-

s

DISTRIBUTED ROUTING WITH ON-LINE
MARGINAL DELAY ESTIMATION

C. Cassandras, M. Abidi and D. Towsley
COINS Technical Report, 88-12
February 11, 1988

TS
“w

DISTRIBUTED ROUTING WITH ON-LINE MARGINAL DELAY
ESTIMATION ®

Christos G. Cassandras and M. Vasmi Abidi

Department of Electrical and Computer Engineering
University of Massachusetts

Ambherst, MA 01003
Tel. 413 - 545 1340

Don Towsley

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

ABSTRACT

Most optimal routing algorithms for packet-switched networks require information about the
sensitivity of the performance measure with respect to link flows. This information is generally
difficult to obtain for real-time applications, due to the absence of closed form expressions for
performance as a function of flows; in most interesting cases, standard assumptions (exponentially
distributed packet lengths, Poisson arrival processes) do not hold. In this paper, we present a
procedure for estimating on-line marginal packet delays through links with respect to link flows
without making such assumptions, based on a technique known as Perturbation Analysis (PA). No
knowledge of network parameters is required (arrival rates, link capacities). This is used in the
context of a minimum delay distributed routing algorithm for real-time implementation.
Experimental results are included investigating the effect of the algorithm step-size and observation
period parameters, demonstrate the adaptivity of the approach and compare it to well-known
analytical approximations.

July 1987

M This work was partly supported by NSF under grant ECS-8504675 and ONR under contract N0O0014-87-K-0304.

1. INTRODUCTION

The routing of packets from source node to destination node is an important issue in the design of
packet-switched networks, since it affects several performance measures of interest. By routing we
mean the set of decisions regarding the outgoing link to be used for transmitting messages at each
network node. The objective of a routing algorithm is to optimize some performance measure, e.g.
- the mean packet delay or network throughput.

Routing may be done in a centralized or distributed manner. In the former case, a special node
in the network, called the Routing Control Center (RCC), periodically receives information from
all other network nodes and, based on this global information, it sets up and updates routing tables
for all nodes. This method suffers from high communication overhead, and must deal with the
problem of handling link and node failures. An even more serious problem is how to handle the
failure of the RCC itself.

Distributed routing avoids some of these problems. In this case, each node makes its own
routing decisions based on the (local) information it receives from its neighboring nodes. One
potential problem here is that inconsistent routing paths can cause looping of packets and possibly
deadlocks.

The problem of routing has been investigated using different approaches. Some are based on
heuristics (e.g. shortest path algorithms, as in ARPANET), while others formulate the routing
problem as one of optimal control and then attempt to solve it using standard optimization
techniques ([3], [7], [14]). In general, the optimal routing problem reduces to minimizing (or
maximizing) some objective function D(f;,) with respect to the variables fi, where f; denotes the
flow on link (i,k), subject to certain constraints such as flow conservation and non-negativity of
flows. Optimal routing algorithms may differ in the precise formulation of the problem, and in the
choice of the objective function. However, a common feature is the requircment for knowledge of

the derivatives of the performance measure (e.g. the mean packet delay) with respect to the control

(e.g. the link flows f;y). Therefore, it becomes important to be able to estimate these derivatives as
efficiently and accurately as possible.

Gallager [8] has defined an interesting algorithm to solve the distributed routing problém ina
quasistatic environment. A quasistatic environment is one where the offered traffic statistics for
each origin-destination pair change slowly over time, and individual traffic fuﬁctions do not show
large and persistent deviations from the average. In such a case, it is valid to base routing
decisions on the expected values of the flows. Routing changes are made periodically, or when
required (say, due to a link failing). Thus, from the viewpoint of adaptivity to changing network
conditions, "quasistatic” algorithms such as Gallager's are a sensible compromise between the
purely static (routing decisions fixed in advance) and the fully dynamic (routing decisions based on
continuously observed state information) routing algorithms.

Like most other optimal routing algorithms, Gallager's algorithm assumes knowledge of the
delay gradient D'y (fy). The question is: how does one determine the derivatives of delays c;ver the
links? It can be done analytically if an appropriate formula giving the link delay as a function of the

link flows is available. For example, Kleinrock [11] has shown that the average total delay/sec

over a link is given by :
fik

where f; denotes the amount of traffic on link (i,k), and Ciy is the capacity of link (i,k) (expressed
in the same units as f;,). This expression, however, is based on the assumptions of Poisson .
arrivals at nodes, exponentially distributed packet lengths, and the "independence assumption" of
service times at successive nodes (i.e. when a packet arrives at a node, a new length is assigned to
it from some common exponential distribution). Such assumptions do not hold in practice. Hence,
instead of seeking closed form expressions for Dy (fy), it is preferable to estiméte the derivative of
the delay djrecﬂy, i.e. by using data available in a real network.

