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Abstract

We examine the operation of stack splitting random access protocols in multiaccess networks in
which individual stations may receive asymmetric feedback from the channel, i.e., different stations
may observe different, possibly erroneous, outcomes on the channel. We propose several possible modi-
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algorithms.
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Chapter I

Introduction

The multiple access problem occurs whenever a geographically distributed group
of users (stations) must share access to a single broadcast channel. Whenever two
or more stations access the channel (transmit) at the same time, a receiver cannot
distinguish any of the transmitted messages. In such a case, a collision is said to
have taken place on the channel, and the collided messages must be retransmitted
at a later time. Since a collision results in rescheduling the transmission of the
collided messages for sometime in the future, there is a possible delay between
message arrival and its successful transmission. Thus a channel access strategy is

needed to

1. Guarantee successful transmission of each message generated by users in the

system.

2. Make efficient use of the channel, e.g. minimize the delay experienced by each

message.

The channel access strategy is also referred to as the access protocol or algorithm
(also collision resolution algorithm), since it controls the way in which each user
is allowed to access the channel. Various protocols have been suggested to make

efficient use of the channel [13,7,1,16,14].

Most of the protocols mentioned above assume that all stations receive perfect

feedback from the channel. That is, each station correctly observes the outcome
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(i.e. zero, one or more than one message transmission) on the channel. Such an
assumption may be unrealistic in a channel where, for example, an occasional empty
period may be interpreted as a collision due to electrical interference in the channel
or due to the presence of jamming, signal fading and capture. Although some
recent works have examined the effects of different kinds of errors on these access

algorithms (15,18,5,13,17,4,9], the problem is not yet fully understood (7).

A class of highly efficient multiaccess algorithms known as the tree and the
stack algorithms [7,3,16] have generated a great deal of interest in the last few
years. In this thesis, we look at the performance of stack algorithms in the presence
of channel errors. With the brief mention in (5], previous studies addressing the
problem have all assumed that when such an error does occur, all stations observe
identical (incorrect) feedback from the channel. This work looks at the case where
different stations may observe different feedback from the channel. We refer to these
type of channel errors as asymmetric errors (since different stations may interpret

the actual outcome on the channel differently).

The remainder of the thesis is structured as follows: In Chapter II, we look.
at the multiple access problem in detail. We also review the operation of the
stack algorithm (an access protocol proposed by Tsybakov et al.[16]) and discuss
related work. In Chapter III we present our model of the imperfect multiple access
environment and give various modifications of the basic stack algorithm to transmit
messages in such an environment. Chapter IV presents an approximate Markov
chain model to analyze the time delay versus throughput of one specific version
of the modified stack algorithm. In Chapter V, we prove results to show that
the approximations used in constructing the model are appropriate. The delay

versus throughput characteristics for the other versions of the modified algorithm



e —— RPN, sy L ] Iy ‘ oty oy | iy s

s re—

—~—

———

are presented in Chapter VI. Lastly, in Chapter VII we conclude this paper anci

address open problems which arise as a consequence of this work.
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Chapter 11

The Stack Algorithm And A Literature Review

Two possible approaches can be taken to solve the the multiple access problem

described in Chapter I:

o Controlled Access, where the access strategy predetermines the rights to the
channel at any given time such that the access to the channel is collision-free

e.g. TDMA, FDMA etc.

e Random Access, where the access strategy is called upon to control the ac-
cess to the channel whenever a conflict occurs e.g. ALOHA, CSMA Protocols
[1,10]. Also known as the contention-based protocols, they operate by parti-
tioning the stations in the network into a set of enabled stations (who have
the right to transmit) and disabled stations (without transmission rights). The

basis of partitioning determines the efficiency of each protocol.

In this chapter we review past work that has been done in the area of random
access communication. Since the field of random access communication is so broad,
we restrict ourselves to the past work in Tree and Stack based algorithms (16,3,7],

and various error models proposed and analysed for this class of algorithms.
Ever since Abramson studied the ALOHA protocol in 1971 (1], much work has
been done in the field of random access communications. Researchers have designed

new protocols to improve the maximum throughput or delay characteristics of al-

ready existing protocols. Others have looked into relaxing assumptions upon which
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previous protocols were based. Refer to [11] for a survey of the general problem of

multiaccess communication and random access strategies.

In the following description of multiaccess systems, the following definitions will

be useful:
Active Stations: Set of stations which have a message to send.
Enabled Set: Set of active stations which have transmission rights to the channel.

Disabled Set: Set of active stations which do not have transmission rights to the

channel.

Slotted Channels: When all users in the system are synchronized (externally)
such that each user knows exactly when a transmission starts and when it ends.
This small period of synchronization is known as a slot. Such channels are referred

to as Slotted channels.

Unslotted Channels: When no such external synchronization controls the be-
ginning and end of any transmission in a system, the channels are referred to as

Unslotted channels.
Conflict of multiplicity n: The number of users (n), that transmit in a time slot.

Collision Resolution Interval (CRI): The time (or number of slots) between the
first collision between two or more messages and the time until all messages involved
in that collision are successfully transmitted is referred to as a CRI. An n -fold ORI
refers to the length of time needed to resolve an initial conflict of multiplicity n.

Note that a CRI with 0 or 1 messages is degenerate of length 1 slot.

Blocked or Continuous Entry: Consider an n-fold CRI, (n > 2), starting at time
¢. If stations which become active after ¢ must wait till the end of CRI to transmit

for the first time, the entry to the channel is blocked. If a station can transmit
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Figure 2.1: Multiple Access System

immediately after it becomes active the channel entry is continuous.

A multiaccess system in which all stations transmit to a common receiver can
be viewed as shown in Figure 2.1. The system has a forward channel (the actual
messages are transmitted on this channel) and a feedback channel (the feedback
messages are relayed back on this channel). Feedback messages are transmitted by
the common receiver at the end of a transmission to inform users of the outcome of
a previous transmission. These two channels alongwith the stations and a common
receiver completes the model for such a multiaccess system. The feedback channel

is also sometimes referred to as the reverse channel.

The feedback messages received by stations at the end of each slot are:
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Figure 2.2: Channel Model: No Error (Perfect)

LACK when no station transmits in a time slot. (Channel idle). This corresponds

to the first transition in Figure 2.2.

ACK when exactly one station transmits in a time slot. (Channel success). This

corresponds to the second transition in Figure 2.2.

NACK when two or more stations transmit in a time slot. (Channel collision).

This corresponds to the third transition in Figure 2.2.

This feedback scheme is known as ternary feedback since three possible feedback

messages is be received by all stations in the system.

Limited or Continuous Sensing: Those multiaccess protocols which require sta-
tions to sense the channel (listen to feedback from the channel) only when they are
active are known as limited sensing protocols. If stations must sense the channel
at all times, then the protocol is a continuous sensing protocol. It is important
to note that continuous sensing is needed when stations must track the channel

history (track the end of a CRI) to determine their access rights as a part of the
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collision resolution algorithm. Continuous sensing is undesirable due to the ex-
tra overhead involved when adding new stations in the system or when previously

inactive stations become active.

Nosseless Channel: The channel is modeled as being ‘perfect’ i.e. the output

from the channel is same as the input to the channel. (No Errors in either the

forward or feedback channel).

Noisy Channel: This type of a channel can make idle and success slots appear

as collision slots. Such an event may take place probabilistically due to electrical

interference, noise etc.

Capture: In a channel with the capture property, a collision slot may appear to

be a success slot due to the difference in transmission levels of the colliding signals.

Erasure: This is a property of the channel due to which a success or collision

slot may be interpreted as idle.

Symmetric Feedback: When all active stations get the same feedback message at
the end of a slot, the feedback mechanism is symmetric. If a feedback error occurs,
it will thus be symmetric, i.e., the error would be introduced at point A of the

channel in Figure 2.1.

Asymmetric Feedback: When each active station either gets the correct feedback
message from the receiver or its feedback message is corrupted independent of the
feedback message to other active stations, the feedback process is asymmetric, i.e.,

an error takes place independently on one or more f; arrows in Figure 2.1.
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2.1 An Overview of Splitting Random Access Algorithms

Capetanakis's Tree algorithm (3], was the first group random access algorithm
known to have better maximal throughput over the ALOHA type protocols. This
algorithm makes use of a slotted channel, has continuous sensing and blocked entry
with ternary feedback. It has better delay characteristics over the previously known
TDMA protocols for low arrival rates, and was stable for arrival rates up to 0.43
packets/slot !, assuming a Poisson message arrival process to the system. The tree
algorithm determines the enabled and disabled sets by considering all active stations
as leaves of a binary tree. All active stations form the enabled set at the start of a
CRI. After a collision, the stations in the enabled set flip a coin and probabilistically
(and independently) stay in the enabled set or join the disabled set:. After an idle
or a success slot a new enabled set is formed by those stations which joined the

disabled set after the previous collision.

In 1978, Gallager (7] proposed an algorithm in which the the message arrival
time at each station is used as the basis of partitioning stations into enabled and
disabled sets. In this algorithm, stations whose message arrival times fall within a
time window are enabled. This algorithm is a blocked entry algorithm with contin-
uous sensing in a slotted channel and ternary feedback and is known to have the
highest throughput of all known group random access algorithms, with a maximum

throughput of 0.487 packets/slot, with Poisson arrivals into the system.

Although the tree and time window protocols mentioned above are extremely

efficient, they have the following undesirable properties

* Blocked entry for new arrivals during a CRI

!The modified ALOHA system has a maximal throughput of 0.368 packets/slot (14]
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¢ Continuous sensing of the channel by all stations.

A continuous entry, limited sensing algorithm was proposed by Tsybakov and
Vvedenskaya [16], known as the ‘Stack’ algorithm. We look at the algorithm in
detail in the following discussion. We shall also consider some inherent properties

of the stack algorithm in ensuing chapters.

