such as when an outline is being calculated, the system may not
respond to user commands. In these cases, a message describing
what is causing the delay will be displayed.

Help information is invoked by selection of a switch icon
representing a user manual. When the function is on, the icon
displays an open book; when it is off, the book is closed. If the
function is on, selection of any other function results in a help
message being displayed in the message window. Messages will
continue to be displayed until the function is turned off. If a new
function is defined by the designer, she may add a help message
for the function.
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Internal Organization

Paragon consists of eight modules that largely parallel the
different windows presented to the user. The paper, actions,
messages, glyph, icon and toolkit modules contain subroutines
that control responses to mouse selections or movement within

the appropriate window.

3

« The paper module subroutines control the placement,
positioning, addition or deletion of objects on sheets of
paper. These functions include drawing, selecting sheets of
paper, positioning of knots, and placement of guidelines.

é!

« The actions module contains subroutines to set up and
display function options in the actions window and sets
up the action to be performed when a mouse selection is
made in the paper window: it changes the cursor, saves
the op-code to be executed when next selection is made in
the paper window, and sets up a mechanism to accept the
correct number of arguments to the op-code. For example,
if the designer selects the function move-segment, the
cursor is changed to a bulls-eye (indicating that a point
is to be selected), the op-code for moving a segment is
saved, and the number of parameters is set (in this case,
two: a point on the source segment and a destination
point.) When a selection is made in the paper window, the
operation corresponding to the op-code is invoked, and
the appropriate parameters are accepted. In the case of
our example, where the first selection is supposed to be
an existing point, the system will wait and prompt for an
appropriate first selection before accepting the second

selection.
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« The help module displays system help messages or prompts
in the message window. If the user selects the help function,
help messages will be displayed with each selection of a
function icon until the help function is switched off. m[
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» Subroutines in the glyphs and toolkit modules handle
the display of the glyphs overlay and the toolkit overlay,
respectively. They also handle mouse selections within the
window while the selected overlay is displayed. The glyphs
subroutine also contains functions to save glyphs in external
files. The toolkit subroutines include functions to add new
macros to the system.

= The curves module contains all the curve drawing or
scanning routines. These are basically the same routines
that are used in the Metafont program although they have
undergone minor changes to adapt them to our system.

= The icon module contains the icon editor, selectable from
the toolkit window. This was adapted from an early icon
editor provided with the Sunwindow package.

Within Paragon, there are three separate databases
containing non-overlapping information. The display database
contains data used to display information in Paragon’s option
windows. The glyph database contains data associated
with typeface and glyph information. The library contains
information about user-defined macros.

Display Database

Information stored in the display database is used to modify

or update screen displays. It is initialized from data read in
from the setup file during system initialization. There is one
set of data saved for each of the windows that uses a setup file
to initialize its screen display: the glyphs window, the actions
window and the toolkit window. The database consists of a
hierarchy of nodes and node-lists. Each group of functions is a
node-list. There are five types of node-lists, each corresponding
to one of the five types of setup objects. For each node-list,

we save node-header information consisting of: the label of

the list (e.g. Paper), the type of list (setup type), the number of
nodes in the list, a pointer to the visible node (the one that is
highlighted), the display type (whether it is displayed as icon or
text), its op-code(this tells us what action to take if the node

is selected), and pointers to the next and previous node-lists.
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By keeping all the node lists connected through pointers, it is
very easy to trace through all the lists and find which node has
been selected when there is a mouse selection or to redisplay
the window if an update has been made to any of the lists.

Each function displayed on the screen is stored as a node.
For each node, we save information about its screen position
and display (name or icon and dimensions of each), its visibility
(whether it is highlighted), information about what to do if it is
selected and data related to its position within the node-list
hierarchy.

Glyph Database
Information for glyph data is stored in an internal database
which is not accessible by the user. Its contents include:

« Typeface information: name, pointsize, resolution, number
of glyphs

« Glyph lists: name, status (saved, deleted, modified),
sidebearings, list of knots, parents (glyphs included in this
glyph), children (glyphs of which this is a part)

« Knot list (information from external file): position (x.y), type
(curve, straight), guideline attachments

« Point list (used to keep track of screen info): position (x,y),
pointers to various connecting knots such as next point in
point list, next point in segment, next point on this sheet of
paper, guideline attachments

« Guidelines: position on screen, display information (whether
on or off), list of attached points

As it turned out, keeping track of the information in the
database was the largest problem that we faced. Initially, we
made some decisions about what information we needed to
include in the database. As we used the system, however, we
determined that some of the information that we included was
not needed, while other information was, so the database grew
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and shrunk, mostly the former. For example, in saving knot data,
we initially chose to allocate a large array of knots, connected
by two linked lists, one for used knots, one for available knots.
Each knot contained a pointer to the knot before and after it in
the list. In addition, if the knot was connected to other knots in
the screen display, we needed t6 keep track of that information,
and again in both a forward and backward direction due to the
curve drawing algorithm that we chose to use. When we added
functions to handle different sheets of paper, we realized that
we needed to add information about which knots were on which
sheet of paper. If a sheet of paper was deleted, the knots on

it had to be deleted as well and returned to the available knot
list. In providing the function to attach knots to guidelines, we
determined that we needed to keep a list of which knots were
connected to which guideline. All of this information was kept in
one list with many pointers so that we would not have to update
multiple lists if a knot was deleted.

Information that we decided that we did not need was
usually so embedded in the database that it was more difficult
to remove than to leave in so it was usually left in. For example,
after watching designers use the system, we noticed that they
never positioned unconnected knots on the paper. Each knot
on the display was always connected to at least one other knot.
Had we realized this earlier in the design stages, we would have
revised the knot-list model so that it was based on segment lists
rather than individual knot lists. It is not clear that the database
would have been any smaller, but it might have been easier to
manage.

Library Information

The library database consists of two types of information.
The first is a stack containing macro functions that have been
saved and named but not yet added to the system; the second
is storage for user-defined functions that have already been
added. For each macro, we needed to save information about the
functions it is composed of including each function’s op-code,
number of parameters, next function in the list and previous
function in the list. For macros that have been added to the
system, we had to save additional node information used for
displaying the function in the actions window.
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External Databases

There are three external sources of data for the system. These
have already been discussed briefly. First there are glyph files
containing typeface, font and glyph information. These files are
read and written by the system at the user's request. Library
files contain information about user-defined macros. These files
provide the system with information on the appropriate actions
to take when the function is invoked. The final type of external
data is the setup file which has already been discussed. It is
used to initialize the display of function names and icons in the
actions, glyphs and toolkit windows.

System Operation

A description of the architecture of Paragon gives little idea of
how a designer actually interacts with the system to create type
designs. We will attempt to remedy that omission by providing

a detailed example of how a designer uses the system, followed
by an evaluation of some of the decisions that were made during
the implementation process.

At startup, the screen display presents the user with three
windows: the actions window, the paper window, and the
message window. The actions window provides functions that
are used to draw, edit, and save glyphs drawn in the paper
window. The message window displays system messages.

The actions window contains icons for functions used
to manipulate objects in the paper window. Functions are
implemented in a prefix notation; the arguments to the action
follow the operator selection. We chose to use a prefix style
because it seemed more natural to designers to specify the
operation that they wanted to perform, then the objects on
which to perform it. This means of specification worked out well
within the model of our system as it allowed us to implement a
mode-less interaction paradigm. When a function was selected,
we saved the information we needed to invoke it without
actually invoking the function, and thus going into a mode where
the system was expecting certain input and that had to be exited
before regular processing could be resumed.

=)
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Functions that take no arguments are called active functions
since they are active as soon as they are selected. Functions that
take arguments are called passive functions since they must wait
for user input before any operation is performed. If an active
function is selected, an action will be executed immediately, in
which case the designer sees the result of the action right away.
For example, if the designer selects the function to save a glyph,
the glyph information is saved immediately. If he selects a new
piece of paper, the new sheet of paper is displayed on top of the
stack.

Selection of a passive function sets up the operation that
will be performed when the user selects the arguments to the
function. For example, if the designer selects the action to add
a knot, nothing happens until the user clicks the mouse in the
paper window, at which time a knot is added to the display. To
change the operation that is executed in the paper window, the
user simply selects a new function. A selected function does not
need to be executed; if the user changes his mind about which
function to perform, he simply selects a different function.

The actions window also contains value items and switch
selections. Selection of a value item sets a value that may be
used with an action selection. Fill patterns, for example, are
represented as a list of value items. Selection of one of the fill
patterns establishes the pattern that will be used the next time
the fill operation is invoked. Switch selections are used to turn
on or off certain display features such as guidelines, gridlines,
and the help function.

Within the paper window, the left mouse button is used for
selection of an object and the middle button is used for deletion
of an object. The right button is not used. Mouse action may
require the user to press a button in which case it should be held
down while further actions are performed, or that she click the
button, in which case she should press and release it.

Drawing

At system start-up, the drawing function is enabled, a state

that is indicated to the designer by a small pencil cursor that
appears when the cursor is positioned in the paper window. The
designer can sketch shapes by holding the left mouse button
down and dragging the cursor. A one pixel wide pen is drawn as
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long as the button is held down. Lines can be erased by holding
down the middle mouse button and dragging the cursor along

. the line to be erased. The eraser is 8 pixels wide (the width of
the cursor) so erasure is not as precise as drawing. This feature
is provided since it is difficult to erase a one pixel wide line with
a one pixel wide eraser except by multiple passes of the eraser.
The characteristic of the eraser being wider than the drawing
point, incidentally, mimics the features of a real pencil where
the eraser is wider than the graphite point. To erase everything
in the paper window, there is a function in the paper list called
erase-page.