Few techniques have been proposed for on-line estimation of performance gradients of systems

modeled as queueing networks. Segall [15] has proposed a "customer rejection” algorithm suitable

P

for estimating mean delay gradients in individual network links. Of greater generality are the
Perturbation Analysis (PA) ([9], [10]) and Likelihood Ratio (LR) [13] techniques. In this paper,
we show how PA can be used to estimate on-line the delay gradients D'y (fy), and be efficiently
integrated in a minimum delay routing algorithm. As we shall see, PA posesses several attractive
properties for our purposes, including lower variance estimates. In contrast to analytical models,
links need not be characterized by exponentially distributed tranasmission times, and the processes
for external arrivals at nodes need not be Poisson. Furthermore, the “independence assumption" is
relaxed packets entering the network retain their identity (packet length) as they traverse links. An
important feature of pmcﬁcal interest in our PA-based approach is that the parameters of the
network (external arrival rates, link capacities) need not be known.

Using PA link delay gradient estimates, we have implemented Gallager's Minimum Delay
routing algorithm on several simulated networks. We have identified two important parameters, the
observation period and the step size, and have studied the performance of the algorithm with
respect to these parameters. In some cases, we also discuss simple enhancements that can improve
its performance.

In section 2 we give an overview of the routing algorithm considered here, which makes clear
the need for estimation of the link delay gradients. Section 3 of the paper describes the Perturbation
Analysis (PA) methodology, on the basis of which the algorithm used to estimate the delay
gradients is derived. This section also compares the PA procedure to the estimation algorithm
suggested by Segall [15] and to the Likelihood Ratio (LR) approach [13]. In section 4, we describe
the mddels used for simulation, and investigate the performance of the algorithm for different cases
- as the traffic pattern becomes more complex, as the size of the network increases, and as sudden
changes occur in the network. A comparison with the routing algorithm using M/M/1
approximation models for links is also included. The paper concludes with section 5, where the

practical significance of these results is discussed and some guidelines are presented for routing in

. practical cases.

2. MINIMUM DELAY ROUTING ALGORITHM

In this section we give a brief description of the main features of the algorithm suggested by
Gallager [8]. Further details can be found in the original reference. The algorithm uses distributed
computation to achieve optimal minimum delay routing, and is well-suited for packet-switched
networks where the quasistatic assumptions hold. Each node constructs its own routing tables
based on periodic updating information from neighboring nodes. Packets are sent over routes
seeking to minimize the overall delay.
We first define some notation to be used. The ordered pair (i,k) denotes the directed link from
node i to node k. In addition:
;(j) = expected traffic entering the network at node i and destined for node j in packets/sec.
t(G) = total expected traffic at node i destined for node jin packets/sec.
fic = expected traffic over link (i,k) in packets/sec; also called the link flow.
Tx = mean interarrival time of packets on link (i,k), i.e. Ty = Vfy,
®x() = fraction of the traffic t,(j) that is routed over link (i,k); also referred to as the routing
variable for link (i,k).

Network congestion is typically measured as some function of the flows f;. In this algorithm

the measure considered is:

Dr= z Dy (fy)

(k)
where Dy (fy) is the average number of packets in queue or under transmission at link (i,k). Note
that, by Little's law, Dy is proportional to the mean delay of packets in the network. Hence, for a
given (external) traffic input, minimizing D is equivalent to minimizing the mean packet delay.
We can now pose the optimal routing problem as follows: find a set of routing variables
(¢x()} which, for a fixed and given set of inputs {r,(j)}, minimizes the objective function Dy .

Furthermore, in the context of distributed algorithms, we wish each node i to choose its own

routing variables ¢y (j) for each k.j.

It is shown in [8] that, in order to minimize Dy, each node i must incrementally decrease those
routing variables ¢;(j) for which the marginal delay defined as:

Dy
D'y (fy) + =—— -

xk(lk) ark(]) (1
is large, and increase those for which it is small.

Here, D'y = dD;,/of; is the Sensitivity of the mean packet delay/sec (i.e. the mean queue

length) over link (i,k) with respect to the link flow.

The second term in the marginal delay expression (1) can be computed recursively as:

oDy : oDy
m=g¢ik(l){ ilfg) + == ar(,)} | - @)
with
oDy
%0

The first term in (1), i.e. the link delay sensitivity D'y (fix), will be estimated using the

Perturbation Analysis technique, described in section 3.

The algorithm uses the following iterative scheme to update the routing variables at the (n+1)th

iteration :
9) - Az) K # Koy
oaG) = ~(3)
WO+ D, Al k=
kot
where:

AyG) = min (6 G), nag)]

. dDr I, oD
2 = [W)+ ())] min [D (6,) + n(])]
and k... is the neighboring node to node i such that the link (i,kpin) has the minimum marginal

delay, and) is a scaling factor to be discussed below.

Hence, the algorithm reduces the fraction of traffic sent on non-optimal links and increases the
fraction on the best link. The amount of reduction is proportional to the difference between the
marginal delay of traffic to node j using link (i,k) and the marginal delay using the best link. It also
depends on a scaling factor 1 , called the step size of the algorithm. As expected, T plays an
important role in determining the convergence properties of the algorithm. In fact, the convergence
of the algorithm has been proved for very small values of 1. It will be seen, however, that 1) can be
made considerably larger in practice.