Consider a synchronous multiaccess network environment in which all messages
are of fixed size and the slot length equals the transmission time for each message.
For simplicity we assume that each station has at most one message to transmit
at any given time. We cortinue to assume that the channel is ‘perfect’ with the
properties mentioned above. The outcome of each slot is assumed to be available
immediately at the end of the slot, although the problem of delayed feedback can
also be easily handled [13,12].

The algorithm operates by partitioning the active stations into groups using
a recursive binary search technique. The algorithm can be easily visualized by
assuming that each station : maintains a stack, in which the topmost element is
labeled 0 and current stack depth at station 7 is given by stack_depth;. As we shall
see, a station with a message to send may be thought of as having its message at
level stack_depth; and can only transmit this message when stack_depth; = 0, i.e.,

when its stack is of depth zero and hence its message is at the top of its stack.

If station ¢ is inactive, i.e. it has no message to send, it need not participate in
the algorithm. If a message to be transmitted is generated at station 7 during some
time slot T;, then stack_depth; is set equal to zero and station i begins to execute

the stack algorithm described below at the beginning of time slot T},,.
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BASIC STACK ALGORITHM

Each active station, ¢, executes the following steps:

1. /* At the beginning of each slot */
if (stack_depth; =0) /* message on top of stack * /
then transmit the message
2. /* At the end of each slot */
if (stack.depth; = 0) /* station ¢ in enabled set */
if ACK feedback then stop executing the algorithm since station
+’s message has just been successfully transmitted.
if NACK feedback then with probability p
set stack_depth; = stack_depth; + 1.
otherwise leave stack_depth; unchanged.
else /*(stack_depth; > 1), station i in disabled set */
if LACK or ACK feedback then set stack_depth; = stack_depth; — 1
if NACK set stack.depth; = stack_depth; + 1

Figure 2.3 shows the operation of the stack algorithm for a three node network.
The state of the stack at each of the three stations is shown at the beginning of the
time slots T; through T}, 7, and the filled circle represeﬁts the presence of a message
in a stack element. Note that after the collision during slot Tj,, station 1 has
probabilistically assigned its message to stack level 1 while the message at station
2 remains at the top of the stack. Also note that station 2 leaves the system after
having successfully transmitted its message in slot Tj.,. Also , since station 2 has

a new arrival during slot T}, it joins the algorithm in the following slot.

We will later find it convenient to use the notion of a composite stack associated
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Figure 2.3: Operation of the stack algorithm
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with the set of individual stacks during each time slot. By definition, the kth
element of composite stack contains the messages at level & in each of the individual
stacks in all stations in the network. It should be noted, however that the algorithm
described above is fully decentralized, and no such composite stack actually exists in
the network. However, it will be extremely useful for analysis of the stack protocol
6,16,8).

The Stack algorithm described above has a maximum throughput of 0.36017
packets/slot with a Poisson arrival process [6|. In addition, its simple state infor-
mation (just a decrement/increment counter associated with stack.depth;) makes

the algorithm particularly attractive and also makes it easy to implement.

In their analysis Fayolle et al. [6] studied the following characteristics of the

Stack Algorithm:

e The distribution of the length of a CRI starting with a n-fold collision.

e The delay (number of slots) experienced by a packet before it is successfully

transmitted.

¢ The distribution of the multiplicity of conflict in a time slot.

They also noticed a high variance for packet delays due to the non-FIFO nature of
the algorithm. We use ahove results to help prove some interesting properties of

the stack algorithm in Chapter IV.

Georgiadis et al. (8] provide a method for throughput-delay characteristics of
the stack algorithm. In their analysis, they considered the interval between those
points in time when the top of the composite stack was formed and the end of the

corresponding CRI. These points in time were defined as renewal instants. Thus

[
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the whole time axis could be seen as a succession of of such renewal instants. We

borrow their results to corroborate our analytic model in Chapter IV.

Now let us relax the assumption that channel feedback is ‘perfect’. A study of
different type of channel errors can be found in [13]. Massey also gives feedback
error conditions in which these algorithms cannot guarantee successful transmission

of every message.

In [18], the operation of the stack algorithm was studied under symmetric chan-
nel errors in a ‘noisy’ channel. The arrival rates for which the system was stable

was studied as a function of the error probabilities.

A similar approach was used by [13,9] to analyze the tree algorithms in ‘noisy’
channels. These works were extended to channels with Capture and Erasure prop-
erties by Cidon and Sidi [4]. In [13,9,4] the effect of channel errors on protocol
throughput was derived. Results show that the maximum arrival rates for which
these algorithms were stable, decrease proportionally as the rate of the noise and
erasure errors increase, but the algorithms are stable for higher arrival rates in
presence of capture. All of the above studies are done for symmetric channel errors.

only.

Except for a brief mention of the problem of asymmetric feedback in [5|, all
previous studies of channel errors have been restricted to the case of symmetric

feedback errors, in which all active stations observe the same (incorrect) feedback.

In the remaining chapters, we address the problem of asymmetric feedback in
multiaccess channels, and investigate how the basic stack algorithm can be modified

to transmit messages in such conditions.



Chapter III

Model Formulation And Protocols

3.1 Model Formulation

We consider a communications system serving a population of bursty users which

communicate over a multi-access broadcast channel. The system is specified as

follows:

1. Each station in the system transmits messages of fixed length.

2. The channel is slotted, where slot length equals the transmission time of a

message.

3. The system serves a large (essentially infinite) population in which the number

of users active at any time need not be constant.

4. Each station has at most one message to transmit at any given time. This
means that each arrival means a new station becomes active. In this sense,
the terms station and message are synonymous and hence we use these terms

interchangeably.

5. The overall arrival process of messages (to all stations in the network) is a

time invariant Poisson process with parameter \.

6. The outcome of each slot (feedback from the channel) is available to each

active station at the end of the current slot.

15
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~ Figure 3.1: Channel Model: with Errors

7. Each active station independently receives one of the following feedback mes-

sages at the end of a time slot, Figure 3.1

LACK if no station transmits in a time slot (Channel idle).
ACK if one station transmits in a time slot (Channel success).
NACK if two or more stations transmit in a time slot (Channel collision).

NONE if the station is not able to distinguish the feedback message as any

of the above.

It is important to note that each station independently sees, either the correct
outcome of a slot (LACK, ACK or NACK) or receives no feedback at all
(NONE) with probability =.!

Different probabilities for interpreting a LACK, ACK or NACK signal as NONE
signal can be easily incorporated in the model, but for simplicity we assume that

these three error probabilities are identical.

txr = 0 reduces to ‘perfect’ channel case.
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With this model we are now ready to handle an important feature of the feedback,
Process: the asymmetric and independent nature of the errors taking place in the
feedback channel. Since each active station sees different feedback and is not aware.

of the actual feedback observed by some other station, its actions are not necessarily-

the same from as those of other stations.
3.2 Modified Stack Algorithms

Given the error process in Figure 3.1, there are many ways in which an active
station might respond when it receives a NONE feedback signal. Here we present
the various options that a station can choose from when a NONE feedback signal
is received. A detailed algorithmic description of the different schemes is presented

below.

We name all the different algorithms by a two letter description. The first
letter describes the action of stations at level 0 when they receive a NONE signal,
whereas the second letter describes the action taken by a station on receiving a
NONE signal when it’s message is at level one or below on the stack, i.e., it has its.

stack_depth; > 1.

In algorithm PN (PersistNack), if station i transmits a message (thus its
stack_depth; = 0), and observes 2 NONE feedback signal, it persists by maintaining
its stack_depth; = 0 and hence retransmits in the following slot. Any other station
(with stack depth; > 1) on observing a NONE feedback signal, treats it as a NACK

signal and thus sets stack_depth; = stack_depth; + 1.

SCHEME [: MODIFIED STACK ALGORITHM PN

Each active station, i, executes the following steps:
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/* At the beginning of each slot */
if (stack_depth; = 0) then transmit the message
/* At the end of each slot */
if (stack_depth; = 0)
if ACK feedback then stop executing the algorithm since station
1’s message has just been successfully transmitted.
if NACK feedback then with probability p
set stack_depth; = stack.depth; + 1.
otherwise leave stack_depth; unchanged.
if NONE feedback, keep stack.depth; unchanged.
else /*(stack_depth; > 1)*/
if LACK or ACK feedback then set stack_depth; = stack_depth; — 1
if NACK or NONE set stack_depth; = stack_depth; + 1

Several ‘other approaches can be adopted:

¢ Algorithm PL: All stations with stack_depth; = 0 and observing a NONE
signal persist. Other active stations observing a NONE signal treat it as
an idle slot (LACK) (or equivalently as an ACK) and set stack.depth; =

stack_depth; — 1.

¢ Algorithm PP: All stations observing a NONE signal persist and leave their

stacks unchanged.

¢ Algorithm NN: All stations observing a NONE signal treat it as a
collision (NACK). Station with stack_depth; = 0 set stack_depth, =
stack.depth; + 1 with probability p, while other stations unconditionally in-

crement stack_depth; i.e. stack depth; = stack depth; + 1.
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e Algorithm NL: All stations with stack.depth; = 0 and observing a
NONE signal treat it as a collision (NACK) and hence set stack.depth; =
Stack_depth; + 1 with probability p. Other active stations observing a NONE
signal treat it as an idle slot (LACK) and set stack_depth; = stack _depth; —1.

e Algorithm NP: All stations with stack_depth; = 0 and observing a
NONE signal treat it as a collision (NACK) and hence set stack_depth; =
stack.depth; + 1 with probability p. Other active stations observing a NONE

signal leave their stacks unchanged.

It may be noted that in all the schemes mentioned above, a station at the top
of the stack (stack.depth; = 0) must either persist or treat the NONE signal as a
NACK, since there is no guarantee that its message was successfully transmitted in
the previous slot. To prevent a duplicate message being passed on to the receiver, a

message sequence numbering (such as that typically used in any data link protocol)

can be used.

An algorithmic description of the five schemes mentioned above can be found in

Appendix A.