Once a shape is drawn, the designer needs to position
control points (or knots) along its edges. He may select one of
three functions for adding knots: adding individual straight-
edge knots, adding individual curve-edge knots, or adding
connected (straight-edge) knots. Since all shapes must be drawn
with connected lines before they can be digitized, it is easlest to
start by selecting and using the connect-knot function. At each
press of the left mouse button, a knot is added to the current
sheet of paper. Each knot is connected to the previous knot. If
an existing knot is selected, that knot is added to the connected
list and no new knot is created. Each knot can be connected to
at most two other knots. If a fully connected knot is selected,
that is, one that already has its full compliment of connections,
an error message is displayed and no action is taken. To create
disconnected lists, re-selection of the connect-knot function will
start a new list. Also, selection of the first knot of a connected
list will close the polygon, finish off the list, and uncouple the
selection process; the next knot selected will not be connected
to the previous knot.

The two other add-knot functions will be used less often, but
are useful in that they can be used to change an existing knot
to that of the selection type. For example, the user might draw
several connected knots, then use the curve-knot function to
convert some of the knots into curve-edge knots.

The connect-knots function connects all knots by straight
lines. Once the user has drawn a series of connected knots, she
can select a function to draw a smooth curve through the knots
(Figure 44). If there are no curve knots in the list, all the knots
will be connected by straight lines, but if there are curve knots,
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the resulting shape will generally conform to the following
conventions:

» all curve knots will have a curve passing through them
* two straight knots will be connected by a straight line

« a straight knot between two curve knots may have zero-

continuity (that is, the curve may or may not break at that
knot)

= to create a knot that is tangent to a curve (for example, the
Join of a curve and a straight line with first-order continuity),
the point of tangency must be a straight knot (but this does
not guarantee first-order continuity).

Because there are many possibilities, experimentation with
the different knots to get a feel for how the curve and straight
knots interact, will provide a better model for the user than a
description of the curve characteristics.

When drawing many shapes, a designer will want to
standardize measurements through the use of guidelines.
Selection of one of the guideline functions changes the paper
cursor to a guide marker. Specific guidelines are those that are
displayed with a letter in their icon and include depth, baseline,
x-height, cap-height and height. They can be added or moved,
but can only appear once per window (you cannot have two
x-heights, for example). General guidelines (either horizontal or
vertical) are also available and are indicated by a guideline icon
without a positioning letter. These guidelines can appear more
than once. :

Display of guidelines is controlled by a switch selection.
This switch simply erases or displays the guidelines on the
current sheet of paper; it does not erase their values. To erase
or change a guideline, the user must explicitly delete it using the
middle mouse button when the guideline function is selected.
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Figure 44. Outline shapes with curve and straight knots:
mixture of straight and curve knots (top left); straight
knot between two curve knots with zero-continuity

(top right); straight and curve knots showing tangency
at the point of intersection (bottom left); straight

and curve knots showing no tangency at the point of
intersection (bottom right).

Filling Shapes ,

If the user has drawn a closed polygon, the polygon can be filled
using the fill-segment function. To fill a closed shape, the user
indicates which polygon he would like to fill by selecting one of
its knots. It will then be filled with a solid black color pattern.
To change the pattern used to fill a polygon, the designer must
select one of the available fill patterns before selecting the
polygon. When the polygon is filled, the selected fill pattern will
be used to fill the character. If two overlapping polygons are
filled with different patterns, the patterns will overlap, thus the
designer will see three patterns: the pattern for the first object,
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the pattern for the second object and the intersection of the two
patterns where the figures overlap.

The polygon can also be filled with a raster calculated for
a specific size and resolution. To do this, the user selects a
point size and a resolution and indicates the depth and height
of the glyph by positioning the depth and height guidelines.
When the fill routine is invoked, the polygon will be filled with
a bitmap calculated to fit those specifications (Figure 45). For
example, if the user selects a grey fill pattern, a point size of
8 and a resolution of 300dpi, and positions the appropriate
guidelines, Paragon will generate and display a grey-filled raster
pattern equivalent to the dot pattern that would be generated
if the character were being digitized at that size (details of this
operation were given in the previous chapter). The raster fill
pattern will only be calculated and displayed if all the needed
components (the point size, the resolution, the depth and height
guidelines) are selected. Thus to revert to a solid fill, the user
should remove or clear one of these values. The point size or
resolution can be cleared by clicking the right mouse button in
the function label; in the case of the point size, the user would
select the label pointsize rather than one of the numerical values.

Use of the bitmap-fill routine along with the availability of
different fill patterns gives a designer the ability to draw an
outline then fill it with different raster patterns calculated for
different resolutions or point sizes. The resulting display allows
the designer to see where two bitmaps differ and perhaps where
the outline shape should be modified to generate better bitmaps.
The designer might draw a lower case ‘n’, specify a resolution
of 300 dpi, a point size of 10 points, and a fill pattern of 25%
grey, and fill the character. She then changes the point size to 12
points, selects a right-diagonal fill, and selects the fill function
again. A different bitmap is displayed on top of the first one, but
the differences between the two can be seen where the two fill
patterns do or do not overlap (Figure 46).

Once a shape has been drawn, it can be modified through
moving of points and recalculation of the curves connecting the
points. Functions are provided to move a single point, move-
point, by dragging the point while the right mouse button is
pressed, or moving a connected segment or series of points,
move-segment, by dragging one of the points in the segment. A
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Figure 45. Outline and bitmap calculated for an 8 point,
300dpi character.

segment can also be copied, an action that is performed in the
same way as moving a segment, except that, when copying, the
original segment remains in place.

Additional Functions

Two functions have been provided to assist the designer in
aligning points either with each other or with a straight edge.
The first function, which is used to align two points, has two
variations: a horizontal alignment and vertical alignment. If the
designer selects one of these functions, then selects two points
on the screen, the first point is aligned with the second point in
either the x- or y-coordinate. This alignment is not permanent; if
one of the points is subsequently moved, the second point will
not move with it.
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Figure 46. 5 point and 12 point character bitmaps
calculated from same outline.

The second alignment function provides the means of

attaching a point to a guideline after which the point will move

whenever the guideline is moved. This function provides a
way to specify a set of points that will always remain aligned
with each other. To attach the point, the user selects the
function; then the point is moved so that it lies on top of the
guideline. Each point can be attached to at most one vertical
and one horizontal guideline. If the point is positioned on the
intersection of two guidelines, it is attached to both of the

guidelines.

Three transformation functions are provided for segments:
they can be scaled, in which case the x and y proportions remain

the same; they can be stretched, where the x and y dimensions

may be scaled differently, or they can be rotated through the x-y

plane (Figure 47). To scale or stretch a segment, the designer
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must first draw a source box around the object to be scaled. He
first selects one corner of the box by clicking the left mouse
button, then selects the second corner by pressing the left
button down and holding it while he adjusts the size of the box
by moving the mouse. In the case of scaling, the box will remain
a square; or stretching it will be a rectangle. Once the box is
drawn, the button is released. The user then selects an anchor
point on the segment. This anchor point will remain fixed when
the object is scaled; that is, the coordinates of the anchor point
will be the same before and after the transformation. After the
anchor point is selected, the designer must draw a destination
box to indicate the desired size of the object. This second box
will have one corner positioned at the first corner of the source
box, so only the second corner of the destination box needs to
be positioned. After this is done, the object will be scaled so
that there is the same ratio between the original object and the
final object as there is between the sizes of the two boxes.

Rotation is done by selection of two source points that are
located on the segment and selection of two destination points.
The object will be rotated so that a line that passes through the
two source points will, after rotation, lie along a line that passes
through the destination points. The first source point and the
first destination point will be matched up which may resuit in
the object also being moved if the two points do not have the
same coordinates.

Saving a Glyph

Once a character has been drawn and edited, it can be saved.
Since there may be more lines or segments on the screen than
the designer may want to save, the desired segments must first
be highlighted. This function changes the smooth line drawn by
the outline routine into a dashed line so the user can see which
segments have been selected. Once the desired segments have
been highlighted, the user selects the glyph menu option which
pops up the glyph window on top of the actions window.

" Within the glyph window there are functions to name, select,
save, or delete glyphs, and to name and save files. The window
also contains the highlight function so if the user changes her
mind or neglects to specify the desired segments before opening

]
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Figure 47. Scaled (top), stretched (middle) and rotated
segments (bottom).

the overlay, she need not switch back to the action window to do
So.

To save a glyph, the user must first either select a glyph
name from the available list, or select glyph-name and type in a
name (with no embedded blanks) and terminate with a carriage-
return. Once a name has been selected, the user chooses save-
glyph and the glyph is saved in memory. If she is adding a new
glyph, the glyph name is added to the glyph list in the window.
If the user also wants to save the information in a file, she
should select file-name and type in a file name, (again with no
embedded blanks and terminated with a carriage-return), then
select save-file. Any glyphs that have been saved will be written
out to the file. It should be noted that saving of a glyph or a file
will overwrite any previous file or glyph with the same name. If
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a file already exists and the designer wants to add a glyph to it,
she should first read the file into memory with read-file, save the
glyph, then save the file.