It is worthwhile emphasizing the distributed nature of this algorithm: as is clear from (3), the
routing variables at node i are adjusted based on information collected from neighboring nodes
(indexed by k) only. Yet, the algorithm minimizes the global performance measure Dr.

A practical implementation of this algorithm requires the answér to two questions:

1. How can the delay sensitivity D'y (f;) be estimated accurately and in "real time" ?

2. What is the best value of the step size 1 ?

We shall address these questions in subsequent sections.

A practical implementation also requires that the algorithm be loop free at every iteration;

otherwise, there would be a deadlock, i.e. a pair of neighboring nodes each waiting (forever) for

information from the other. The protocol used by each node to prevent the formation of loops is
discussed in [8].

3. ON-LINE ESTIMATION OF DELAY SENSITIVITY.

We have seen that the link delay sensitivity D'y (f;,) is an important quantity in the Minimum Delay
algorithm. Since analytical determination of D'y(f,) would involve restrictive, and possibly
unreasonable assumptions (as discussed in section 1), we wish to estimate this quantity directly. In
this section, we shall briefly discuss a technique known as Perturbation Analysis (PA), and

demonstrate its use for our purpose.

The PA technique was originally developed to provide an efficient way to estimate performance
sensitivities for complex discrete event dynamic systems ([9], [10]). A computer network with
stochastic message flows is such a system. The PA method is based on the assumption that a
sample path of the (real or simulated) system is observed. The information thus gathered is
continuously used to predict performance of the system with perturbed parameter values, without
having to observe any additional sample paths, and without actually implementing these
perturbations. An important advantage of the PA approach is that it is based on real data, and is
therefore independent of many restrictive assumptions required for stochastic modeling. Another is
that it can provide on-line estimation of performance sensitivities merely by observation of the
system and with little computational overhead. This feature is exploited here in order to implement
optimal routing algorithms.

For a description of the general PA technique we point the reader to the literature in this area
(e.g. [9], [10], [17]). Questions regarding the statistical validity and properties of the PA approach
have been investigated in detail (e.g. [4], [5), [17]). For example, Suri and Zazanis [17] have
shown that the so called infinitesimal PA mean response time estimates are unbiased and strongly
consistent for the case of the M/G/1 queue, and give extensions for the case of the GI/G/1 queue as

well [18].

3.1. Estimating Packet Response Time Perturbations.

For our purposes, we model a network link as a GI/G/1 queueing system (note that in reality the
arrival process at links is not known) with a first-come-first-serve (FCFS) service discipline. The
assumption we make is that a sample path (i.e. a stochastic realization) of the link in operation is
directly observable. Hence, we can record the arrival time, ay , and the departure time, d,, of the
kth packet on the link. Let S, be the service time (i.e. the transmission time) of the kth packet.
When the (k-1)th packet departs, two cases are possible :

(i) if there is at least one packet waiting for service, then: de=dy, + Sy

(ii) otherwise, there is an idle period of duration I = (ay - dy,); therefore: d, =a, + Sk

Combining these two cases, we can write
de=max {dy;,a)} +S,, Kk=123,.. -4
with dg=0.

Let FA(.;7) and Fg(.;0) be the distributions of the interarrival and service times on the link,
respectively, where 1 and ¢ are the corresponding mean values. This is called the nominal system.
Equation (4) describes the departure time dynamics of the nominal system over a specific sample
path. We may think of this sample path as being characterized by an underlying sequence @ = (o,
@3,...) of random numbers uniformly distributed in [0,1], from which the interarrival time
sequence Aj,A,,... and the service time sequence S,,S,,... are generated according to F,(.;t) and
Fs(.;0) respectively (see [16] for details). A perturbed system is obtained if the parameter 7 is
perturbed by &t (which may be positive or negative). The perturbed sample path is then created
using the same ©, but by generating an interarrival time sequence A;'A,',...

In this framework, Ay = F5"1(w;,7) for some @;, and Ay’ = F5-1(w,,1+37) for the same ;.
Interarrival time perturbations 5A, = A, ' - Ay are therefore given by:

SAk = FA'I((DJ,T"'S‘C) - Ak

Thus, if F, is known, one can always construct Ay after observing A,. Furthermore, if T is a
scale parameter of F, (i.e. the distribution of A/t is independent of 1), it is shown in [16] that:
o
5Ak = (_T-)Ak
Note that in this case only the fraction (5t/) is required, while the nominal value of T may be
unknown. We shall assume in the sequel that whenever F A is not available, its mean is a scale
parameter. As we shall see, this provides good approximations for interarrival time perturbations at

a network node, especially when traffic from multiple links merge at that node.
For the perturbed path created by 8, similar to 4), we get :

di=max {di'a')} +S,, k=123, -

10

where a,'and d,' are the arrival and departure times, respectively, of the kth packet in the
perturbed path. We define the arrival time perturbation (as a result of 8t) of the kth packet as da, =
3y - a. These arrival time perturbarions give rise to departure time perturbations, 8dy =d, ' - d,.