In Figure 3.2, we demonstrate the operation of the PN algorithm. We start out
with the same scenario as in the example of the previous chapter. Thus we have
three active stations in the system starting at time T;. Note that althongh the
event in slot Tj,; is a success, station 1 receives NONE as feedback and persists
(as a result of PN Policy) at level 0, and retransmits its message in the following
slot. In slot Tj,e, station 3 on receiving NONE as feedback increments its stack
depth, although the slot was idle. Again the concept of a composite stack is very
important to visualize the state of the system. We shall use the composite stack to

develop an analytic model in Chapter IV.
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In the next chapter we develop a mathematical model to analyze the throughput-

delay characteristics of the six algorithms proposed in this chapter.
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Chapter IV
Approximate Analysis Of The Stack Algorithm

4.1 Assumptions

In developing an analytic model for the modified stack algorithms described in the

previous chapter, we make the following additional assumptions about the multiac-

cess environment:

¢ The system is synchronous, with a slot time equal to the (fixed) message
transmission time. Furthermore, all stations are synchronized in the sense

that each station may transmit only at the beginning of each time slot.

o The overall arrival rate of messages to all stations in the network is a time-
invariant Poisson process with parameter A\. Furthermore, we assume a la.rgg

number of stations such that each station has at most one message to transmit.

e The feedback from the channel, giving the “outcome” of a slot (LACK, ACK,
NACK or NONE), is available to all active users immediately at the end of

the slot.

Given the assumptions above and the error model in Figure 3.1, it is clear that in
order to exactly model the dynamics of the stack algorithm, the number of messages
at each individual stack element of the composite stack has to be tracked, since two
messages at stack depth & in the composite stack at time T; may be in different

composite stack elements at time Tj,, as a result of asymmetric feedback. Hence,

22
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to track each stack level in the composite stack we need a Markov chain with the

following state descriptors:

(ylsst---,yi,...)

where y; denotes the number of messages in the ith element of the composite
stack. Although the solution to the system of equations resulting from the Markov
chain described above is exact, the chain is infinite-dimensional. Hence the com-
putations needed to arrive at those solutions are quite tedious and of no practical
interest to us. Note that truncating the chain for a small value of ¢ cannot guaran-
tee accurate results for sufficiently high arrival rates, and a large value of ¢ clearly
makes the solution space more intractable. Another approach is to reduce the size
of the chain by reducing the number of state variables to a fixed number, thereby

making the model approximate but more tractable for the system.

In the following sections we suggest an approximate model for calculate the
throughput-delay characteristics of the stack algorithm and give theoretical and

simulation results on the basis of which such an approximation was made.

4.2 Approximate Model for the Stack Algorithm

Figure 4.1 shows simulation results showing the average number of messages in the
stack element k, (k = 0,...,30) of the composite stack at the beginning of a slot
following a collision slot, (without including any new arrivals during the previous
slot, to be added to level 0), given that the composite stack depth is of depth 31 and
given that a collision has occurred in the previous slot. Several interesting features

are to be noted:
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Figure 4.1: Expected occupancy of the composite stack (No Errors)

¢ The expected number of messages (occupancies) in stack elements 2 through

29 are essentially identical.

e The expected number of messages in the bottommost element of the composite
stack is higher; because the bottom of the composite stack is tracked as a stack
level with one or more packets (given the composite stack exits), and all levels

below the bottommost element are assumed to have zero packets.

e The expected occupancy of the top two stack elements is higher than those
in elements 2 through 29. This results from our conditioning on a collision
having occurred in the last slot; so there are at least two messages within the

top two composite stack elements.

Similar characteristics were noted for arbitrary composite stack depths and various
arrival rates. In the case of a success or idle in the previous slot. the top and the
bottommost stack elements again showed a higher expected occupancy while the

remaining composite stack elements showed essentially identical expected occupan-
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cies,
The above considerations suggest an approximate Markov chain model with the

state variables:
(xl’ I3,Z3, 174)
where:

z) is the number of messages in composite stack element 0.

T, is the number of messages in composite stack element 1.

T3 is the number of messages in all remaining composite stack elements.

z4 is the depth of the composite stack.

and that in determining the transition probabilities we fix one message in the bot-
tommost composite stack element and assume that the remaining z3 — 1 messages

are uniformly distributed in composite stack elements 2 through =, — 1.

To strengthen our claim that the stack occupancies for levels 2 through z,—1 are
similar, in the next chapter we use results from the analysis of the stack algorithm
done by Fayolle et al. [6], and extend their work to obtain the expected stack

occupancies for all stack levels of the composite stack.

In order to test the validity of our approximate model, we first use it to study

the case of no channel errors (8]. This follows in the next section.
4.3 Model Verification for the No Error Case

The balance equations from the Markov chain for the case of no feedback errors,

are given in Appendix B. For a given ), these equations may be iteratively solved
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to obtain the chain state probabilities, {p; jx}, where p; ;. is the probability of

being in state with (z, = ¢,z, = j,z3 = k,z, = I).

We start by assuming an initial distribution for p; ;x, ’s (we chose to start with
Poooo = 1 and all other p; ;s s = 0). The new set of p; ;s values is computed
using the p; ;i values from the previous iteration. The algorithm terminates if the
convergence criterion is satisfied, otherwise the latest values of p; ;. are used for

the next iteration.

To terminate the iterative procedure we calculate the relative difference for each
of the p ’s to be < ¢, i.e.,
-1
Pljjd = Pigks

t—1
Pi kg

S e‘) vi’]‘) k”

where p}.,, denote the latest values after the ¢ iteration of the algorithm. We
choose ¢ to be 1073, so that each of the p ’s is accurate to within 0.1 % standard

€error.

In order to solve the equations derived in Appendix B, the chain was truncated
at (3, 3,20, 30) for arrival rates upto 0.25 packets/slot and at (5, 5,35, 50) for higher
arrival rates. These values of z;’s were chosen from the stack behavior observed

through simulation.
Given the probabilities {p; ; 1.}, the expected number of backlogged messages L

(i.e. expected number of messages in the composite stack), can be calculated using

the equation:

=<3
L= Y (+j+k)pijr (1)
£,5,k=0

The average delay T (in number of slots), from the time of the first transmission

until a successful transmission occurs for a given arrival rate A, can be calculated
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Table IV.1: Average Delays for the No Error Case
0 Lambda 1 Delay 2 Delay 3 Delay
(Model) (Sim) (UConn)
1 0.05 1.681 1.681 1.684
2 0.10 1.966 1.962 1.969
3 0.15 2.463 2.444 2.446
4 0.20 3.355 3.364 3.332
5 0.25 5.932 §.310 5.292
6 0.30 12.434 11.367 11.383
7 0.31 13.672 13.869
8 0.32 17.930 19.148
9 0.33 27.492 27.540
10 0.34 43.153 43.528
using Little’s Result
T=L/A (2)

The actual average delay D (in number of slots), the time between a message

arrival until its successful transmission is given by the equation:
D=T+05 (3).

The 0.5 term arises because each new message has to wait for half a time slot on

the average, between its arrival and its first transmission.

Figure 4.2 plots the average time delay as a function of A. The results from the
model and simulation are shown in the figure. (Also refer to Table 1V.1). Both
these results agree closely (within 2 % error) with the numerical results in [8]. The
close agreement between these results suggest that the approximate model is indeed

a good one.

After corroborating our model for the no error case, we look at the delay char-

acteristics of the PN protocol which was described in Chapter ITI. This follows in
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the next section.
4.4 Performance Analysis of the PN Protocol

Given the four state-variable approximate model developed in the previous sections,
the state transitions may be modified to obtain the balance equations for the six
protocols (protocols PN, PL, PP, NN, NL, NP) in the presence of asymmetric
feedback errors. The equations for the PN protocol are derived and presented in
Appendix C. Note that each balance equation for the error case has more terms
compared to the corresponding equation derived for the no error case in Appendix B.
This is due to the fact that additional transitions are now possible out of each of

the states.

Figure 4.3 and Table IV.2 show both numerical results from the model and
simulation results for the PN protocol for error probabilities of # = 0, 0.01, 0.05,
0.10. The chain was again truncated as in the no error case to obtain the nu-
merical results shown. For error rates of 5 and 10 %, the maximum throughputs
observed were approximately 0.33 and 0.31 packets /slot respectively. These results
compare well with the upper bound on the throughput for the non-error case of
~ 0.36 packets/slot [17,6]. Also note the close correspondence between our numeri-
cal and simulation results; confirming that the approximate model we have adopted

is indeed appropriate.

We have now developed a mathematical model to analyze delays for the modified
stack algorithms and examined the delay characteristics for the PN protocol. In
Chapter VI, we look at the delay characteristics of the remaining five protocols and
compare their performance. In the following chapter, we look at the evolution of

the composite stack during a CRI. This will help us calculate the expected number



- e

e

“<pr—o o

107

.

0.04 0.08 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.2 0.24 0.8 0.28 0.3 0.2 0.3

Arrival Rate

No Error
pi = 0.01 (Model)
o) pi = 0.01 (Sim)
.......... pi = 0.05 (Model)
o pi = 0,08 (Siw)
- pi = 0.10 (Model)
O pi=0.10 (Sim)

Figure 4.3: Time Delay versus throughput: The PN algorithm with errors

30



Table IV.2: Time Delay versus throughput: The PN algorithm with errors

0 Lambda 1 Delay 0.01 2 Delay 0.01

(Model) (8im)
1 0.05 1.732 1.698
2 0.10 2.085 1.992
3 0.15 2.478 2.484
4 0.20 3.358 3.427
§ 0.28 5.457 5.530
6 0.30 12.785 12.453
7 0.31 16.962 16.200
8 0.32 22.043 21.089
9 0.33 34.572 34.256
10 0.34 55.6858 53.852

0 Lambda 1 Delay 0.05 2 Delay 0.05

(Model) (Sim)
1 0.05 1.7980 1.767
2 0.10 2.1500 2.099
3 0.15 2.7080 2.861
4 0.20 4.0320 3.809
5 0.25 6.6820 6.368
6 0.30 17.1040 18.489
7 0.31 23.3280 24.069
8 0.32 33.4458 37.728
9 0.33 57.68349 62.492

0 Lambda 1 Delay 0.10 2 Delay 0.10

(Model) ~ (Sin)

1 0.05 1.80249 1.86548
2 0.10 2.16938 2.25278
3 0.15 2.76876 2.04700
4 0.20 4.00847 4.41687
5 0.25 7.74438 8.24404
6 0.30 29.47227 31.78337
7 0.31 48.05655 52.21271
*© 0.32
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of messages (occupancies) for all levels of the composite stack, needed to justify

that the approximate model developed in this chapter is appropriate.
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Chapter V

Basis for the approximate Markov Model

To justify the approximation for our Markov model from the last chapter (i.e., the
simulation results in Figure 4.1 of Chapter IV), in this chapter we show how the ex-
pected occupancy in any intermediate level (I) (those stack levels which lie between
levels 2 and stack depth of the composite stack) can be computed analytically, given
the composite stack depth to be at least /. Our results verify that the expected stack

occupancies are, in fact, nearly identical.