Toolkit

To add a new function or item to one of the lists, the designer
first defines the operation using the facilities provided for
remembering a sequence of commands. After selecting the
start-remembering function, the designer selects and executes
the series of actions that he wants to define as a macro. When
he has finished, he selects stop-remembering. If the repeat-
memory function is selected, the remembered commands will be
repeated. If user input (such as knot placement or selection) is
required when the macro is repeated, prompts will be issued in
the message window. To save this macro, the user must name
it using the macro-label function, and save it using the save-
command function. If a macro is not saved, it is overwritten by
the next macro that is defined and thus disappears.

Saved macros are kept in a list. Selection or definition of
a macro places it on top of the list. Selection of the repeat
command will repeat the macro that is at the top of the list.

To move a saved command to the top of the list, the user must
enter its name in the macro-label field (terminated by a carriage
return), then select retrieve-function. Once the function is at
the top of the list, it can be executed by selecting the repeat-
memorycommand.

For example, if the designer defines a macro and then selects
repeat-command,Paragon will execute the macro that was just
defined. The designer then names the macro draw-box and saves
it after which he defines a second macro, names it draw-circle
and saves it. Selection of the repeat-command function at this
point will result in the execution of the draw-circle macro. To
repeat the draw-box macro, the user must enter the macro name
in the macro-label field, select retrieve-command, then select
repeat-command.

These macro definitions will last only until Paragon is exited.
To make the macros permanent, the user must select the toolkit
option in the menu so that the toolkit window is displayed.

This window contains functions to add, select, delete, or edit
macros from the permanent repertoire of the system. To add

37 _3 _3 __3
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a new macro, the user selects the add-function option. He is
asked to select the list he wants to add the macro to and is then
prompted for the macro name. He may create an icon for the
macro by selection of the icon-edit function but if he does not,
the macro’s name will be used as a label. Once he has specified
all this information, he selects do-it, the macro is added to the
actions window and the screen display is updated so that the
icon or label is displayed. At this point, the icon can be selected
and the function will be executed in the same way as other
functions. When the program is exited, all new macros will be
saved in an external file and will reappear whenever the program
is restarted up again.

Other functions in the toolkit window allow the designer to
change the name or icon for any of the existing functions. He
first selects the list containing the object he wants to change,
then selects the item to be changed in the list. If he is changing
the name, he then selects label-name and types in a new name; if
he is changing the icon, he selects icon-edit and the icon editor
will appear with the current icon displayed in it. After changing
the icon, the user must save it and exit the editor. He then
selects do-it and the icon is changed in the actions window.

Design Decisions

In designing Paragon and in choosing which functions to assign
to specific devices, many decisions had to be made. In addition
to determining which functions we wanted to provide for the
user, we had to decide how to implement those functions. Some
of the decisions that we made worked well within our design
paradigm, others were not so successful. We discuss here some
of the decisions, how they were implemented, and how well the
implementation worked.

User Input

Available means of input to the system were a keyboard and a
mouse. The keyboard was used to enter file names, glyph labels,
and macro labels. The mouse was used for selection of items in
the actions window and for manipulation of objects in the paper
window. It had 3 buttons and provided feedback when buttons
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were both depressed and released, a feature we were able to
take advantage of by programming the system to perform certain
functions when a mouse button was pressed and others when it
was released.

Mouse Buttons

One decision we had to make was that of allocating mouse
buttons to different functions. We wanted to maintain
consistency between operations and, at the same time, get the
most selectivity out of the buttons. Because we were developing
an interactive system for non-computer users, we decided to
emphasize consistency over enhanced selectivity, a decision

that was to prove only moderately successful. We decided to
use the left button to select or position objects and the middle
button to delete objects or previous selections. This means of
selection worked successfully for delineating individual items
but did not give us the means of selecting different objects, such
as segments. Our solution was to provide a separate function for
manipulating segments which required that the user indicate a
knot on the segment with the select button (the left one).

A more successful model might have been to use one button
for selection of points, one for selection of segments, and one
for selection of regions, with some other means used to delete
items. We could have also used a variation of a model that was
used with the Xerox Star system [SMIT82] so that multiple button
clicks selected larger items; one click would select a knot, two a
segment, and three a region, though we would still have needed
a means of delineating the region.

Function Selection

In addition to maintaining consistency with each selection, we
wanted to maintain simplicity by providing as much functionality
out of a selection as possible. Rather than requiring a

designer to spend time setting things up, we tried to supply
complex operations that used fewer selections. As a result, we
implemented actions as higher level functions even though this
gave us less flexibility in the final system. To be specific, rather
than giving the user a choice between items (points, segments,
regions, sheets of paper) with a corresponding selection of
actions (move, delete, copy, add), we implemented complete
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functions (move a point, move a segment, move a region, add

a point, etc.). This allowed the designer to make one selection
to perform an action. The alternative was for the designer to
make two selections, one for the action and one for the item.
This alternative might have made the customization process
easier, but would have been tedious for the designer when she
was working with the system to design characters. We chose to
provide higher level functions because we thought a designer
would spend more time designing than customizing, and we
wanted to facilitate the design process. Again, in retrospect, this
was not the best solution in terms of ease of implementation or
ease of customization. -

Screen Appearance

Another decision we made was to provide only one window
and divide it into several different regions rather than popping
up different windows that overlapped or providing multiple
windows of the same type. The motivation here was to reduce
clutter and make it easy for the designer to see what was going
on. With only one screen layout, the display remained consistent
whenever the system was run. Eventually we discovered that
we had too much information and too little space to display

it in. When we realized that we needed more screen space,

our only solution was to usurp one of the regions temporarily
by overlaying its display with new information. When the
designer is through with it, the overlay is closed and the region
is returned to its previous display. The overlays, however, were
self-sufficient in that they did not require input from other
windows while they were open.

Another problem we discovered was that we ran out of room
in one of the regions (the actions partition), and had to re-
evaluate which functions to keep in that area, which to move to
another region, and which to eliminate altogether. Even after we
created the glyphs overlay to handle database manipulations and
thus removed all the glyph operations from the actions window,
the actions region was almost full. The size of the window
cannot be changed by the designer to allow for more icons.



116

Part of this lack of space comes from the fact that we
added a lot of functions to the system that were not originally
envisioned. Although this might have been a result of
poor planning, it was instead the result of discovering that
there were many useful functions to be provided within a
graphics environment that went beyond the designer’s original
specifications. We discovered, as the system developed, that
there were a lot of computer graphics functions that were
applicable to this environment. Examples of these added
functions are ones to attach knots to guidelines, to align knots,
and to rotate and stretch glyphs.

Curve Drawing

Implementation of curve-drawing facilities within Paragon was
focused on providing easy-to-manipulate and easy-to-modify
shapes. Additional provisions that could be added are the ability
to directly control the Bézier control points by displaying and
moving them around on the screen, by allowing specification of
tangent directions at any point, or by specifying tension on a
particular curve. The ability to perform each of these functions
is already built into the curve algorithms that were used, but has
not been implemented for the designer's use.

A drawback to the curve-drawing routines that we have
chosen to use are that the curves cannot be controlled
interactively; all interactions are done on objects made up of
straight line segments. To produce a curved edge, the user first
draws a polygon made up of knots connected by straight lines,
marks the knots that should lie along a curve, and then selects
a function that will draw a smooth (and possibly curved) edge
through the knots. If no curve knots are marked, the polygon
knots will be connected only by straight lines.

There is a tradeoff between having powerful curve-drawing
functions and providing immediate feedback to these routines.
We chose to support more flexible and powerful curves at the
expense of providing immediate feedback. The curve-drawing
routines we used were developed for a batch-oriented drawing
system, not an interactive one. The advantage to using them
is that the curve actually goes through each point the designer
selects. Adjustment of the curve can be done by adjusting
the points on the curve, then requesting that the curve be
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redrawn. The use of these routines interactively (with the

curve moving with each knot adjustment) was not investigated
so it is not known whether it is, in fact, possible to modify

the existing algorithms to do sufficiently fast calculations to
provide interactive feedback. Curve-drawing in Paragon is not
unbearably slow but it is not always easy to predict what a curve
will look like. Perhaps with intensive use of the system (and
familiarity with the curve drawing functions) a designer will
become comfortable with the routines we have provided.

Summary

We have provided functions to allow a designer to draw
and edit character shapes, to display these shapes as digital
representations, and to add additional commands to the system,
all as part of the standard working environment. In the next
chapter, we evaluate how well these tools worked and describe
modifications to the system that would be necessary to make it
into a production tool.



Chapter VI

Performance of the System

The possibilities of investigating new alphabetic forms compatible
with the computer printout is exciting. Surely this can be
accomplished within the limits of traditional letter proportions
and beauty, just as the late fifteenth-century punchcutter broke
away from his dependence on pen-drawn manuscript letters. It is
for a new generation of type designers to meet the challenges of
this ancient craft.

Alexander Lawson, Printing Types, An Introduction

The evaluation of Paragon as a type design system focused on
three areas, each corresponding to one of the problems that we
were attempting to solve. We wanted to know, first, whether a
designer, with no prior experience, could use and understand the
. design paradigm that we developed for Paragon; next, whether
we had defined and recreated a designer’s traditional tools
sufficiently well for the designer to use the system with little
training; and, finally, whether we had supplied the designer with
a complete set of tools to enable him to work easily. Our second
area of evaluation was to see whether the new computer-
enhanced tools that we provided enabled a designer to create
designs for a digital medium easily and whether these tools were
of assistance in the design process. We were also interested in
seeing whether the designer’s process changed to incorporate
these tools so that the design process became more efficient.
The third area of evaluation was the toolkit package and whether
the designer understood how it worked and used it to create and
add new functions to the system.
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System Evaluation by Designers

The designers who used Paragon were uniformly enthusiastic
about its performance. The features that were most frequently
praised were the ability to select and manipulate more than

one sheet of paper at a time, the display of raster patterns at
different sizes and resolutions, and the customization toolkit
both for its provisions for extending the design system and for
the potential to use it to create individual instantiations of the
system. The functions that allowed a designer to attach points to
guidelines and the saving of character parts were also favorably
mentioned.