From (4) and (5), after some algebra, the departure time perturbation dynamics can be obtained

max { 8d,_; - (a —dy_,), 8a,} if 4y >dy_
5d. = { -(6)

max { 8dy_), Say + (dy - dy)} if a, < dy

This equation provides a recursive relationship for evaluating departure time perturbations by
observing a single sample path of the nominal system. This enables us to determine the exact value
of the departure time d,’' for that sample path. This algorithm may, however, require a substantial
amount of state memory because if a, < dy.; and several arrivals are observed in the interval (ay,
dy.1), then all this arrival time information must be saved in order to evaluate de, j>k-1 for future
departures observed along the nominal path. In general the PA algorithm can be easily modified to
trade off memory requirement with estimation accuracy [5]. For instance, parametric perturbations
are termed infinitesimal if the resulting arrival and departure time perturbations are sufficiently
small so as to satisfy the conditions :

if ay >dy), then: a,+8ay > dy ;+8d, ;, and

if ay S dy.y, then: a+day < dy +8d,
for all k=1,2,...

This assumption is referred to as "deterministic similarity” between the nominal and the
perturbed paths, and it implies that the perturbations are sufficiently small so as not to cause idle
periods to be either created or eliminated in the perturbed path. In such a case, eéquation (6) may be
simplified to obtain the Infinitesimal Perturbation Analysis (IPA) estimate :

day if ay > dy_,

(Sdk)lPA =
(Sdk_l)lPA ifa, <dy,

11

It can be shown [5] that the IPA estimate provides at least a lower bound for departure time
perturbations. More importantly, it can be shown [18] that, under certain conditions, the IPA
estimate of the mean delay gradient for a GI/G/1 system is strongly consistent. In this paper, we
have used the estimate of equation (6), which is more accurate in tracking the transient behavior of
the perturbed path, as long as no constraints on the amount of state memory involved are violated
(we have not found this to be a problem in practice).

Based on the PA framework described above, we shall now derive a procedure similar to (6)
for estimating the mean response time of packets through a link. Let r, denote the response time

(queueing delay + transmission time) experienced by the kth packet on the link. Note that:
r, =dg- a
Thus, the departure time dynamics of equation (4) give:
e =max (dgy, ag) +Sy- g
=max { dy_;- a; ,0} + Sy
=max {r- Ay.1,0} + Sy ‘ -
where Ay, =a - a is the interarrival time following the (k-1)th packet. If r,' is the

corresponding response time in the perturbed path created by &, the response time perturbation 5r,

=1, - 1 can be recursively evaluated as:

max {Srk_l - (Ak - rk—l)’ 8Ak} if Ak > T

8t = ~8A + { - ~(®)
max {Srk_l, 8Ak + (Ak - rk—l)} if Ak S Ty

where 8A, = Ay Ay is the kth interarrival time perturbation due to 8t, evaluated as discussed

above following the observation of A,.

Then, for a sample path consisting of K observed packets, the sample mean packet delay is

given by:

K
1
RK= T(‘g Iy

12

Assuming ergodicity, this expression provides an unbiased and consistent estimator of the mean

delay over all sample paths. The corresponding sensitivity with respect to &t is computed as:

K
1
SRy = o1, -©
k=1

where dry is evaluated by the PA algorithm in (8), or a simplified version of it (e.g. using the IPA
departure time perturbation estimate). Subject to some technical assumptions (see [18)), the IPA

estimate alone provides an unbiased and consistent estimator of the mean response time gradient as

0t-0.

3.2. PA Estimate of D'ix in the Routing Algorithm.
Returning to the notation of section 2, for a link (i,k) with mean interrrival time Tik» let Ry be the
mean response time of packets over that link. We can then use the PA procedure in (8)-(9) with

some "small” §ty, in order to estimate the gradient g& from a single observed sample path with
Tik

K packets through (i,k). Note that the gradient estimates for all links can be obtained along this one
sample path.

Since Dy in the routing algorithm represents the mean queue length over link (i,k), by Little's

law;

Dy = fy Ry
and we get:

dDy, oRy
Dik=-aE=R,‘k+fik—a§-

However, since the PA gradient estimates are obtained in terms of mean interarrival time - rather

than flow - perturbations, we have:

which yields:

13

) ~(10)

D'ik = Rik_rik (m

with EE‘.I‘.. estimated through equations (8), (9).
Tik

Furthermore, when T is treated as a scale parameter, as previously discussed, we need only
fix the fraction (87;,/t;) in order to evaluate perturbations 3A,, with a corresponding dR

obtained through (9). Hence, from (10), our estimate of D' is:

. T
Dix =Ry - (B:K)5Rik -(11)

and the actual value of T need not be known or estimated.