We again assume that the channel is perfect, i.e., the channel feedback is ternary
and that all stations hear the same feedback transmitted by the common receiver

at the end of each siot.

Before examining the evolution of the composite stack during a CRI, we first.
modify our concept of the composite stack slightly. Until now we defined the bot-
tommost level of the composite stack to be a level with one or more packets (when
the composite sta.ck exists) and every level below the bottom of this level to have
zero packets identically. In order to simplifv our analysis. we now let the depth
of the composite stack to unconditionally change at the end of each time slot i.e.,
increment after a collision slot and decrement after an idle or a success slot. Note
that stack depth remains zero after a tinie slot in which no composite stack exists
at the beginning of a slot (i.e. no backlogged messages at the beginning of a slot)

and the outcome of the time slot is an idle or a success.
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We derive the expected occupancies by looking at the distribution of the length
of a CRI and the distribution of number of messages in each stack level in a time slot.
In the next section we look at the length of CRI's and the distribution associated
with the number of messages at each stack level. In Section 5.2 we derive the

equations needed to compute the expected stack occupancies.

5;1 Properties of a CRI

Consider the system to start out with no backlog of packets at time ¢ and let a
transmission of multiplicity n occur in the following time slot. For n =0 and 1, a
degenerate CRI of length 1 follows. Consider the first slot with n > 2, and the CRI

associated with that initial collision.

The resultant CRI can be visualized as shown in Figure 5.1. The CRI starts
with n packets colliding in the first slot. On receiving the feedback signal some
J,(0 < 5 < n), of the colliding packets stay at level 0, and n — j packets move to
level 1 of the composite stack, as a result of the randomization process (step 2 with
NACK feedback signal, of the basic stack algorithm in Chapter II). Thus the n -fold
CRI is composed of an initial collision of n packets (taking one slot time) and two
subsequent sub-CRI’s with starting multiplicity j + £ and n — j + y (z and y are

the new arrivals in the slots just before the start of the two sub-CRI’s).

- We begin our analysis by examining the statistical properties of various random

variables associated with the collision resolution mechanism.

Define:
a(z) : The probability of z,(z > 0) arrivals in a time slot. Since the arrival process

is Poisson with rate A packets/slot:
e 2 \*

x!

a(z) =
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ln : Expected length of a CRI (number of slots) needed to resolve an initial n-fold
collision. Note that the CRI ends with possibly more than n successful transmissions

because of the continuous entry property of the stack algorithm.

o, : Expected number of slots with composite stack depth of exactly {, during

a CRI starting with n packets.

Mm(k) : Expected number of slots with exactly k,(k > 0), packets at level

l,(l > 0), during a CRI which begins with a conflict of multiplicity n.

From the above definition of ln, we have the following recurrence relations:

lh, = 1
L =1
and for n > 2,
o= 13 (1) 02 (E el + Sl (1)
=0 z ]

The above equations for I, were first derived in [6]; we discuss in detail here because
of the structural similarities between the equations for I, ,0!, and n%(k). The n -fold
CRI consists of an initial collision slot followed by two sub-CRI’s starting with 7 + z
and n — j + y packets respectively. The binomial term represents the probability
associated with the splitting of n packets in the first collision slot into exactly j and
n — j packets in levels 0 and 1 respectively. a(z) and a(y) represents the Poisson
probabilities of z and y arrivals. The equation reflects the fact that an initial n -fold
CRI is comprised of an initial collision slot (taking 1 slot), followed by two CRI’s
with same distribution of lengths as the initial CRI, with multiplicities of j + z and

n — 7 + y packets respectively.
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Similarly, we derive relations for o}, (6x. denotes the Kronecker delta function,

where 8 , = 1, when k = n and 0 otherwise)

0’0 = 61'0
Ul = 6]'0
o, =0, Vi<o0

A = do+ 3 (7) WS alelelii+ S at)h i) (n22) (@

J z=0 y=0
The derivation for ¢/, is similar, but not identical to, the derivation of /,:
The expected number of slots with composite stack depth !, during a CRI starting
with n-fold collision, is composed of a single siot of depth zero followed by two
sub-CRI's. The first sub-CRI starts out with j + = packets on the top of the stack
and n —j packets at level 1. Note that all collisions in level 0 of the composite stack
will be successfully resolved before collisions in level 1. This is true for any levels {

and ! + 1 of the composite stack.

During the first sub-CRI, the expected number of slots with composite stack
depth of | — 1 (momentarily ignoring the n — j packets at the bottom of the stack)
in fact has exactly n — 5 packets at level {. Hence the expected number of slots with
composite stack of depth /, during the resolution of the sub-CRI starting with j + 2

-1

packets is by definition, 0, ;. The second sub-CRI starts out with n — j + y packets

and the term op_;,, accounts for the slots with stack depth ! during that sub-CRI.

We now derive recurrence relations for ! (k) for all stack levels {:

ﬂg(k) = 51:,0
’7(1)(") = b

'Ig (k) = 6k,n+
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i=0 £=0 y=0

This relation for 7 (k) first appeared in [6], can be explained as follows:

The expected number of slots with k& packets at the top of the stack during a.' CRI
starting with a n fold collision comprises of a single slot with exactly & = n packets,
(hence the 6, term) and the expected number of slots with k packets at the top of

the stack in the two sub-CRI's of multiplicity y + z and n — j + y packets.

For nl(k) we have:

no(k) = ko
7111(") = 5&,0

ni(k) = Guo + (1/2)" (a(0) + (1)) (Bum + 3 - alx) n,. (k) +

z=0

A(1/2)" a(0) (Benor + 3 a(2) 7hoay (k) +

z=0

() 027 ale)ndiall) + 0Beslfins — bu0) +
=2 z=0

2 a(y) Mn_juy (K), (n 2 2) (4)

v=0

The delta term in the equation for }(k) accounts for the first time slot in the
CRI (when level 1 does not exist) and hence the number of messages in level 1 is
explicitly 0. The second term represents the event when all the n packets from the
initial collision move to level 1 in the following slot and there is an idle or success
in that slot. The third term is the event when n — 1 of the n packets from the
initial collision move to level 1 and there is no arrival in the following slot, thus
the event in the next slot is a success. The final term in equation (4) arises from
four factors. The initial n colliding messages split into two groups of j and n - J as

shown in Figure 5.1. Ignoring the n — ; messages in level 1 momentarily, we note



N.--—-‘-.-‘M“

39

that the expected number of slots with k messages in element 1 is n;, (k) for the
first sub-CRI. Also note that during the first sub-CRI, whenever the depth of the
stack (ignoring the bottommost n — ) is zero (as in the slot t; in Figure 5.1), the
first stack element will in fact have n — ; messages. Since the a?ﬂ represents the
expected number of such slots during the sub-CRI, & n-; a?+, gives the expected
number of slots in which there are exactly n — j in level 1 during the first sub-CRI
with stack of depth exactly 1. The term 6,02, arises from related considerations;
since the n}+,(k) term counts level 1 stack occupancies ignoring the n — ; packets
starting out in level 1 (refer Figure 5.1), each time the stack (ignoring the n — j
packets) was of depth 0, the occupﬁncy of level 1 was counted as level 0. The term
a;-’+= gives the expected number of slots in which such an event occurred, and thus
0912 Ok is subtracted to get the correct slot count. The final term in the equation

is due to the occupancy of level 1 during the second sub-CRI, which begins with

n — j + y packets on top of the stack and all other stack elements empty.

For stack levels [, where [ > 2,

no(k) = 6o

mk) = ko

hd) =aa+ (7 ) /2

(2 a(2) (1542 (k) + ]33 (Ben; — beo) + i &(y) Mn-jsy (k)), (n > 2)

z=0 y=0

()

Equation 5 can be derived as follows:

The first and the third terms in the equation for 5’ (k) are based on the same
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reasoning described previously for equation 4. Other terms appear for the following
reasons. The expected numBer of slots with k packets at level ! of the composite
stack is a composition of two sub-CRI’s with multiplicity of j +zand n — j + y
packets. We also account for the additional slots when there are exactly n — ;
packets at level {. This happens whenever the composite stack in the previous slot

is of depth ! — 1, during the resolution of the sub-CRI with 7 + = packets.

Equations (1) and (3) are solved in [6]. Equations (2), (4) and (5) can be solved
using techniques mentioned in [16,17,6]. While solving equations (1) through (5)
numerically the solution space is first truncated for some value of n, which in general
should depend on the arrival rate A. We ﬁrsf solve for the {0!} and then using
those values to solve for {n} (k)}. After solving for n}(k), the expected occupancy
(number of packets) at any level I, given the composite stack has at least deep,

can be derived as described below.

5.2 Solving for the Expected Stack Occupancies

Recall that our goal is to justify our assumption of uniformly distributed stack
occupancies during a CRI, i.e., we want to show that the expected occupancies for
all intermediate stack levels given that those composite stack levels exist, are nearly

the same.

Consider N CRI’s in succession. According to our definition of a CRI, these
N CRDI’s are non-overlapping and occupy the entire time axis from the start of the

first CRI till the end of the Nth CRI.