Use of the system by designers was a very informal process.
Approximately ten designers used the system to varying
extents throughout the design process. Some of them saw
demonstrations of the system in its early stages; some only
saw it when all development work had been finished. All of the
comments received throughout the evaluation process were
favorable; most designers had suggestions for improvements
or additions and all of them wanted to know when the system
would be available for them to use on a permanent basis.

The only difficulty encountered in evaluating the tools we
provided was that since designers were not used to having an
interactive design system, they were willing to adapt to whatever
tools we provided for them. When asked for suggestions as to
what could be improved or changed, they were more likely to
suggest new functions rather than changes to functions that they
had already been given. Suggestions that they did make were
incorporated into the system when possible.

Traditional Tools

The metaphor we developed for modeling the traditional

tools used by designers seemed to work very well. All of the
designers understood how to use the pencil and paper paradigm:
how to sketch and erase drawings, select and move control
points, add guidelines, or switch to another sheet of paper. They
were particularly pleased with the versatility provided by the
different sheets of paper and the features that went along with
them such as displaying a grid or guidelines on the sheet, or
making the sheet opaque or transparent. The ability to maintain
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different versions of a design or different sketches, thus enabling
them to switch from one design to another easily, was very
important. Their appreciation of this model was based on its
similarity to the traditional environment where they might be
working on several different ideas at the same time with all the
designs residing on various sheets of paper all piled together
on top of their drawing table. As they work on different designs,
they shuffle the sheets of paper around, rearranging the stacks.
The only part of the model that we did not implement was the
ability to maintain several stacks and to switch between stacks,
but this idea did not occur to us until after the system was
finished.

Although the mouse did not give the designers the control
that they were used to with a pencil, use of the mouse for
drawing and erasing was not a problem since it turned out that
most of the designers abandoned this feature right away. Most
designs were created by positioning control points directly
and then manipulating the shapes by adjustment of the points.
Management of curve shapes was slightly hindered by the fact
that the curves could not be changed interactively, but this did
not seriously affect the design process. The designer’s ability
to adapt quickly to the curve drawing technique was facilitated
by the algorithm we selected that allowed the designer to
position the points that would lie on the curves; as designers
became familiar with the curve facilites, they said that they could
visualize in their mind the evenutal shape of the curve despite
the fact that the points were only connected by straight lines.

There was a little confusion over the use of mouse buttons
since some designers were used to using the right and left
buttons rather than the left and middle buttons, but this was
mostly due to familiarity with other drawing or design systems
they had used previously. Some were confused by the fact that
the third button did not do anything, despite a message that we
displayed in the message window that informed the user of this
fact.
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New Computer Tools

Designers adapted very quickly to the use of tools that they had
never used before, because the tools made sense intuitively. The
tools were seen as extensions to existing tools and were treated
as such. Use of the function to generate and compare bitmaps
for different sizes or resolutions was very popular. It allowed
the designers to evaluate a designs for a specific device or font
size and was considered to be indispensable for the generation
of digital designs. A designer would draw or edit a shape, then
compare different point sizes or resolutions to see what the
raster looked like as the values changed.

Guidelines were always used although the ability to attach
knots to guidelines and move them was not used as much. The
usefulness of this function was limited to those points that lay
directly on top of one of the lines. Although the designer could
add as many lines as necessary, too many lines led to confusion
as to which line was being used for which purpose. It would
have been helpful to be able to specify a fixed distance away
from a line and attach a point to that distance which would have
eliminated the need for so many guidelines.

Functions to do graphic manipulations on characters such
as scaling, rotation and stretching were not used often but were
considered to be invaluable when they were used. The ability to
move multiple points while maintaining a consistent relationship
between them was considered to be extremely helpful.

Macro Definition Capability

The function of Paragon that stood out the most from other
design or drawing systems that had been used by designers
prior to their exposure to Paragon was the ability to define new
macros and add them to the system interactively. The means of
saving a new function was easily understood and used after a
preliminary explanation (all the designers who used the system
were given an initial demo by the author of the system). It was
not used extensively, though, since the operations provided
with the initial system were generally sufficient for what the
designers wanted to do.
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One drawback to the extension package was that it was not
general enough—a failing not of the model but of the system
designer who did not have enough time to implement all of its
capabilities. The toolkit package could easily have been used
to add new point sizes or resolutions, or new fill patterns, but
since these operations were seen as secondary to the ability
to add new executable functions, they were not implemented.
One of the designers who used the system wanted to change the
resolution values (e.g. 300dpi, 240dpi) to be the names of types
of printers (such as Imagen or Laserwriter), so that he could
select a printer name or type and have the system generate the
correct resolution. Because we did not extend the toolkit to
operate on value items, the only way to change the numbers to
names was to manually edit the setup file.

Future Enhancements

Extensions or improvements to Paragon fell into three
categories. The first type were ones suggested by designers
who had used the system, the second type were those that were
thought of but not included due to space or time restrictions,
and the third type were those that we deliberately chose to
exclude since we felt they did not fit within our design model.

Designer Suggestions

In evaluating the actions that we provided with the system, the
designers had quite a few suggestions for improvements or
additions. Suggestions that were made were:

« Invisible connections: we needed a means of connecting two
segments together invisibly so that if one was moved, the other
moved with it. This feature would be used in characters that
have more than one contour such as the letter ‘o’ where there

is an inside and an outside segment. In retrospect, this feature
is so obvious, we were a little embarrassed to admit that we had
left it out.
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= Moving partial segments: sometimes a designer wanted to
move parts of segments (group of points within a segment),
but not the entire segment. This can be done within the current
system but only by disconnecting the part to be moved, moving
it, then reattaching it.

» Font metric information: in addition to providing measure-
ments of objects, it would be nice to store these measurements
so that we can maintain a list of design dimensions such as
stem widths, x-height, or width of each of the characters in a
typeface. These dimensions would change depending on the
typeface (for example, a designer might want to store the angle
of slant in an italic face, but would not need this value in an
upright roman), so the system should allow flexible labeling of
various measurements. It should also be possible to convert
these values into other units such as inches, ems, millimeters or
pixels.

« Match measurement: given an existing measurement, it would
be helpful to have the system be able to match it in some
consistent way. For example, a designer might want to match
absolute measurements (screen coordinates) or pixel values.

« Modifying static fields: currently, static fields such as pointsize,
resolution, and fill patterns cannot be modified by the designer.
It would be nice (and not much work) to give them the ability to
add or delete values from the pointsize, resolution or fill pattern
lists.

« Representing glyphs as icons: designers could use the icon
editor to create an icon representation of a glyph within the
glyph saving window, rather than having to use a name for
each glyph. Alternatively, but a bit more work, would be for the
system to calculate the bitmap of the character at a very low
resolution and size and use the bitmap as an icon in the glyph
list.
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» Local guidelines: since not all guidelines are used with each
character, the ability to specify guidelines local to a particular
character or group of characters would lead to less clutter on the
screen.

« Diagonal guidelines: the system currently has little direct
support for the design of italic or slanted fonts. To facilitate
this, we need to provide a function that would allow positioning
of diagonal guidelines. :

« Measurement of angles: we should provide a protractor for
measurement of angles that would likely be used in the design
of diagonal letters or italic or slanted fonts. Accompanying this,
it would be nice to be able to match an angle to an existing one.

Primitive functions to support the addition of these functions
by a designer are not available so they would have to be added
by a programmer. The difficulty of adding these functions
varies, but all of them could be added without compromising the
architecture of the current system.

Production Features

Although the designers liked Paragon, and uniformly expressed
interest in having a version available for their own use, it was
felt that the system was not quite powerful enough for it to

be a production version in its present instantiation. There

are many additional functions that would need to be added

to provide the ability to create and proof the large number of
typefaces produced in a working environment. The features
that it is missing are ones that exist in current type production
systems and should not be difficult to add to Paragon. The most
noted feature that was missing was the ability to create output
in a specified format such as raster patterns in a run-length
encoded format, or outline data with Bézier control points, but
the desired format differed with each designer who suggested
the addition. It would not be difficult to add a routine to provide
output in any of the suggested formats, but this was felt to be
as a site-specific addition since each site was likely to want a
different output format.
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Additional Suggestions

Other features that were suggested for addition include some
that we explicitly chose to exclude from the system for one of
two reasons. Some were not part of a designer's current working
environment (such as the specification of constraints between
character parts), while others had already been implemented

and thus known to work successfully (such as interpolation
between characters). We chose to concentrate on the provision
of tools that were more experimental in nature, keeping in

mind that if the system was successful enough to warrant it,

we could consider adding these already proven features at a
later date. When making a decision about what to include and
what to exclude (albeit temporarily), the decision in each case
was to implement those functions that were new or had not
been tried before. The features that were left out were taken
into consideration in the planning of the system so they may be
easily added at a later date. Functions that are available on other
systems include:

» Additional graphic manipulations: these would include zoom
operations through the use of windowing, either to view parts of
a character that do not fit on the screen or to select a small area
of the screen which can then be enlarged to fill the screen. This
allows a designer to work at a higher resolution and to adjust
design characteristics with greater detail.