Very few algorithms for such on-line gradient estimation have appeared in the literature. One is
the "Customer Rejection” algorithm proposed by Segall [15]. In this approach, the delay sensitivity
is estimated along an observed sample path by hypothesizing that packets arriving at a link are
rejected (i.e. are denied service) with probability e. The effective link flow is thus reduced on the
average by:

Me
Bb=ear

where M is the number of observed arrivals in the interval T. Note that in this algorithm the
number of packets is (hypothetically) reduced, while in the PA approach the interarrival times of
packets are individually perturbed. Thus, either technique can be used to model a given flow
perturbation. One can see, however, that if € is small in Segall's approach, then a long observation
period is required to allow a sufficiently large number of packet "rejections”. The advantage of the
PA approach is in its relative simplicity and - more significantly - in that it inherently provides
lower variance estimates. This is an advantage PA also maintains over the Likelihood Ratio (LR)
approach [13]. In fact, unless the system is regenerative, the variance of LR estimates increases
with longer observation periods (see [13]). The lower variance property ensures fast convergence
of the PA algorithm. This is important for our purpose, since the convergence properties of the

routing algorithm depend on the convergence properties of the estimates themselves.

14

0 -
< Segall's
2 - PA
< LR
-4 =
-6 4
E
3 s
E
@ -10-
§ ~12 1
i
-14
-16 ~
18 ~
20+ 17—t
0 2 4 6 8 10 12 14 16 18 20 22 24

Packets (x10,000)

Fig. 1: Comparing the Convergence of Segall’s, PA and LR Estimates
In order to compare the PA, LR and "Customer Rejection” estimation algorithms, all three were
implemented to estimate the gradient of the mean delay (response time), R, for an M/M/1 link
model. The mean interarrival time is T = 10.0 and the mean service time is & = 8.0. The mean delay
gradient dR/dt was estimated by each of these methods over consecutive observation intervals,

with 10,000 packets in each one. Analytically, it is easy to obtain 9R/3t = -16.0. The results of the

15

algorithms for this example are shown graphically in Fig. 1, where the PA estimate is seen to

converge rapidly and smoothly.

4. SIMULATION RESULTS

In this section, we present results from simulation to demonstrate how the PA estimation technique
can be used in conjunction with a routing algorithm to achieve optimal routing in computer.
networks. The Minimum Delay algorithm of section 2 was implemented on several simulated
networks, with the marginal delay estimation being done through PA, as described in section 3. In
particular, D" in the marginal delay expression (1) is evaluated through (11), with the mean
response time perturbation estimated through (8) and (9). The value of (Ot /ty) used in
subsequent results is 0.001. This is sufficiently small to maintain minimal arrival time storage
requirements in implementing (8).

Packets enter the network at the source node and are disposed of at the destination node. The
network is observed for a certain interval of time (the observation period), which defines one
iteration of the routing algorithm. For each packet traversing the network, we record its delay and
marginal delay on each link, and also its total sojourn time in the network. Then, at the end of the
observation period, equations (2) and (3) are used to compute the marginal delay and to update the
routing variables for all nodes. The initial routing in each case is chosen arbitrarily.

In the examples that follow, our first objective is to verify that the routing algorithm actually
converges to the minimum cielay value, given that marginal delay estimates, and not values based
on some function Dy (f;y) which is not available, are being used (Examples 1 and 2). Obviously,
the accuracy of the estimates used for each iteration depends on the time interval over which the
network is observed. Thus, we investigate the performance of the algorithm as the observation
period is varied. The speed of convergence of the algorithm depends on the value of the step size

7. We shall, therefore, also investigate the behavior of the algorithm for varying step sizes, and

16

present guidelines for choosing an appropriate step size. In Example 3, we consider the same
issues for more complicated traffic patterns.

Next, we investigate how the algorithm adapts to sudden changes in the network. Specifically,
we shall consider the case where a link deteriorates, then completely fails, and finally improves
again after some time (Example 4). Here, we consider a larger network with link capacities made
as realistic as possible, based on values found in ekisting commercial networks. In Examples 5,
we have included multiple source-destination pairs to test the algorithm in an environment of
significant complexity.

Finally, we compare the routing algorithm performance with marginal delays estimated through
PA and through an M/M/1 approximation for links (Example 6). As we shall see, the latter (which
still requires estimation of link flows) yields significantly higher mean delays for the network and a
typical traffic pattern considered.

In all examples that follow, packets entering the network at node O with destination node D are
referred to as the O—D traffic.

* Example 1 (Comparison of algorithm with analytically available results)
We have applied the Minimum Delay routing algorithm, with PA marginal delay estimation, to the
four-node network shown in Fig. 2. In this example, we consider only 14 traffic, i.e. packets
enter the network at node 1 only, and are all destined for node 4. In order to compare our
experimental results with analytical ones, we have assumed that interarrival and service times are
exponentially distributed, and that the independence assumption holds. The mean interarrival time
is 10.0 sec, and the mean service time of each link is 8.0 sec. i

From the symmetry of the network, it is intuitively obvious that, for optimal routing, traffic at
node 1 should be split equally on links (1,2) and (1,3), and that no traffic should be routed on link
(2,3). Corresponding to this routing, we can obtain by standard queueing theoretic results

(Jackson's theorem), the mean packet delay as D1 =26.7 sec.