In the derivation of unconditional stack occupancies for all stack levels, the

following quantities will help establish the final result:
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Na(n) Expected number of CRI’s that begin with a n-fold
collision. The probability of a CRI starting with a n-
fold collision is a(n). Thus in N CRI's, the expected
number of CRI's beginning with a n-fold collision is
Na(n).

Na(n)nk (k) Expected number of slots in those CRI’s that begin
with a n-fold collision, with k packets in level [. The
expected number of slots with k& packets in level {
during a CRI that starts with a n-fold collision is,
by definition, n!,(k). Thus, in N CRI’s the expected
number of such slots is Na(n)n’, (k).

2.0 Na(n)n! (k) Expected number of slots in N CRI’s, with k packets
in level {. This is obtained by simply summing the
previous result over all values of n.
Also,

DRy al Expected number of slots in a single CRI starting
out with a n-fold collision, for which level ! exists.
The expected number of slots during a CRI beginning
with a n-fold collision, with composite stack depth
exactly ! is o}*!. Thus, the sum equals the expected
number of slots for which stack level ! exists, during
a CRI starting with a n-fold collision.

Na(n) X2, 01 Expected number of slots in N CRI’s that occur in a
CRI which began with a n-fold { exists. Multiplying
the previous quantity by Na(n) gives the expected
number of slots during the N CRI’s which begin with
a n-fold collision, for which stack level ! exists.

LnzoNa(n) £2,,,0.  Expected number of slots in N CRI’s for which level
I exists. This quantity is obtained simply summing
the previous quantity over all possible values of n.

From the first principles, the fraction of slots in N CRI’s with & packets at level

l, given stack level ! exists, can be expressed as

Number of slots with k packets at level |
Number of slots when level | exists

For example, in Figure 5.2, there are 4 slots Quring the CRI in which level 3 (I = 3)

exists, and 2 of those 4 slots contain exactlyf{k = 3) packets in the composite stack
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during the CRI

Using the terms derived above, the fraction of slots in N CRI’s with k packets

at level {, given stack level [ exists, can be mathematically expressed as

E?:o Na(n)nf‘(k) i
:;‘-0 Na(n.) ZJO'.;H-I. a;’l

Define P!(k) to be probability of k packets at level [, given stack level [ exsits.

Also define E! to be the expected number of packets at level {, given level [ exists.

Now, letting N — oo,

) 24 Na(n)n! (k)
P = 1 0 .
(k) Nl—i'!”. LazoNa(n) TR, 0
nzo a(n)n, (k) 6
o0a(n) T2, ok K

The quantity E' can then be computed as follows:

E'= 3 kP(k) (7

k=0

Equations (6) and (7) can be solved to obtain E' for any value . The difference
in values between E' and E'*! for all intermediate levels / and [ + 1 tells how good

the approximate Markov model is. Again,
, E - El+ll <e
for small values of ¢ indicates that the approximation is a good one.

5.3 Numerical Results

In this section, we solve for {,,, o! and n!(k), using the previously derived equations,

and then use these values to calculate the expected stack occupanices for a composite
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stack of given depth. As we wil see, these numerical results provide compelling
support for our modeling assumption that the expected stack occupancies for the

intermediate levels of a given stack depth are identical.

A solution to the system of linear equations for [, is proposed in [16], in which
conditions are derived on the arrival rate A, to establish maximal throughput results
for the stack algorithm. The conditions for which a nonnegative solution to the

system of equations exists and is unique are also derived.

Tsybakov et. al. also present an iterative method for solving the system of
equations after truncating the chain for an appropriate value of n (the initial mul-
tiplicity of conflict for a CRI). They note that due to the nature of the equations
(namely the non-negative coefficients of each I, in the system of equations), the
value for each I, in the abridged system is bounded from above by the correspond-
ing ln in the solution for the complete set of equations. Due to the similar form of
equations (1), (2) and (4) we use an iterative procedure similar to that in [16], to

solve these equations.

In order to provide actual numerical results for E;, we will look at the expected’
occupancy for each level of the composite stack for arrival rate of 0.1 and 0.3.
Equation (1) was first solved iteratively after truncating the system for n = 30, 40
and 50. The maximum error between corresponding values of I;’s when truncating
the equations for n = 30 (as opposed to when the chain was truncated at 40) was less
than 5/1000 th of one percent. We denote this maximum value of n as Nmaz(= 30).

Results for {, using Equation (1) for n,m.; = 30 are given in Table V.1.

We next solved equation (2) iteratively after again truncating the system of

equations using n = n,u4,. In order to determine an appropriate truncating value



Table V.1: Length of CRI starting with n packets

n ln |
A=0.1i2=0.3

0 |1.000 1.000
1 | 1.000 1.000
2 |6.478 24.205
3 |10.198 | 40.492
4 |14.152 | 57.584
5 |18.155 | 74.858
6 |22.159 | 92.140
7 |26.155 | 109.402
8 |30.147 | 126.651
9 |34.138 | 143.895
10 | 38.129 | 161.139
11 | 42.121 | 178.386
12 | 46.114 | 195.635
13 | 50.108 | 212.885
14 | 54.101 | 230.135
15 | 58.094 | 247.385
16 | 62.087 | 264.635
17 | 66.080 | 281.884
18 | 70.073 | 299.133
19 | 74.066 | 316.381
20 | 78.058 | 333.630
21 | 82.051 | 350.878
22 | 86.044 | 368.127
‘ 23 1 90.036 | 385.375
24 1 94.029 | 402.624
25 i 98.022 ; 419.873
26 ; 102.015 | 437.122
27 | 106.008 | 454.371
28 | 110.001 ' 471.620

29 . 113.994 : 488.869
. 30 | 117.987 ' 506.119
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of I, we make use of the following relationship between ol and [,:

w .
dol=l, n=0,1,... (8)
=0

Equation (2) (now truncated at n = n,,;) was solved for increasing values of
| (starting from with [ = 0), until the value of the sum on the left hand side of
Equation (8) was within 0.01 percent of the corresponding value of I, (previously
obtained by solving Equation (1)). The above condition was satisfied for [ = 50.

This value of ! is denoted by /..

Finally Equation (4) was solved iteratively for all values of n' (k) after truncating

the system of equations at n,,. and /...

The numerical results for all three quantities (namely [,, ¢, and ) (k)) were
verified through simulation independently. All corresponding results from analysis

and simulation were within 1 % of each other.

We finally compute the expected number of packets in each stack level (), given
level | exists, using Equations (8) and (9). In Equation (8), when calculating the
Y2141 0% term, we make use of the fact that:

0 ) { .
¥ o =ta- Lol
j=l+l =0
which follows from Equation 8. The expected stack occupancies are presented in

Table V.2.
5.4 Discussion of Results

In Table V.2, note that the stack occupancies for top (level 0) and level 1 of the
composite stack are not required (since the Markov model developed in last chapter,

explicitly tracks packets at level 0 and 1). We also note that our simulation results



Table V.2: E! for level [ of composite stack

l E'

A=0.1 ! A=0.3
2 | 0.5522084561 | 0.7626038173
3 | 0.5368101768 | 0.7481873350
4 | 0.5323016033 | 0.7449770624
5 | 0.5309292976 | 0.7448231234
6 | 0.5305016996 | 0.7446669096
7 10.5303619216 | 0.7446048951
8 | 0.5303044251 | 0.7445683073
9 |0.5302591186 | 0.7443490709
10 | 0.5301908182 | 0.7442242573
11 { 0.5300621159 | 0.7441368753
12 0.7441301091
13 0.7441220208
14 0.7441132089
15 0.7441027520
16 0.7440615653
17 0.7440527555
18 0.7440501100
19 0.7440368953
20 0.7440233765
21 0.7440002586
22 0.7439734353
23 0.7439427828
24 + 0.7439077550
25 : 0.7438677357
26 - 0.7438219605
27 0.7437692383
28 - 0.7437089408
29 0.7436400251
30 " 0.7435116124
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Figure 5.3: Expected stack occupancy for A = 0.3
have shown that for arrival rate of 0.1, the composite stack never grows deeper than
level 11 (with 300,000 arrivals). Hence from a practical standpoint, the expected
occupancies in the second column of Table V.2 for level 11 and below need not be

computed for A = 0.1.

As shown in Table V.2, the maximum difference between the expected occupancy
between any two intermediate levels for A = 0.1 and 0.3 is 4 and 2.5 % respectively.
This shows that our approximate model is good even for very low arrival rates and

becomes even better at higher arrival rates.

A comparision of the analytical results of Table V.2 with the results shown in
Figure 4.1 in Chapter v ,' is shown in Figure 5.4. The expected occupancies for
intermediate levels 2 through 30 of a composite stack of depth 31 from analysis
and simulation are compared. The expected occupancies agree within 5 % of each

other; we conjecture that the slight differences in the numerical values arise due

-~ to the differing definitions of the stack depth used in the simulation and analytic

ﬁodels. Note that comparing the results for the bottom of the stack (level 30)
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are meaningless because during simulation we always track the bottom of the stack
marker as the deepest stack level which has one or more packets, whereas for analysis

we do not impose the restriction of at least one packet in the bottom of the stack.

Thus the numerical results from our analysis help support our claim that the

approximate Markov model developed in Chapter IV is indeed a good one.
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Chapter VI

Comparison of the Six Protocols

In this chapter we study the delays for the other five schemes, namely the PL, PP,
NN, NL and NP protocols. We choose to study the performance of these protocols
only through simulation results, for different error rates. Solving the balance equa-
tioqs arising from the Markov chain associated with each of the individua.l. protocols
is siraightforward but tedious. We also believe that the results from simulation and
the Markov model would not differ significantly, noting the similarity of the two
results for the no error and the PN algorithm case. We shall compare the delays of

the protocols with one another.