Provision of this feature would also allow us to work with
characters that are larger than the screen dimensions. We would
like to display as much of the character as possible but would.
need to provide the means for adjusting the display so the parts
that are not visible could be viewed. We would need to be able
to clip the raster output to the size of the window and provide
windowing or a means of selecting and displaying different parts
of the raster character in the window so that even if the designer
cannot see the whole picture, she can at least see it in parts.

Windowing is used to look through a window at a larger
scene behind the window (Figure 48). The portion of the larger
scene that is seen through the window is called the view. If the
view and the window are the same size, there is a one-to-one
mapping of the view to the window. If the view is smaller than
the window, it will have to be scaled up to fit the window, and
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conversely, if it is larger it will have to be scaled down. If we
are trying to represent exact character shapes, we want to stick
to a one-to-one representation; if we want to do fine-tuning,
however, we might want to scale the view up or down to fit the
window.

Figure 48. Windowing to see different parts of the
character shape when the entire character is larger
than the window.

« Matching of character dimensions: if one stem on a character is
a certain width, it should be possible to specify that some other
part of the character (possibly another stem) be matched to the
first width. The only way two dimensions can be matched in the
current system is to measure one by using the measure function,
then to manually adjust the second until its measurement
matches that of the first one.

—
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» Interpolation of character shapes: given two different designs,
interpolation allows a designer to automatically create an
intermediate version. Usually, the two designs must have an
equal number of control points along their edges, although work
has been done on interpolation between shapes with a different
number of control points [ELSN81], [KARO87].

» Output from the system: use of the system would be enhanced
if it were able to produce various forms of output directly, such
as GF files for Metafont, font files for Postscript, or SC files for
lkarus.

« Display of spaced characters: spacing of characters by lining up
their sidebearings is a necessity when designing fonts. Without
consideration of the spacing between characters, the font is
unusable. If we could provide this on the screen display, it
would give us some idea whether the characters work well
together and whether their spacing is acceptable, even though

it is not an adequate substitute for proofing characters on paper.

[ ]

« More sophisticated channeling operations: we would like to

be able to use an arbitrary orientation of straight edges for
channeling operations. The system currently allows orientation
in a horizontal or vertical direction, but this does not give

the designer enough flexibility if he is working on an italic or
slanted font. He will most likely want to have guidelines that are
not oriented at a 90 degree angle to the baseline.

» Slanting of characters: a related operation would be one

to automatically slant each character by a certain number of
degrees. This would allow creation of slanted versions of roman
faces by a simple graphic manipulation that the system could
handle without the designer needing to redraw each character.
Inclusion of this feature does not guarantee that a face slanted
in this manner is an acceptable design, but it would facilitate the
creation of such a face.
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Although we would like to think that the architecture of
Paragon would eventually become stable, addition of these
features would still not make the system complete. The more
the system is used, the more features it appears to lack. In one
sense, this is encouraging, as designers are becoming more
creative in thinking up ways that a computer system can enhance
their design environment. In another sense, it is discouraging,
since it invalidates our premise that we can build a system
that is designed with a flexible enough interface to allow the
designers to provide the extensions to the system. Many of the
extensions that we have listed here would require the expertise
of a computer scientist since most of them do not fit within
our original design paradigm. Although we could redesign and
rebuild the system to include them, it is likely that we will never
be able to completely satisfy the design community.

Maintaining a Simple Model

The audience for any implementation of a model environment
should be defined before any preparation of the material

is undertaken. Whether we are writing a book, delivering a
lecture, or designing a computer system, we must understand
for whom this presentation is being made and structure our
material accordingly. Paragon was designed for novice computer
users—persons who have had little or no computer experience

and who, for the most part, have had little incentive for doing so.

An important goal in Paragon’s design was to provide a simple
model so the typeface designer will not be overburdened with
either tasks or complexity. In view of this goal, several decisions
were made as to what features were going to be deliberately
excluded from the final system.

We chose to concentrate on crafting an environment for
a type designer. We considered other issues, while resisting
the compulsion to add every last gizmo and whizbang to the
system without careful consideration of its impact on the entire
system. We also tried to avoid implementing a simplistic answer
to an intractable problem, which in most cases is worse than
nothing at all. An example of this is that of meta-design and
on a smaller scale, that of design-by-parts, in which individual
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character parts are designed, and are then used to construct
characters using a specification stipulating how the parts are to
be used to reconstruct each character. It is not clear whether the
specification is created before the character shapes are designed,
or whether the specification postdates the designs. In either
case, the design of typefaces in such a manner would require

an expert system with built-in knowledge of how characters are
formed.

Although there has been some research in this area [COUE75,
HERS67, MERG68, ADAM86, ADAM87], it has not yet come
up with any viable solutions. The idea is to design parts of
characters from which a complete character set can be built up
automatically. A change in one or a few parts can result in a new
look for a particular design. An example of this technique is the
change of a bracketed serif to a slab serif. This might be useful
if someone were generating a font for a printer of low resolution
and needed darker characters; a slab serif would give the face a
heavier look on the terminals and would thus be more readable
if printed on a low-resolution device. The use of character parts,
or meta-design is usually supported in theory, but is difficult to
quantify or create, especially by a designer.

Experimental work that could be done using a system such
as Paragon might provide different curve-drawing routines for a
designer so that he could experiment with ones that best suited
his needs. Other experimental work could be done with scan-
filling algorithms. The one we have chosen to use is a good one
and has been specially tuned to a type design environment, but
there may be other methods that might suit a designer in other
ways. Investigation into methods of automating the process of
matching an outline to a particular scan-resolution could also be
done.

We tried to create a system that allowed a designer to
duplicate his current design environment within an interactive
computer environment. We decided not to implement
certain features which have been provided in other typeface
environments but which are not inherently part of the designer’s
process. For example, this system makes no provisions for
the creation of meta-designs, or designs that can be adapted
to different point sizes by specification of meta-parameters
as is done with the Metafont system [KNUT82]. Although a
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few designers have attempted to use Metafont as a design
system [BILL87], it has not yet been determined that a designer
understands how to convert the idea of ‘metaness’ into an actual
design, nor how to go about it through a programming metaphor
[SOUT85].

A problem with the meta approach is that the task of
creating meta-designs is not well defined. Some meta-designs
have been based on a pen-stroke metaphor; that is, one in which
the designer draws each stroke of a letter with a variable shaped
pen nib. Meta-ness is specified by varying the width or shape of
the nib of the pen in addition to changing the overall dimensions
of each font. The task of specifying meta-constructs to specify
the changes that must be made to an outline design is much
more difficult and not within the scope of this project. For
example, given the stem of an outline character, if a designer
wants to make the design bolder, he can simply widen the
stem. The task is not quite so easy though, for in order to
make the stem wider, he must move one of the edges relative
to the other edge. The problems come in deciding which edge
to move, in what direction to move it, how far to move it, and,
less obviously, how to specify this to a design system. Because
we wanted to maintain a model closest to a designer’s original
means of designing a character, and thus chose to employ an
outline method for the specification of character shapes, we
made an implicit decision to make no attempt to provide the
means of specifying meta-descriptions of characters.

We also decided that Paragon would not provide any means
of specifying constraints within or between parts of characters
that allow the design to change while controlling which parts
of a character change and how they change at different font
sizes. This approach has been implemented as a part of the
font production process at both Bitstream [FLOWS84] and
Imagen [BRAD87], both of whom claim some success at using
their systems to produce different size fonts from one outline
description.

Although both these functions have been shown to be
useful in the aforementioned design systems, it is not clear that
they are well understood by a designer who has never used
them. Specification of meta-ness in the design or constraints
to control the design changes at different sizes requires one of
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two techniques. Either a designer must analyze the relationships
between the characters and come up with metrics to describe
them and then specify these metrics to the system, or these
relationships must be pre-specified by the design system. This
is not easy to do nor is it an intuitive process. At the risk of
missing some potentially useful features, we decided in the
present implementation to include just those features which

a designer does understand and use. Inclusion of these more
complex features (and possibly others as well) remains a future
design goal.

In addition, Paragon is not an input system; we are not
providing any functions to support entry of pre-designed
patterns. We made a deliberate decision initially that this
would be a system for the design of original typefaces, not
one for copying either new or old ones. There are several very
successful commercial systems available for the conversion
of existing designs into digital renderings; it was decided that
Paragon would try neither to duplicate these systems, nor to
challenge commercial enterprises with what is, essentially, a
research investigation.

In this same light, we decided that Paragon would contain
no bitmap editing facilities. One of the questions we are trying
to answer is whether a designer can design shapes directly that
conform to the restrictions imposed by converting them into
raster patterns. Since it has already been established by practice
that designing letterforms bit by bit is neither a viable aesthetic
alternative nor a very productive one, providing this feature was
not deemed to be a step in the right direction.

Paragon is also not an expert system. There is no inherent
knowledge in the system regarding the aesthetics of typefaces,
nor is there any built-in way of manufacturing typefaces given
certain parameters or features: the system cannot take a stem
and an arch and create the letter ‘n’. The design process is a
visual one; to create a system which understood the visual
characteristics of letterforms and created its own was not our
goal. We chose instead to provide the tools and to require the
designer to provide the expertise.
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Finally, this is not a programming system. There are no
variables to be assigned, no arithmetic operations or conditional
expressions, no explicit allocation of resources. Although
there are internal representations for much of the data, the
user has no recourse to their allocation or control. This, again,
was a deliberate decision. We are trying to create a system for
persons who have neither any knowledge of programming, nor
any need to know. We feared that provision of even the most
basic programming constructs would have compromised the
original design goal: that of providing an interactive, extensible
environment for non-computer technicians. We also thought any
semblance of programming or the need for programming would
possibly drive away those persons the system was intentionally
designed to attract.