17

Fig. 2: Network for Examples 1, 2 and 3
In Fig. 3, we show the mean delay obtained as a function of simulated time for different
sample path lengths per algorithm iteration (in terms of the number of packets observed). Note that
convergence near the analytically determined optimal mean delay is obtained even for relatively
short observation periods (500 packets). Thus, if the average link transmission time were 0.01 sec,
convergence would be attained in less than 0.1 sec.

* Example 2 (Algorithm performance when packet lengths are not
exponentially distributed)

We now relax the assumption of exponential service times (equivalently: exponentially distributed
packet lengths). We also relax the independence assumption, so that all packets maintain their
identity (packet length) at all nodes. In this example, packets entering the network fall in one of
two classes, "long" and “short”, with the former constituting 80% of the total traffic. The service
time of each link is now specified as 9.0 sec if a packet is "long", and 0.9 sec if a packet is "short".

No analytical solution is available in this case, and the interarrival time distributions at links are
difficult to obtain in closed form. However, from the symmetry argument, the optimal routing

should remain the same as in the previous example.

B o R

<o~ O (Bl e I B, -

10

10 20 300 40 50 60 7O 80 90 100 1100

sinulation time (x1000)

Theoretical Optimum
~—x- 10,000 packets/iteration
--%-- 5000 packets/iteration
--=-+=-=- 1000 packets/iteration
—=—=== 500 packets/iteration

. step size = 15.0E-05

Fig. 3: Effect of Observation Period Length on Routing Algorithm Convergence (Example 1)

18

19

Figures 4a and 4b show the behavior of the algorithm for different values of the step size, with

the observation period fixed to 5,000 packets/iteration. In Fig. 4a the step sizes are small enough to

guarantee convergence, whereas Fig. 4b illustrates the instability resulting from larger step sizes.

Fig. 5a shows the behavior of the algorithm when the observation period is varied, for a fixed

step size N = 1.0x10-3. Fig. 5b is a magnified version of 5a to show convergence for short

observation periods (as few as 50 packets).

In all cases (except when there is no convergence), the routing variables converge to the same

final values, irrespective of the initial routing. These final values are, as expected:

¢12(4) =0.5, ¢13(4) =0.5
$24(4) = 1.0, $23(4) = 0.0

After reviewing Figures 4 and 5, we can make the following observations :

)

05

3)

The mean delay decreases rapidly during the first few iterations; subsequently, changes
become more gradual.

A larger step size leads to faster convergence. However, if the step size is too large, the
algorithm fails to converge, and the mean delay exhibits an oscillatqry behavior, as
illustrated in Fig. 4b with = 5.0x104. This is because a large step size results in an
inordinately large amount of change in the routing variables at each iteration; as a result,
the link flow is switched from from one path to another, and the optimal (bifurcated)
routing is never achieved. Note that the oscillatory behavior of the mean delay may not
manifest itself immediately (as in the case of | = 1.0x104 in Fig. 4b), but only after link
flows throughout the network have achieved steady state.

Convergence occurs even with short observation intervals (i.e. sample paths for obtaining
PA mean delay sensitivity estimates), as illustrated in Figures 5a, Sb for 50 packets per
iteration. However, when observation intervals become too short, the mean delay exhibits
"noisy" behavior near the optimal to which the algorithm converges. This is expected,

since the PA estimates have larger variance when observation intervals are short.

B Yo K
L3

8

8

CPH=HOTY o maop
8 8
L]

B~
N

)
ot
S
gt
8+
R+
8
8
8
&
8
8
8+
&
g4

iteration §

step size = 1.0E-05
step size = 3.0E-05

5000 packets/iteration

Fig. 4a: Effect of Step Size on Routing Algorithm Convergence (Example 2)
(Small Step Sizes)

20

21

427

Hoadg

At UM O P a V- q8

iteration #

= 10.0E-05
= 50.0E-05

-~%-- step size
step sige

5000 packets/iteration

Fig. 4b: Effect of Step Size on Routin Al§on‘:hm Convergence (Example 2).
(Large Step Sizes)

“WPHOD ctoROPTT BDEoO R

B e

oo unup

step size

\0
Ny
\
\0
\0
\
L 2T
+~.~.
*-.‘.
\-
\-
¥,
+'\
I \"""-
1 RS
J‘ s,
["'w.‘
\ ...
LK i S
o .
\ E Satials 2
.‘
\ -
V4 4
AN \/\\;‘- <2 Yene.