In Figure 6.1 and Table VI.1, we show the simulation results comparing PN,
PL, PP, NN, NL and NP algorithms for 1, 5 and 10 % error rates. We note that
for an error rate of 0.01, there is little difference among the performances of the
protocols. However, for higher error rates (# = 0.05 or 0.10), the performance
differences become more noticeable. For the range of error rates considered, and
arrival rates greater than 0.2, the PN and NN protocols clearly perform hetter than

the other four protocols.

The results have great intuitive appeal. For a fixed high error probability (for

e.g. m = 0.05), the delays associated with each protocol are controlled by:

1. The different action taken by stations at the top of the composite stack

(stack_depth; = 0) on receiving a NONE feedback signal.

50
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Figure. 6.1: Time delay versus throixghput: Comparison of six protocols
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Table V1.1: Time delay versus throughput: Comparison of six protocols

0 Lambda 1 PN 2 PL 3 PP 4 NN 5 NL

1 0.05 1.698 1.699 1.697 1.703 1.704

2 0.10 1.992 1.998 1.990 1.989 1.994

3 0.15 2.484 2.494 2.487 2.493 2.508

4 0.20 3.427 3.473 3.442 3.430 3.482

5 0.25 5.530 5.628 5.592 5.437 5.582

6 0.30 12.453 12.849 12.696 12.093 13.248

7 0.31 16.200 16.697 16.863 15.207 16.645

8 .32 21.089 24.575 22.401 21.385 24.791

9 0.33 34.256 36.091 35.803 32.204 39.105
10 0.34 53.852 74.333 68.629 58.391 70.058

pi = 0.01

0 Lambda 1 PN 2 PL 3 PP 4 NN 5 NL 8 NP

1 0.05 1.767 1.772 1.7683 1.788 1.787 1.80474
2 0.10 2.099 2.115 2.093 2.110 2.127 2.12928
3 0.15 2.661 2.741 2.670 2.661 2.744 2.87530
4 0.20 3.809 4.074 3.854 3.731 4.007 3.79800
5 0.25 6.368 7.637 6.808 6.290 7.521 6.54758
5 0.30 16.489 28.805 19.554 15.671 27.856 18.27448
7 0.31 24.069 48.508 30.811 21.308 46.882 26.00409
8 0.32 37.728 47.820 32.229

9 0.33 62.492 §7.548

pi = N.05

0 Lambda 1 PN 2 PL 3 PP 4 NN 5 NL 6
1 0.05 1.86550 1.87652 1.89945 1.91325 1.90779
2 0.10 2.25280 2.29441 2.33813 2.28973 2.320902
3 0.15 2.94700 3.16372 3.17502 2.94303 3.16263
4 0.2 4.41687 5.27913 5.02882 4.22949 5.03516
3 0.25 8.24404 13.36544 10.51064 7.59501 12.45333
6 0.30 31.78337 47.16825 23.67694

T 0.31 52.21271 88.81518 35.78525
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2. The action taken by stations at other levels of the composite stack

(stack.depth; > 1) on receiving a NONE feedback signal.

For low arrival rates (A < 0.2, a Utilization ! of < ~ 55 %), an idle or success
is the most probable event to occur in any time slot. Thus, protocols which persist
on the top level of the composite stack (namely PN, PL, PP), have better delay

characteristics (although marginally) over the other three protocols (NN, NL, NP).

For higher arrival rates (A > 0.2), collisions take over as the most probable
event. Thus those protocols in which packets with stack_depth; > 1, which on
receiving a NONE feedback signal decrement their stack depths i.g., treat the NONE
signal as a success or an idle slot (namely the PL, NL protocols), have higher
delays (perform poorly) over other protocols. Protocols which treat this event by
moving down a stack level i.e. treat the NONE signal as a collision (namely the PN
and NN protocols) have lower delays (better performance) than protocols in which
such packets persist at the same level on receiving a NONE feedback (PP and NP

protocols).

Thus, the results indicate that in the absence of of a definite feedback (i.e. upon
receiving a NONE feedback signal), the best option is to treat the outcome of the

previous slot as if were the most probable one.

1Utilization = A/Apuz, where A = arrival rate, and A,z = max. throughput (0.36)




Chapter VII

Conclusions And Extensions

In this thesis, we have examined stack random access protocols in multiaccess net-
works in which individual stations may receive asymmetric feedback from the chan-
nel. We proposed six possible modifications to the basic stack algorithm for such
environments and quantitatively examined the performance of each of the six proto-
cols both through simulation and by developing and solving an approximate Markov
chain model. It was found that for arrival rates above 0.2 packets/slot and high er-
ror rates (5 % or so) protocols which treat receiving a NONE message as a collision
showed lower delays and thus had superior performance to the other schemes, while
for low arrival rates the difference in delays of the six protocols was marginal. It
was also found from the simulation studies that most of these algorithms remained

stable for arrival rates of ~ 0.3 packets/slot, at 10 % error rates.

The Markov model developed to analyze the modified stack algorithms was
approximate, but the approximations used were good due to the similar stack oc-
cupancies for intermediate levels of the composite stack. This allows us to collapse
all the state variables associated with those intermediate levels into two state vari-
ables, namely the total number of messages in those intermediate levels and the
depth of the composite stack. This behavior was observed in our simulation studies

and proved theoretically in Chapter V.

Several open problems, which arose during the course of this thesis are yet to

be addressed.
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e Development of an exact model to analyze the problem. This exact model

could possibly be used to determine the conditions under which the modified
stack algorithms are stable with asymmetric feedback errors occurring on the

channel.

Study the behavior of the protocol in the case that LACK, ACK and NACK
messages may be mistaken for one another. Past work [13| shows that the error
conditions occurring in such cases are exceedingly complex. For example some
stations may interpret a NACK as an ACK feedback and leave the system
prematurely i.e., even before their messages were successfully transmitted. In
such a case, the protocol cannot guarantee successful transmission of every

message.

Since the error model proposed in this thesis is realistic (the symmetry feed-
back requirements for a system with geographically separated stations is too
‘idealistic’ for real situations), it would be interesting to study the behavior of
the Capetanakis’ tree protocol (3| and Gallager’s window algorithm (7] in the
presence of asymmetric feedback errors. Since these algorithms are character-
ized by continuous sensiig and blocked entry, different stations have different
views of the length and starting times of each CRI's. This in particular makes

the problem of asymmetric feedback errors more difficult for the tree and time

window algorithms.



Appendix A

Different Schemes For Asymmetric Feedback

The other five schemes to handle the NONE feedback signal are described here.
An algorithmic description of each scheme similar to that of the PN algorithm in
Chapter III is presented. An brief outline of each of these algorithms can also be

found in Chapter III.

SCHEME II: MODIFIEb STACK ALGORITHM PL

Each active station, , executes the following steps:

1. /* At the beginning of each slot */
if (stack.depth; = 0) then transmit the message
2. /* At the end of each slot */
if (stack_depth; = 0)
if ACK feedback then stop executing the algorithm since station
t’s message has just been successfully transmitted.
if NACK feedback then with probability p
set stack.depth; = stack_depth; + 1.
otherwise leave stack _depth; unchanged.
if NONE feedback, keep stack_depth; unchanged.
else /*(stack_depth; > 1)*/
if LACK or ACK or NONE feedback then

set stack_depth; = stack_depth; — 1
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if NACK set stack._depth; = stack.depth; + 1

SCHEME III: MODIFIED STACK ALGORITHM PP

Each active station, i, executes the following steps:

1. /* At the beginning of each slot */
if (stack_depth; = 0) then transmit the message
2. /* At the end of each slot */
if (stack.depth; = 0)
if ACK feedback then stop executing the algorithm since station
s message has just been successfully transmitted.
if NACK feedback then with probability p
set stack_depth; = stack.depth; + 1.
otherwise leave stack_depth; unchanged.
if NONE feedback, keep stack_depth; unchanged.
else /*(stack_depth; > 1)*/
if LACK or ACK feedback then set stack.depth; = stack.depth; — 1
if NACK set stack._depth; = stack_depth; + 1
if NONE ieave stack_depth; unchanged.

SCHEME IV: MODIFIED STACK ALGORITHM NN

Each active station, i, executes the following steps:

1. /* At the beginning of each slot */

if (stack_depth; = 0) then transmit the messége
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/* At the end of each slot */
if (stack_depth; = 0)
if ACK feedback then stop executing the algorithm since station
1’s message has just been successfully transmitted.
if NACK or NONE feedback then with probability p,
set stack_depth; = stack_depth; + 1.
otherwise leave stack.depth; unchanged.
else /*(stack_depth; > 1)*/
if LACK or ACK feedback then set stack._depth; = stack.depth; — 1
if NACK or NONE set stack_depth; = stack.depth; + 1

SCHEME V: MODIFIED STACK ALGORITHM NL

Each active station, i, executes the following steps:

1.

/* At the beginning of each slot */
if (stack_depth; = 0) then transmit the message
/* At the end of each slot */
if (stack_depth; = 0)
if ACK feedback then stop executing the algorithm since station
t’s message has just been successfully transmitted.
if NACK or NONE feedback then with probability p,
set stack_depth; = stack_depth; + 1.
otherwise leave stack _depth; unchanged.

if NONE feedback, keep stack.depth; unchanged.
else /*(stack_depth; > 1)*/
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if LACK or ACK or NONE feedback then
set stack_depth; = stack_depth; — 1

SCHEME VI: MODIFIED STACK ALGORITHM NP

Each active station, ¢, executes the following steps:

1. /* At the beginning of each slot */
if (stack_depth; = 0) then transmit the message
2. /* At the end of each slot */
if (stack_depth; = 0)
if ACK feedback then stop executing the algorithm since station
1’s message has just been successfully transmitted.
if NACK feedback then with probability p
set stack.depth; = stack_depth; + 1.
otherwise leave stack_depth; unchanged.
if NONE feedback, keep stack.depth; unchanged.
else /*(stack_depth; > 1)*/
if LACK or ACK feedback then set stack.depth; = stack_depth; — 1
if NACK or NONE set stack_depth; = stack.-depth; + 1




Appendix B

Balance Equations for the No Error Case

Let us define:

Pijks as the steady state probability for state (z), = ¢,z, = j,z3 = k,z4 = I).