We have concentrated on the interactive aspects of the
system that are design-related such as drawing, editing, saving
of information, and storage of new tools. Several areas of
investigation have been bypassed not because they were not
necessary, or useful, or interesting, but because they were not
part of the research issues we chose to investigate. This is not

to say that these areas do not have challenging problems that
need to be solved, but that the problems they incorporate are
not those we are attempting to solve at this time. Topics for
future investigation include subjects such as generation of grey-
scale fonts, fragmentation of typefaces into parts which can
then be used to recreate the whole, a comparison of different
curve-drawing algorithms for typeface rendering, and interactive
specification of meta-designs.



Chapter VII

Summary and Conclusions

There arrives, now and again, in the history of typography, a
time of crisis and following it, the emergence of a new design
which takes its place as the watershed between one period and
the next.

Stanley Morison, Towards an Ideal Italic, The Fleuron

Summary

We have seen that changes in typeface design have come about
largely because of changes in the technology used to display the
typefaces. With the advent of each new technological change, the
design mechanism has adapted to produce characters that are
more suited to the current technology.

From Gutenberg's original invention of movable type to the
development of font editors on computer workstations, the goal
has always been been to adapt the designs to the technology to
take advantage of or to minimize problems with each successive
invention. Type was first constrained to fit within small boxes
so the boxes could be lined up side by side. With improvements
to the materials used with printing types, designs became more
refined and delicate. Automatic casting machines led to designs
that were constrained to fit within fixed-width categories.
Photo-typesetters gave rise to typefaces that had to compensate
for the effects of the photographic emulsion process. These
typefaces also had to be able to stand up to scaling or stretching
so that multiple designs could be produced from only a few
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patterns. Digital typefaces must be created to overcome the
effects of conversion of the letter design into a raster pattern,
effects which include such problems as uneven stem widths or
jaggies along the edges.

We do not know where the future will take us. We can be
sure, though, that the proliferation of the written word will
be with us for quite some time and that we will need legible,
attractive, and recognizable type designs in order to remain a
literate and cohesive society. Although a few proposals have
been put forth advocating the design of radically new typefaces
for the computer age, these design changes are usually as mired
in the fads of the present as the old designs are in the history
of the past. Our letterforms will remain familiar and easily
recognized in the future because our society is too dependent
on the use of the written word to be able to consider with any
seriousness any drastic changes in such a familiar medium.

Conclusions

We have designed, built and tested a type design system that has
been created for the use of designers who are unfamiliar with a
computer environment. This was not meant to be a production
tool, but an experimental one designed to provide a testing
ground for the use of new techniques in the design of digital
type faces. Our goals and our achievements are:

« First, we wanted to emulate a designer’s environment; we
have done this by providing, within a computer model,
equivalent tools to those a designer uses and a means of
using them similar to that used in a traditional pencil and
paper environment.

- Second, we wanted to provide a means of transition for the
designer to move into the realm of designing digital faces
for digital output devices. To do this, we have provided
enhancements to the traditional tools used by the designer,
enhancements that facilitate the design process within a
computer environment. In addition, these tools assist the
designer in the craft of designing digital characters. These
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tools include guideline adjustment, aligning of knots, and
digitization of character shapes.

« Third, we have supplied a means of extending the basic
system so that the designer can add tools to the system
to create a rich and varied command set customized to his
own specifications. The designer can extend the repertoire
of available commands by defining macros and adding
them to the system interactively. These added commands
are permanent additions to the original system functions.
The customization is all done graphically; there is no
programming required.

Although this system addresses and proposes solutions
to many of the problems associated with the design of digital
typefaces, there is still much to do in the field. With the
development and evolution of raster output devices, be they
laser printers, workstation screens, dot-matrix typewriters, or
phototypesetters, many problems remain to be solved. Some day
we hope to create digital typefaces to equal the beauty of the
traditional typefaces produced by the early practioners of this
art.



Appendix A

Lexicon of Typographic Terms*

arch - curve shape within a letter connecting two straight

stems.

aspect ratio - ratio between the height and width of a pixel. On
a CRT screen, this ratio may not be 1:1 in which case characters
that are meant to be printed on a device with a 1:1 aspect ratio
will be distorted when displayed on the screen.

ascender - that part of a character that extends above the x-

height.

ASCII - American Standard Code for Information Interchange.

There are 128 codes each assigned to a particular letter,
punctuation mark, or control function.

baseline - imaginary line upon which characters are positioned.

Bézier curve - parametric cubic defined by the position of four
control points of which only the endpoints lie on the curve.

bit-editor - program that allows tuning of individual pixels in a

raster.

* Sources for these definitions include:

[MINT81], [SIMO45]
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bitmap - digital representation of an object. A character

that has been digitized has been converted into a pattern of
small discreet elements or pixels; the pattern is similar to one
produced by drawing the character outline on a piece of graph
paper and then darkening the squares on the paper that fall
within the outline.

bitpad - tablet with a means of sensing the location of a stylus
or puck on its surface.

body - the dimensions of the box within which a character is
positioned. For any font, the body height is uniform; the body
width varies with individual characters. In metal type, the body
is slightly larger than the total character dimensions in order
to allow for a small edge around the face of the type; in digital
type, the characters are often the same height as the body.

bold face - typeface which is heavier and darker than its roman
counterpart.

bowl - any curved part of a character surrounding a closed
white space.

b-spline - curve defined by 4 or more control points, of which,
only the endpoints lie on the curve.

calligraphy - from the Greek kalligraphia, beautiful writing.

cap-height - the normal upper extremity of capital letters; in
some typefaces this is the same as the ascender height.

casting type - the process of making metal type by pouring
hot metal into a mould then removing the type from the mould.
Type may be cast in individual letters or as complete lines of

type.

channel - a pair of parallel guidelines used to delineate points
that should all align along a line that is centered between the
guidelines.

cicero - measurement equal to 12 Didot points.
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cold type - type that is printed by some means other than
letterpress printing such as that produced on phototypesetters
or laser printers.

control points - points along the edge of a character outline
indicating where the outline changes its continuity or curvature.

counter - the non-printing area within an enclosed or partially
enclosed character.

Cathode ray tube (CRT) - electronic beam used to etch images
made up of dots or lines onto a display medium such as a
terminal screen, photopaper or film.

descender - that part of a character that extends below the
baseline.

Didot point - point measurement proposed by Frangoise
Didot in the late eighteenth century. Used mostly in European
countries.

digital - composed of small discrete elements.

display typeface - typeface designed to be displayed at a
large size, and used primarily in advertising or display material.
Display type is not necessarily designed to be easily readable
and may be distorted or ornamented in order to attract maximal
attention. (See text typeface.)

dpi - dots per inch; used by printing manufacturers in
measuring resolution of printing devices such as laser printers
or phototypesetters.

dpm - dots per em; used by typeface designers in measuring
resolution of typefaces.

ductal - shape that is drawn upon a flat surface with a series of
strokes using a writing implement such as a brush or pen.

em - measurement equal to the square of the body type; a 12
point font has an em that is 12 points square.
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en - space equal to half an em.

extruder - stroke extending beyond the usual contours for a
group of letters.

face - printing surface of a piece of metal type.

family - group of typefaces based on a common design.
Commonly there is a roman, a bold, and, more recently, an italic
version of a design. Modern type families may contain both serif
and sans serif faces.

font - a complete set of characters for a particular typeface
rendered at a specific size (and, for digital type designs, at a
particular resolution). When metal type was founded (or cast),
the pieces of metal that were produced were called the fount.

glyph - character or character part.

glyptal - shape that is carved or etched upon a flat surface
(such as the shape on the end of a punch).

grid - raster size for a particular resolution.

hairline - fine line, straight or curved, often used in the
upstroke of a letter.

hot-metal type - type produced via means of casting hot metal,
including hand cast type and type cast on the Linotype and
Monotype machines.

ink-jet - printer employing a fine spray nozzle that shoots
drops of liquid ink onto paper.

interpolation - means of producing a typeface design that is
part way between two existing faces.

italic typeface - typeface designed to contrast yet harmonize
with roman type. It is distinct from roman type that has been
slanted as some of the italic character shapes, notably the lower
case ‘a’ and ‘g’, differ from the shapes used in a roman face.
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jaggies - jagged edges resulting from digitization of edges
which do not align along a straight edge.

justified - set type which has an even margin along both the
right and left edges.

kern - any character whose face extends over the edge of the
body so that it overlaps the body of the previous or following
character.

laid paper - paper made in a mould containing parallel wires
laid side by side, thus producing ‘laid lines’ on the finished
result (in contrast to wove paper).

laser printer - printer employing a laser beam in the process of
placing marks on a page.

letterpress — printed on a press that uses metal or wood type.
An inked roller is used to apply ink to the image on the type.
The ink is then transferred to paper by pressing the paper onto
the face of the type.

ligature - two or more letters on one body that have been
designed as a single character.

lining figures - numerals which align along the baseline.