50 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 850 100D

time (sec)

50 packets/iteration
100 packets/iteration
1000 packets/iteration
--=-+--=- 5000 packets/iter

1.0E-05

22

Fig. Sa: Effect of Observation Period Length on Routing Algorithm Convergence (Example 2)

23

&

B o R
S

-
~ -
-
-

<=0 O o XOP

——————
-

pde

eessstyes
’
7

=]
Lm"‘"“’.c
ssareaneeses™

OO0 unpg
R
T
uuu-uw’""’"“"
-

ol
F

] L 1 L] L]
J L

05'10152)253035404550556b&5707'58b8'59b957'00

time (sec)

50 packets/iteration
- 100 packets/iteration
----- 1000 packets/iteration
- +--- 5000 packets/ifer

step size = 1.0E-05

Fig. 5b: Effect of Observation Period Length on Routing Algorithm Convergence Example 2
aMnnCMmywuwnhmgwdg § ()

24

* Example 3 : (Algorithm performance for more complex traffic pattern)

Our objective here is to investigate the effect of interfering traffic at the nodes of a network, as
several O—D pairs are included. Consider again the network of Fig. 2, but now with three O—D
pairs: 14, 24 and 1-3.

The interarrival times of 1—4 and 2—4 traffic are both exponentially distributed with mean
values of 15.0 sec, and the interarrival time of 1—3 traffic is uniformly distributed in the interval
[12.0,18.0] sec.

The behavior of the algorithm in this case is presented in Figures 6 and 7. The observations
made above for the single OD pair hold in this case as well. Note, however, that a smaller step size
must be chosen (not much greater than 1 = 1.0x10-9). Interestingly, fast convergence is attained
even for short observation periods (e.g. 100 packets/iteration in Fig. 7), at the expense of small

oscillations near the optimal mean delay.

* Example 4 (Algorithm performance for larger networks and
adaptivity to sudden changes)

We now investigate the béhavior of the algorithm when the network size is increased, and also see
how it adapts to a link failure. Consider the six-node network of Fig. 8. Packets enter the network
at node 1 only with exponentially distributed interarrival times with a mean of 50.0 msec, and
destined for node 5. We take 80% of the traffic to consist of 1024 bit "long" packets (e.g. data),
and 20% of 128 bit "short" packets (e.g. control packets). Link capacities are 72 kbps, 56 kbps or
9.6 kbps, as shown in Fig. 8. Note that the maximum number of hops a packet must traverse in
going from source node to destination node has increased compared to the network of Fig.2.

Fig. 9 shows that the algorithm converges in a manner similar to the previous cases for a step
size N} = 0.3x10-5 and observation intervals of 5,000 packets per iteration. The oscillatory behavior
observed illustrates a limitation of the routing algorithm, causing some of the routing variables to

switch between 0 and large positive values in successive iterations. Specifically, consider links

25

(2,6), (2,4) and (2,5) in Fig. 8. Because (2,3) is a much faster link, it is optimal for all (1-5)

traffic at node 2 to be routed through that link. Thus, following some iteration, we have:
035) =1, $4(5) =0, ¢5(5) =0

Now, in the next observation period, since no packets are routed through links (2,4) and (2,6),
mean delay and marginal delay for these links cannot be estimated. For lack of information, the
algorithm assumes these quantities to be 0. As a’result. a large fraction of traffic is shifted to these
links in the next iteration, the marginal delays will once again be found to be large, the previous
(truely optimal) values for the routing variables are re-established and the process goes on. This
explains why the mean delay in Fig. 9 periodically deviates from the optimal.

Clearly, if we are not concerned with the possibility of future changes, we may simply set the
routing variables to their optimal values as soon as this behavior is detected. This gives rise to the
smoother (solid) curve in Fig. 9. Alternatively, we may maintain memory for the marginal delays
of unused links and allow only a small fraction of "test" traffic through them in such cases, which
would prevent any significant mean delay deterioration. Yet another approach is to use an M/M/1
approximation for such links to estimate the marginal delay if measurements are not available in an
iteration.

We now investigate the adaptivity of the algorithm when sudden changes occur in the state of
the network (without attempting to avoid the oscillatory behavior discussed above). Consider the
following Scenario: first, link (1,3) suddenly deteriorates (i.e. its transmission time increases); after
some time, it deteriorates further, and finally the link is repaired. Referring to Fig. 10, after the
83rd iteration, link (1,3) fails and is replaced by a slower 24 kbps "backup" link. As expected, the
mean delay initially increases to a very large value, but, within a few iterations, the algorithm
rapidly adapts to the changed network condition and finds a superior routing.

After the 120th iteration, link (1,3) is fcompletely removed. Again note the initial increase in

delay, followed by rapid adaptation.

<K= O o RO Y B Pox
A}

[

cCoup

0 2 46 8101214161820 22 24 26 28 30 32 34 36 38 40 42 41 45 18

iteration §

step sige = 0.
== step size = I

5000 packets/iteration

Fig. 6: Effect of Step Size on Routing Algorithm Convergence (Example 3)

26

27

Br o

e~ o cto RO

B R

Oounups

-—
see
LY

: +
LR P~ -
R od B I o IS N
mmwﬂwww{iuf Ww**}**?*wwaww; .
- \'.