¢ as the probability of ¢ arrivals (network-wide) during a time slot. Given Poisson

assumptions:

e-‘\,\i
g =

1!
t;,m as the probability that m of [ stations toss heads using a fair binary coin. This
- probability will be used in distributing colliding messages in stack level 0 of

the composite stack among stack levels 0 and 1. (See algorithm statement for

the case that stack.depth; = 0 with NACK feedback).
tin = ) @2 @2 02 m)

fi.mn as the probability of finding [ messages in composite stack level 3, assuming
there are m messages (m > [) uniformly distributed among n composite stack

elements, numbered 3 through n + 2.

fimn = ( HI"' ) (1/n) (1 -1/n)™ ,( >0,m,n >2)
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Given the above definitions, the balance equations for the Markov chain for the

No error case are:

Po,0,0,0
P1,00,1
Pk,0,0,1
Po,1,0,2
Po,t,0,2

Pri.0,2

Po,0,m,3

Po,1,m,3

Pol,m,s3

P1,0,m,3

Dk,0,m,3

Pktm,3

Po,0,m,n

Po,1,m,n

Pol,mn

Pi1om,n

o P1,00,1 + (g0 + g1) Po,0.00

g0 P1,102 + (g0 + q1) Po,1,0,2
k-1

9o Preoz2 + (90 + q1) Poko2 + Gk tek Pooo0 + ; Gi tek Pr-i00,1, (k > 2)
90 P10,13 + (90 + 1) Poo13
90 P1,04,3 + (90 + 91) Po,ous + & t0 Poo,0.0 + 2%‘ b0 P1-i001 » (I > 2)
i=
0 PLi3 + (o + G1) Pokss + Qe+t trstk Poo00 +
Hﬁ;l% be+t,k Prti-i00,1 »(k,0 2> 1)
i=

90 fon-1,2 Promse + (90 + @1) fom=1.2 Poo,ma »(m > 1)
9o frm-1,2 PLom+14 + (90 + 61) fr,m=1,2 Po.ome14 »(m > 1)
90 fim-1,2 Prom+i4 + (90 + q1) Jim-1,2 Poot+ma +

]
2 GitioPreimoz s (I > 2,m > 1)

$=0

9o fom-12 Prama + (90 + 41) fom-1,2 Potma »(m > 1)
9o fom~1,2 P1,km4 + (g0 + 1) fom-12 Pokma +

k
D Gitkk Peoimoz »(k > 2,m > 1)

=0

90 ftm-1,2 PLki+m4 + (410 + ql) fim—12 Pokt+m4e +

k+i

2 @ stk Prsimimoz »(kJ.m > 1)

=0

U ()] fO.m—l,n-—l P1,0,m,n+1 + (qO + ql) fO.m—l.n—l Poomn+1 » (m 2 L,n _>.. 4)

% f1m-1.n-1 Prom+1.n+1 + (g0 + q1) fim-tn-1 Poome1ne1 »(m > 1,n > 4)

U] fl.m—l.n—l P1om+in+1 + (‘Io + ¢I1) fl,m—l,n—l Po.0l+mun+1 T
{ m-1

22 Gt Peijmein-t s (1 > 2,m > 1,0 > 4)

=0 j=0
9 fom-1.n-1 Pr1mn+1 + (G0 + q1) fom-tn=1 Posmunsr s(m>1,n > 4)
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Peomn = o fom-1,n-1 Prkmnt1 + (g0 + ¢1) fom—1.n-1 Po,k,mn+1 +
k m-1
Z z Gitkk Pr—ijm-jm-1 ,(k 2 2,m > 1,n > 4)
i=0 j=0
Petmin = 9o fim-1,n-1 Pritema+t + (90 + @1) fim-1n-1 Pokttmns1 +
k+l m~1
20D Gitertk Prsi-ijm—jn-1 ,(k,l,m > 1,n > 4)
1=0 j=0

We briefly describe how several representative equations above may be de-
rived. Consider first the equation for ppgg0. The composite stack may enter state
z(0,0,0,0) if it was either in state z(1,0,0,1) during the previous time slot and
there were 0 arrivals (this event occurs with probability P1,0,0,190) or if the stack was

in state z(0,0,0,0) and there were either zero or one arrivals.

Consider next the equation for pgoms. One way in which the composite stack
may enter z(0,0,m,3) is if it was in state z(1,0,m,4) during the previous time
slot and there were zero arrivals (in which case the single message at the top of
the composite stack was transmitted successfully) and there were also 0 messages
in stack elements 2 and 3, and m messages in stack level 4. This event occurs
with probability py o m,490/fo,m-1,2- Similarly the composite stack could have been in
state state z(0,0,m,4) at time T;, and there were zero or 1 arrivals, with all other '

conditions as above.

Finally, consider the equation for pi(mn. The stack may reach state r(k./.m, n)
if there was exactly one message at the top of the stack, no arrivals, k messages
in stack element 2, [ messages in stack element 3, and | + m messages in stack
elements 3 through n +1 during the previous time slot. This occurs with probability
90 ft;m-1,n-1P1 ki+mn+1. The second set of terms in the equation for pym. may be

similarly obtained. Finally, if a collision occurred during the previous time slot, then
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there must have been k + { colliding messages in the top stack element (including
new arrivals) of which k tossed heads and [ tossed tails. There could have been
any number, j, messages previously in stack element 2, with m — messages in the

remaining stack elements.

Similar arguments are used to derive the remaining equations for the no error

case.



Appendix C

Balance Equations for the PN Protocol

In this appendix we present the balance equations for the PN protocol. The full
set of balance equations may be obtained in a straightforward manner from the

balance equations in Appendix B. In addition to the terms defined in Appendix B,

we define:

em as the probability that m of I messages receive a (NON E) feedback signal.
ehm = ( ! ) ™ (1= 7)™, (1 > m)

Q1,m,n as the probability that ! of the m messages in the n stack elements, 2 through
n + 1, move from stack element 3 to stack element 2 and at least one of the

messages in the bottom of the stack receives a NONE feedback signal.
m-1m~i-1

Gmn = D O fimeictn-2 fjmeic-1-jn-3 €,i-t (1 — €isr10), (n > 4)
=0 =i
Bi,m,n as the probability that ! of the m messages in the n stack elements, 2 through
n + 1 move from stack element 3 to stack element 2 and no messages in the
two bottommost stack elements receive a NONE feedback signal. As a result.

if the correct feedback signal is LACK or ACK, the depth of the composite

stack decreases by one.

m-lm~i—1 m—i-j-1

ﬂl,m,n = Z Z Z fi,m—i—l,n—z fj.m—i—l—;,n—i! fk.m—i—)—i—k.n—4

i=0 j=l k=0
€k,0 €55~ €ir1,0, (N > 4)
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Vi, mn 3 the probability that [ of the m messages in the n stack elements, 2 through -

n + 1 move from stack element 3 to stack element 2 and no messages in the

bottommost stack elements receive a NONE feedback signal and at least one

message in the next to bottom stack element receives a NONE feedback signal.

As a result, if the correct feedback signal is LACK or ACK, the depth of the

composite stack remains the same.

m—1m—i—1m—i-j-1

Umn = 9. 9. 9 fim-i-tin-2 fimei-1-jin-3 fem—izj—k-1,n-4 €k ki

i=0 j=1 k=l
(1 — €j0) eixr,0,(n > 4)

Given the above definitions, we have for the following (representative) balance

equations for state occupancy probabilities:

D0,0,0,0
P1,0,0,1

Pk,0,0,1

Do,1,0,2

Po,0,2

P14,0,2

(90 + 91 €1,0) Po,0,00 + 90 €1,0 P1,0,0,1

g1 €1,1 P0,0,0,0 + do €1,1 P1,0,01 + €1,0 (9o + 1 €1,0) Po,1,02 + G0 €2,0 P1,1.0.2

k
(g0 + 91 €1,0) €x,0 Po k0,2 + 90 €x+1,0 Prk02 + Z Gk €k,i tk—ik~i Poo,00 +
=o !
-tk J
€k-1,0 €1,1 (40 Prk-1,02 + 01 Pok-1,02) + 2_ D_ G €k.j thmjik=j P—i.0,0.15 (k > 2)
=0 j=0

(g0 + q1 €1.0) €10 Po,0.1.3 + 90 €20 P1.0.1.3

(g0 + 91 €1,0) €10 P0,04,3 + qo €1+1,0 P1,04,3 + Q1 €10 L1,0 Po,0.0,0 +
-1

g eotiopi-iooa, (I > 2)

1=0
(g0 + 91 €1,0) €141,0 Po1 3 + o €1+2,0P1,11,3 + €10 €1,1 (o Pr,04.3 + 01 Poor3) +

Qt+1(€1+1,0 tir11 + €411 to)Poo000 +

l .
ZQ:‘(CHI.O tivrn + €111 bo)Pist-in0,1, (0 > 1)
$==0



s g

Pk.0,2

Po,0,m.3

Po,1,m.3

Potm,3

P10,m,3

Pk,0,m,3
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(g0 + q1€1,0) €x+10 Po.kt,3 + 90 €k+i4+1,0 Prkt3 +
k
€k+i-1,0 €1,1(q0 Pre-143 + @1 Pok-143) + z Qk+1 Chtli Lhi~ik—i P0,0,0,0 +
=0
k+l-1 &k
Z Z %i €kt,j bkat-jk—5 Ph+i-i000, (kK > 2,1 > 1)
=0 ;=0
m~1
em,m((d0 + q1 €1,0) Po,m,0,2 + G0 €10 Pimoz) + Z Jom~i-1,2 €ii em—i0
=0
((g0 + g1 €1,0)Po,i;m—is + g0 €10 Prim-i4):(m > 1)
m-—-1
em,m €1,0 ((90 + 01 €1,0)Po.m,1.3 + g0 €10 Pimas) + Z €ii Em—i+1,0 f1,m-i-1,2
=0