Linotype - composing machine produced by the Linotype
Corporation which cast solid lines of type called slugs.

lower case - the small letters or minuscules.
majuscules - the large letters, also called capitals or uppercase.

master - large pattern from which many sizes of letters are
produced usually through the use of a magnifying or reducing
lens. Masters may also be used with CRT devices that enlarge
or reduce the size of the writing spot to change the size of the
resulting character.

matrix — copper mould containing the intaglio, or relief,
impression of a punch.
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metrics - character dimensions. These are used to provide size
information to a text formatting program used to layout a page
of text.

minuscules - the small or lower case letters.
Monotype - machine produced by the Monotype Corporation

that cast individual pieces of type and was controlled by
punched tape.

mouse - pointing and selection device used in conjunction with
computer workstations.

o-height - height of the lowercase o.

old style figures - numerals which do not align along the
baseline.

pantograph machine - machine which could cut punches or
matrices from a large metal pattern.

phototypesetter - typesetter that draws characters on film or
photographic paper.

phototypesetting - the process of typesetting characters on
film or photographic paper.

pica - measurement of 12 points or approximately 1/6 of an
inch.

pi font - punctuation or other characters which are not usually

included in a font such as fractions, math symbols, ornaments, or
musical signs.

pixel - from picture element; small discrete element directly
addressable on a raster CRT screen.

point - unit of measurement used to measure font sizes;
approximately equal to 1/72 of an inch.
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point system - first proposed by Pierre Fournier and later
promoted by Francoise Didot, it was an attempt to standardize
the myriad of type sizes that were being promulgated with no
thought as to their use in combination with other sizes of type
or type made by other manufacturers. With standardization

of sizes, printing houses could purchase fonts from different
typefoundries with the assurance that the fonts were all made
to the same specifications.

proof - test version of a character printed on on the medium
on which it is intended to be viewed. When a punchcutter cut a
new character on a punch, he would hold the face of the punch
up to a candle to put soot on it, then would press the punch
onto a piece of paper to see what the character shape looked
like. These came to be known as smoke proofs. Proofs may be
printed with a combination of characters so that the designer
can check the spacing and evenness of the character shapes with
each other.

puck - selection device used in conjunction with a bitpad or
digitizing tablet. Contains crosshairs used to select a precise
position, and buttons to indicate selection of one of several
options.

punch - rod of steel or other hard metal upon which a character
shape is carved in relief.

ragged right - text which has been set with an even left margin,
but an uneven right margin.

raster - digital representation of an object. (See bitmap.)

Roman - the character set used in the printing of texts for
Latin-based languages.

roman - upright face containing all the standard Roman upper
and lowercase characters, numerals and punctuation.

sans-serif - class of typefaces which is characterized by the
absence of serifs.
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sector-kerning - spacing system in which characters have
uneven sidebearings. The characters will butt up against each
other depending on their sidebearing shapes. Characters that
have been designed with sector-kerning usually need no special
kerning when they are typeset.

self-spacing type - type which is designed upon a unit-grid
system so that spaces added to justify a line of text need only be
produced in multiples of the unit-size. Popular unit sizes were
18-, 36- and 54-to-the-em.

serif - finishing stroke on a character stem.
set - body width of a character.
sidebearing - the left or right boundary of a character.

slanted typeface - roman typeface which has been slanted,
usually to the right.

sort - individual pieces of metal type in a font; when a printer
ran out of a particular character, he was ‘out of sorts’.

stem - one or more main vertical strokes in a character.

stencil - curved edge used as a guideline for the placement of
points which should lie along the curve.

terminal - stroke ending other than a serif.

text typeface - typeface designed to be legible in large
quantities at small sizes and used primarily in the printing
of large amounts of text such as books, magazines, and
newspapers. (See display typeface.)

type - piece of metal type.

typeface - unified set of character shapes which may be
rendered at a particular size to create a font.
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typefounding - the process of cutting punches, stamping and
justifying matrices, and casting and finishing type. In early
typefoundries, printing with the types may have also been done
in the same location.

unit-count or unit-cut - letters that are constrained to fit
within prespecified unit sizes that were hardwired into the
typesetting machine.

uppercase - the capital or majuscule letters. (See lowercase.)

workstation - computer terminal with graphics display and fast
computing power.

wove paper - paper made on a mould in which the wires are
woven together. Wove paper has a finer grain than laid paper
and thus can reproduce finer details in the printed characters.

writes-black - printer employing a laser beam that leaves a
charge on a metal drum in the areas where the drum is supposed
to pick up toner particles.

writes-white - printer employing a laser beam that de-charges
a metal drum in the areas where the drum is not supposed to
pick up toner particles.

x-height - height of the lowercase letters without ascenders
and descenders; the height of the lowercase x.
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Appendix B

Summary of Commands

Press means to press a button and to hold it down. Click means
to press a button and release it.

Switch functions - Selection of one of these functions toggles a
switch between two different states.

help - turns on help mode. When the system is in help

= mode, clicking any icon or label results in a help message
related to that function being printed in the message window.
To turn off help mode, click the help icon again.

display-grid - turns grid lines on or off. Grid lines will

not appear unless a pointsize and a resolution have been
selected and a height line and a depth line have been specified
(see guidelines, below).

@ display-guidelines - turns guide lines on or off. (see
guidelines, below).

paper-quality - switches the quality of the top sheet of

paper between opaque and transparent. If the top sheet
of paper is transparent, any marks on the sheet below it can be
seen in the paper window. If the top sheet is opaque, only the
marks on the top sheet of paper appear in the window.

paper-switch - switches between two sheets of paper. Use

the new-current command to mark the sheets you want to
work with.
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Value functions - Selection of one of these items sets a value
that is used with other command selections.

fill-color - selection of one of the fill colors results in that
fill color being used when the fill-curve command is selected.
Fill colors available with the basic system are: white, 25% gray,
medium gray, 50% gray, left-diagonal, right-diagonaland black.

point-size - selects the desired point size of a font. This value
is used with the fill-curve command when filling a character and
is saved with the typeface information. Can be de-selected by
clicking the left mouse button while the cursor is positioned

within the function label (‘Pointsize’).

resolution - selects the desired resolution of a font. This value
is used with the fill-curve command when filling a character and
is saved with the typeface information. Can be de-selected by
clicking the left mouse button while the cursor is positioned
within the function label (‘Resolution’).

Paper - these are commands to manipulate different sheets of

paper.

new-sheet - puts a new sheet of paper on top of the stack.
1 There are currently 8 sheets of paper available.

paper-delete - deletes a sheet of paper from the stack.

paper-current — pops the current sheet of paper to the
top of the stack.

display-all - displays the contents of all the sheets of
=l paper (effectively making them all transparent).

paper-cycle - cycles through the stack of used sheets of
= paper. Each selection of this icon results in the next sheet
of paper in the stack being displayed.

@ paper-erase - erases all marks on the surface of the
current sheet of paper. This includes all lines and knots.

3
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new-current - makes the sheet of paper that is currently
displayed the current sheet.

-

Edit - these are commands to manipulate marks on the current
sheet of paper.

draw - provides a pencil-like drawing tool. Holding down

the left mouse button while dragging the mouse through the
paper window results in a line that follows the mouse trail being
drawn in the window. Holding down the middle button provides
an eraser.

mark-knot - either adds a new edge knot to the current
sheet of paper, or, if the mouse is positioned over an
existing knot, changes the knot to an edge knot.

mark-curve - either adds a new curve knot to the current
sheet of paper, or, if the mouse is positioned over an
existing knot, changes the knot to a curve knot.

connect-points - draws a connected line between

knots. Each click of the left mouse button either adds a
new connected knot or adds an already positioned knot to a
connected line segment. Clicking of the middle mouse button
over an existing knot removes the connection between it and
other knots. A knot may be connected at most to two other
knots.

move-point - moves a knot. If the left mouse button is

pressed while the cursor is positioned over a knot, the knot
is dragged as the cursor is moved. The position of the cursor
when the button is released is the new knot position.

move-segment - moves a connected line segment to

a new position. Press the left mouse button while the
cursor is positioned over a knot in the segment, then move the
cursor while the button is still pressed. The segment attached
to the knot under the cursor will be moved to the new cursor
position. While moving the knot, only the knot will move; the
lines connecting the segment will stretch to the new position.
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Once the button is released, the entire segment is moved so that
the original relationship between the knots in the segment is

preserved.

= copy-segment - copys an existing segment. First
select a knot in the segment to be copied, then select the
destination position of that knot. The entire segment will be
copied to the new position.

@ rotate-segment - rotates an existing segment. Select two
knots on the segment (they need not be contiguous), then
select two destination positions for the knots. The segment will
be rotated so that the first selected knot is positioned on the
first destination point, the second knot will be positioned on the
line that passes through the first and second destination points.

scale-segment - scales an segment. This function scales
a segment equally in the x and y direction. You need to
enter four points. First you will draw a square indicating the
source box. Click the left mouse button to select a point that
will be one corner of a square, then select the second corner
by pressing the left button and dragging the cursor until all the
points you want to scale are within the square. Then release the
button. The next point you will be prompted for is the anchor
point. This is the one point on the segment whose position
will not change after the character has been scaled- all other
points will be moved relative to this one. Next you will draw
the destination box, but since the first corner of the source box
will also be used as the first corner of the destination box, so the
final point to be entered is the second corner of the destination
box. The segment will be scaled so that the contents of the first
box fit inside the second box.

stretch-segment - stretches an segment, This function
scales a segment unequally in the x and y direction. You
need to enter three points. First, select a point with the left
mouse button that will be one corner of a rectangle, then
select the second corner by holding down the left button and
dragging the mouse until the rectangle is the desired original
size. The first corner will also be used as the first corner of the

3
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destination box, so the next point to be entered is the second
corner of the destination box. The segment will be scaled so that
the contents of the first rectangle fit inside the second rectangle.

=~ connect-curve - draws a curve between knots on a
i) segment. Select one knot on the segment and the curve will
automatically be drawn.

R3] fill-curve - fills a closed segment. Select ohe knot on the

segment and the character will be filled with the current fill
color. To see the raster for a character at a particular resolution
and point size, select the point size, and the resolution, and
specify a height and depth line (see Guidelines, below).

highlight - highlights a segment by drawing its
connections with a dashed line. Segments must be
highlighted before they can be saved as glyphs.

erase-lines - erases all lines on the current sheet of paper
~ but leaves the knots intact.

T3] measure - displays measurements between two knots
— or guidelines on the screen. Select the first position by
clicking the left mouse button, then select the second position
by holding the left button down until the cursor is positioned
over the desired position. The measurement between the first
position and the cursor will be displayed continuously as the
button is held down.

align-x - aligns two knots in the x direction. Select the
first knot, then select the second knot. The first knot will
be aligned with the second one.

align-y - aligns two knots in the y direction. Select the

first knot, then select the second knot. The first knot will
be aligned with the second one. (Mnemonic: align (this one) with
(that one)).

align-guide - aligns a knot'wlth a guideline. If the
@ guideline is adjusted, the knot will move with it. Select the
knot, then select the guideline. If the second selection is at the
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intersection of two guidelines, the knot will be aligned with both
guidelines. Each knot can be aligned with at most one horizontal
and one vertical guideline.

Guidelines - allows positioning of guidelines in the paper
window. Specific guidelines are provided for: depth, baseline,
x-height, cap-height, height, left-sidebearing, and right-
sidebearing. Only one guideline of each type is allowed.
Additional guidelines are provided for arbitrary horizontal

and vertical lines with up to 10 of each allowed. It should be
noted that specification of guidelines is only a visual guide; no
constraints are provided by the system to ensure that a design
does not exceed the guidelines specified. A few of the guidelines
have specific functions.

@ depth - lower bound of character. This must be specified
for filling of character at a particular resolution and point
size.

@ baseline - line upon which all characters rest. If specified,
and a grid is selected, the grid is aligned with this position.

@ x-height - body size of lower case characters.

@ cap-height - height of uppercase letters. In some
typefaces, this is the same as the height, so the cap-height

line may not be needed.

height - upper bound of character. This must be specified
for filling of character at a particular resolution and point
size.

E left-sidebearing - left boundary of character box. The
character will be aligned along its left sidebearing with the
right sidebearing of the character positioned on its left. The
character edge need not be (and is usually not) aligned with the
sidebearing. If specified, and the grid is switched on, the grid is
aligned with this sidebearing.

—3 3
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@ right-sidebearing - right boundary of character box. The

character will be aligned along its right sidebearing with
the left sidebearing of the character positioned on its right. The
charcter edge need not be (and is usually not) aligned with the
sidebearing. In some cases, the right sidebearing may be to the
left of the character edge.

E horizontal guideline - horizontal line placed at an
arbitrary position. There may be more than one horizontal
guideline on the screen at one time.

[U vertical guideline - vertical line placed at an arbitrary
position. There may be more than one vertical guideline on
the screen at one time.

Remember - provides macro definition facilities allowing a user
to customize and save new commands. The last specified macro
is either the last remembered macro, or the last selected macro,
depending on which one was specified last.

E’] start-macro - start remembering commands. All
commands up until selection of the stop-macro command
are remembered in the order in which they are selected.

E stop-macro - stop remembering commands. Terminates
the list of commands that are remembered by the start-
macro command.

;:} repeat-macro - repeat remembered commands from last
24l specified macro.

step-macro - repeat remembered commands step by step,
pausing between each command. To proceed to the next
step, select step-macro again.

@ backup-macro - delete last specified command. If used

while remembering commands, the last remembered
command is removed from the stack. This command has no
effect on macros that have already been saved.
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E save-macro - save remembered macro with specified
name. You must first specify a name in the macro-label

field.

i'H select-macro - find named macro in memory. You must
8% cnhecify a name in the macro-label field. Subsequent
selection of the repeat-macro command will execute this macro.

cancel-macro - cancel definition or execution of macro.

If this is selected while remembering a command, all
remembered actions are erased from the stack. If it is selected
while executing a macro, all further actions within this macro are

cancelled.

macro-label - specify macro name. This is used when saving a
macro, save-macro, or selecting a macro, find-macro. Terminate
the macro name with a carriage return.

Toolkit - selection of the toolkit menu option pops up the
customization window. Actions in this window allow the user to
change action names or icons or add or delete commands in the
actions window.

jcon-edit - edit icon of currently selected item. A new window
will pop up displaying an icon editor with the selected icon
displayed in the window. When the icon has been edited, it
should be saved and the window closed. (See Edit Icons, below.)

do-it - add new command to actions window. You must first
use add-function to add the macro to the list in the toolkit
window. Do-it adds the command to the permanent repertoire
of the system and causes it to be saved in a library of user
defined actions when the system is exited.

un-do-it - removes new command from actions window. You
must first select the list and the command using the select
function. You can only delete (or un-do) commands that have
been added by a user; if the selected command is a system-
defined action, it cannot be deleted.
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save-it - save remembered command for future use. This
function saves the command in the system library immediately
so that the system does not have to be exited before the
command is archived.

exit - exit Toolkit. The paper window will be redisplayed.

actions - These functions are used to add new commands to the
actions window.

add-function - add new function to actions window. You will
be asked to select which list you want the function added to,
then will be asked to type in the function name in the item-
name slot. The item name and a blank icon box will be displayed
at the end of the selected list. You can then edit an icon for the
command icon-edit, and add it to the actions window do-it.

delete-function - delete function from actions window. This
command deletes a function that has not yet been added to
the actions window. If you have already selected do-it for this
function, you must use un-do-it to remove the function.

list-label - name of selected group of commands. This is the
header name for a list of functions. Editing it and saving it by
selecting do-it will result in a new name being displayed in the
actions window.

ftem-name - name of selected function within the group. This
is the name of a particular function. It can be edited and then
saved by selection of do-it to display a new function name. If
the function is displayed with an icon in the actions window,
this command will only change the name when the function is
displayed in the Toolkit window.

Edit Icons - edit and save new icons for actions window.
Box - draws or erases a box around the outside of the icon.

Toggling the item causes the box to be alternately drawn or
erased.
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Invert - inverts the image in the icon so that white pixels
become black and black ones become white. Toggling the item
switches between the two images.

Quit - exit the icon editor. You must save any changes you have
made before you exit. You must select quit twice before the icon
editor will be closed.

Load - reads in another icon. Select another function in the
Toolkit window and then select load to load the new icon into
the icon editor. You should save the first icon before loading in
a new one if you want to save any changes that have been made
to the first one.

Save - saves an icon and copies it to the Toolkit window.
Item Name - renames an icon. This currently has no effect.

Fill - fills the background with the selected color. You must
select the color before selecting the fill command. Available
colors are: white, 25% gray, root gray, 50% gray, 75% gray, black.

Replace/Merge - determines whether the load and fill
commands will replace or merge with the pixels that are already
displayed in the window.

Proof Background - changes the background color in the proof
window in the upper left of the icon editor. Available colors are:
white, 25% gray, root gray, 50% gray, 75% gray, black.

Glyphs - selection of the glyph menu item pops up a window
containing functions to save or retrieve glyph information that is
stored in an external file.

copy - copies one glyph to another. Select copy then select the
source glyph and the destination glyph.

rename - renames glyph to new name. If both names are
already in the list, select rename then select the source glyph
and then the destination glyph. If either of the names is not in
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the list, add it to the list (using glyph-name and save-glyph,
then rename the glyph.

highlight - same as highlight command in actions window.

It is repeated here so that the user does not need to switch
to the actions window to change which segments are highlighted.
This command highlights a segment by drawing its connections
with a dashed line. Segments must be highlighted before they
can be saved as glyphs.

exit - exit glyph naming window. The window will be closed and
the actions window redisplayed.

Glyph - save or retrieve glyph information from file.

get-glyph - retrieve selected glyph. Glyph should be selected
from the Glyphs list.

save-glyph - save information for selected glyph. Glyph should
be selected from the Glyphs list or entered in the glyph-name
field if it does not appear in the glyphs list.

delete-glyph - delete selected glyph. Marks glyph as deleted
so that when the file is saved, information for this glyph is not.
This can be reset by selecting save-glyph.

glyph-name - name selected gl&ph. Enter glyph name with no
embedded blanks and terminated by a carriage return. When
save-glyph is selected, the name will be added to the glyphs list.

File - save and retrieve file information.

get-file - retrieve named file. Reads in all information from

specified external file. File name should be entered in file-name
field.

save-file - save glyph and font information in named
file. Writes out all saved glyphs to external file. Additional
information such as position of guidelines, pointsize and
resolution are also saved.
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file-name - name font file. Enter file name with no embedded
blanks and terminated by a carriage return. When save-file is
selected, the file will be written out. If glyph information has
been saved and a file name has been specified, the file is saved
when the program is exited if it has not already been saved.

Glyphs - list of glyph names. This list initially contains most
commonly used letters, digits and punctuation. New names can
be added to the list through the glyph-name function.
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