((g0 + 91 €1,0)Poim~i+1,4 + Go €1,0P1immi+1.4), (M > 1)

1
em,m €10 ((d0 + 91 €1,0)Po.m 1.3 + o €10 P1,my,3) + Z gi €0 L0 Pi~i;mo0,2 +
i=0
m-1
}: €ii em—i+1,0 fim-i—12((90 + @ €1,0)Poi,m—i+1,4 + 90 €1,0P1ism—i+1.4)s
=0

({>2,m>1)
em+1,0 fom-1.2((90 + @1 €1,0)P0.1,m.4 + o €10 P1.1,m4) +
em+1,m((90 + q1 €1,0)Po,m+1,02 + 20 €1,0 P1,m+1,0.2) +

em+1,m+1(% P1,m02 + @1 Pomo2) +

m-1

z €ii em—i0 €1,1 fom-i-1,2(90 P1yijm—i4 + Q1 Pojim-is) +
=0

m-1

Z €it1i €m—i,0 fom-i-1.2((90 + 91 €1,0)Po,is+1,m—id + G0 €10 Prit1m—ra)s (M > 1)
=0

€ms-k,0 fo.m-l.z( ((10 +q el.o)Po,k.m,4 +qoe1p pl.k,m.4) +
em+k,m((q0 + @1 €1,0)P0,m+k.0.2 + o €1,0 Pim+k02) +

em+k-1,m €1,1(90 P1,m0.2 + q1 Pomo.2) +

m~1

Z €k+i-1i €m—i,0 €1,1 fo,m-i-1,2(qo PLk+i-1,m—i4 + q1 POk+i-1,m—ia) +
1=0

m-—1

Z €k+i,i €m—i,0 fom-i—1,2((q0 + @1 ero0) PO k+i,m—~i 4 + 90 €1,0 Pl k+i,m-i4) +
=0



Pklm,3

p0.0,m.n

Po,1,m,n

Pol,mmn
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k k

Z Z i €k j Lkmjkmj Ph—imoz2s (kK 2 2,m 2 1)
=0 j=0

em+km €0 ((90 + @1 €1,0)Po,k+m4,3 + 90 €1,0 P1i+ma3) +

Emak-1m €10 €1,1(d0 P E+m-143 + @1 Pok+m-143) +

m-1

Z €k+i—1,4 Cl+m—i,0 €1,1 fl,m—i-l,z(QO P1k+i-1l+m—id T Q1 Po.k+i—l,l+m-€.4) +
§=0

m-~1

Z €k+ii Clem—i0 fim—-i-12((%0 + @1 €1,0)Po,k+it+m—i4 T 90 €1,0 PLk+idem—ia) +
i=0

K+l k

DD G rtj tert-jik-i Prrimimo0.2; (kslym 2> 1)

1=0 §=0

em,0 Jom-1.n-1{(90 + 1 €1,0)Po,0,m,n+1 + G0 €1,0 Proman+1) +

m-1

z €ii @0,m—in—1((d0 + 1 €1,0)P0i,m—in-1 + 9o €1,0 Prim-in-1) +

=0

m-—1 .

Z eii Bom-in-1((9o + @1 €1,0)Posi,m—iin+1 + 90 €1,0 Pri,m—in+1) T+

1=0 '

m-2

D eii Vom-in((do + a1 €1,0)P0sm—in + 90 €1,0 Prii,m—iin), (M = 1,n > 4)
1=0

em+1.0 f1,m-1.n-1((90 + 01 €1,0)Poo.m+1,n+1 + Q0 €1,0 P1O,m+1,n+1) +

m—1

Z eii a1 m-i+1,n-1{(90 + 01 €1,0)P0;i,m—i+1,n-1 + Q0 €1,0 P1im-i+1,n-1) +
1=0

m-1

z €ii Brm-i+1.n-1((90 + 01 €1,0)Poi,m—i+1,n+1 + 90 €10 Prim—i+tn+1) T
=0

m-2

> i Vim-it1a((90 + @1 €1,0)P0im—it1,n + 0 €10 Prim-isrn)y (M 2 1,0 2> 4)

=0

€m+1,0 fl.m—-l,n—l((qo + 1 €1,0)Po0,m+in+1 + o €1,0 pl,O.m+l,n+l) +
m-—1
Z €ii Qm-i+t,n-1((go + q1 €1,0)P0si,m-i+tn-1 + G0 €10 Pre.m-i+ln-1) +
=0
m-—1
Z €ii Bim+i-in-1{(g0 + 1 €1.0) Po.im-i+tn+1 + Qo €10 Prim—i+tine1) +
1=0
m-2
Z: €is Ul,m+l—i,n((q0 +q 81,0)1)0,.',,"_.'.;.(,,, + qgo €10 Pl.i.m-i+!,n) +
=0
I m-1

Y2 Gieotio Proijm—jm-1, (0 > 2,m > 1,n > 4)
i=0 j=0




68

Plomn = €moe€ip fo.m-l.n-l((QO +q el.O)PO,l.m,n+l + go €10 Px.x.m,n+1) +

Pkom.n

Pklm.n

m—1

z €i+1s @0,m-1,n-1((0 + 01 €1,0)P0i+1,m—in-1 + Q0 €1,0 PLi+1,m—in-1) +
1=0

m—1

Z €ii 00,m—i,n—1€1,1(90 Prime-in-1 + @1 Poim-in-1) +

1=0

m-1

Z €i+1,i Bo,m—in+1((90 + g1 €1,0)Posi+1.min+1 + G0 €1,0 PLi+1,m—i,n+1) +
=0

m-1

Z €ii Bom—in+1 e1,1(go PrLim-in+1 + G1 Poi,m—in+1) +

1=0

m-2

Z €itl,i Uo.m-.'.n((% +q el.O)pO,:'+l.m-o‘,n + qo €10 pl.t'+l.m—i,n) +

1=0

m-—2

2 €ii Yom—in €11(90 Prim-in + @1 Poim-in)y(m > 1,n > 4)

=0

€m,0 €k0 fom-1.n-1((90 + 91 €1,0)P0.k;m.n+1 + G0 €10 Prbmm+1) +

m-1

Z €itk,i @0,m—in—-1((d0 + q1 €1,0)P0i+k;m—in-1 + G0 €1,0 PLi+km—-in-1) +
=0
m-1

Z €k+i-1,i XO,m—in-1 61.1(00 P1k+i-1,m-in-1 + Q1 PO.k-H‘—l,m—-i,n—l) +
i=0

m-~1

Z €itk,i ﬁO,m—i,n-}-l((qO +q1 el.O)FO.i+k.m-t‘,n+1 + go €1,0 Pl.i+k,m—i,n+l) +
=0
m-—1

E €k+i~1,i Po,m—i,n+1 €1,1(do P1k+i-1,m-in+1 + Q1 Pok+i-1,m—in+1) +

=0
m-—2

Z €iski Vom-in((g0 + @1 €1,0)P0i+km—in + go €1,0 Pli+km-in) +

1=0
m-2

Z €k+i~1,i Vo,m—i,n €1,1(g0 Prk+i-1,m—in + G1 Pok+i=1,m—in) +

=0

k m-1
Z Z qi €k, j tk—j,lc—j pk—t,j,m—j,n—lv (k 2 21 m Z 11"’ Z 4)
=0 ;=0
€lem,0 €0 fim-1n-1((g0 + 91 €1,0)Poktsmmn+1 + 90 €10 Prissmns1) +
m-—1

Z Citk,i al,m-o—l—i,n—l((qo +q el.O)pO,k+t,m+l—i,n—l + qo €10 pl.k+i.m+l—i,n-—1) +
i=0
m-1

Z €k+i~1,i AU mal-i,n-1 81.1(00 Pli+s—-1l,m+l—in-1 + Q1 PO.k+i-l.m+l—i.n—l) +
+=0
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m—1

z €krii Bmri-ine1((90 + @1 €1,0)Po,k+i,m+i=in+1 + G0 €1,0 P1i+k,mimin+1) +
=0

m-1 .

Z: €k+i-1,4 Blmi-ine1 81.1(90 PLk+i-1,mt—in+1 T Q1 Pok+i-1,mti-in+1) +
=0

m-2

E Citk,s Vl,m+l—i,n((q0 +q 31,0)p0.k+i.m+l-i,n + go €10 Pl.k+i,m+l—i,n) +
=0

m=2

Z ki1, Ym+-in €1,1(90 PLi+i—t,mti—in + Q1 Pok+i-1,ml=in) +

=0

k+l & m-1

Z Z: Z q; ek-H,j tk+l-j,k—j pk+l—i,w.m—w.n-la (kvlam Z Ia n Z 4)

i=0 =0 w=0

The equation for Po,0,0,0 i8 the same as for the no error case, except that the (at
most) one message being transmitted during a slot must receive correct feedback in
order to leave the system at the end of the slot; correct feedback is obtained with

probability e, o.

The sum in the equation for Po,o,m,3 sums over the number of possible messages
which receive the NONE feedback. Note that if there are 1 messages in stack element
1 in the preceding time slot and all ¢ messages receive the NONE feedback signal,
there will then be 0 elements in this stack element as a result of the PN algorithm.
The term outside th_e sum is for the case in which all m of the messages in stack

element 1 and each receives the NONE feedback signal.

Finally, we examine the equation for piymn,. The terms on the first line on
the right hand side are for the case of no errors and are thus analogous to those
discussed in Appendix B. The first six sums are for the case that a single message
is successfully transmitted. The first sum is for the case in which 7 of the k +
elements in stack level 1 receive NONE feedback and at least one message in stack

element n — 1 receives NONE feedback (and hence the stack depth increases from
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n —1 to n.) The second sum is identical except that the single message in the
topmost stack element receives NONE feedback. The third and fourth sums are
similar to the first two Sums except that the stack depth decreases from n +1 to n.
The fifth and sixth sums are also similar except that the stack depth remains the

same. The final (triple) sum is for the case of a collision among the k + | messages

in the top stack element,



"—qhﬂ-qn—-ﬁ-—..,
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