AP NSV e NI S0

[l L (1 L [l [
v ¥

0 20 4 6 8 100 120 140 160 180 200 220 240 200 280 0 T 0 20 2O 20

time (sec)

100 packets/iteration
—====— 500 packets/iteration
“-+-- 1000 packets/iteration
“r#=-- 5000 packets/iteration

step size = 0.1E-05

Fig. 7: Effect of Observation Period Lenghth on Routing Algorithm Convergence (Example 3).

28

Numbers are
link capacities in kbps

Fig. 8: Network for Examples 4, 5 and 6

Finally, after the 155th iteration, link (1,3) is repaired and regains its original 56 kbps capacity.
The algorithm immediately responds by shifting flow to this link, and converges to the original
optimal routing. Thus, even in the presence of large disturbances, the minimum delay routing
algorithm has the ability to adapt rapidly.
* Example 5 (Algorithm performance for larger networks and

complex traffic pattern - 19 OD pairs)

We now investigate the performance of the algorithm for the six-node network of Fig. 8 when the
traffic pattern becomes more complex, with 19 OD pairs. Interarrival times are taken to be either
exponentially or uniformly distributed, with means ranging from 60.0 msec for (1-3) traffic to
300.0 msec for (1-5), (1-6), (3—2), (3—5) and (4—3) traffic. Packets contain, as before,
either 1024 (80% of the raffic) or 128 bits.

29

140t
1301
120+
M
e
a
% 110+
P
a
c
k 1001 '1
4
e h
t 1
:l
D oof "
]
e 'y
1 h
'y
a :|
Y 8F 'y
"y
i 'l
n o
!y
701 o
m Il. 4
s . ¢ Yo :"
e . poantoa
\ \ 1 '
© o Aoh oL
A ": ||l"‘| : "\'::l'
- A e U L R O B N
N (R A L boow oy
0T ! ' !
1
40 —t—tt +——tt—tt

1015 20 2% 30 35 40 45 50 5 60 6 70 75 & 8 9% 9 10
iteration #

----- Algorithm without heuristic
with set-to-zero heuristic

5000 packets/iteration, step size = 0.03E-05

Fig. 9: Algorithm Performance with Heuristic Modification (Example 4)

Peo R

§ 8 8 8 88 8§ 8 86 BB &

<P -=oo (S e I - I)

B

oo wup

¥

§ £ 8 & 3

S

8

&

8

g

]

5000 packets/iteration

100 120 140 160 180 20 20 260
iteration §#

step size ='6.03E~05

Fig. 10: Adaptivity of Routing Algorithm (Example 4)

30

31

The mean delay was found to converge to about 50 msec, as shown in Figures 11 and 12 (we
omit listing the corresponding optimal routing variables). The main features of the algorithm are
similar to the previous examples, with even smaller step sizes required to guarantee convergence
(the algorithm became unstable for 1| = 0.1x10-5). In Fig. 12, note that convergence becomes |
more noisy as the observation periods are shortened; however, rapid and near-optimal performance

is obtained for observation periods as short as 500 packets. For instance, with i = 0.01x10-5 and

observation periods of 500 packets, the mean delay comes very close to optimal after 50 sec.

* Example 6 (Comparison between PA marginal delay estimation and
M/M/1 link model approximation in aigorithm performance)

As a first step, one may compare PA delay gradient estimates of a standalone GI/G/1 model with
those obtained through an M/M/1 approximation. Next, since it is reasonable to approximate the
interarrival time process at a network node with heavy traffic arriving from several links as having
an exponential distribution, one can use an M/G/1 system instead. Examples showing that M/M/1
approximations can be highly inaccurate for such standalone models, compared to their PA
counterparts, may be found in [1].

On the other hand, it is possible to argue that the M/M/1 approximations are sufficiently
accurate in the context of the routing algorithm, since it is the relative sensitivities of links that are
important in determining how to update routing variables. We have, therefore, repeated Example 5
with a step size n = 0.01x10-5 and observation periods with 5,000 packets using M/M/1
approximations for all network links, and hence analytically evaluating the marginal delays
requiréd in the algorithm. The results, comparing this approach to our implementatic;n with PA
estimation, are shown in Fig. 13. Note that the M/M/1 approximation yields higher mean delay

routings with considerable variance for this particular case (long and short packets).

1104 32

L

g

8 v o B
&
T

<SP~ O X0

Y

oo unpB

iteration §#

step size = 0.0001E-05
-------- - step size = 0.001E-05
~~+-- step size = 0.005E-0§
---------- step size = 0.01E-05

10,000 packets/iteration. Each iteration takes about 56 sec.

Fig. 11: Effect of Step Size on Routing Algorithm Convergence (Example 5)

33

B0 0K
g 8 B &

:

"
t.o“""”..”.'
o

<P = O o RO T

g

acmimimime eTBimIm It cmimimime
BRI IR I BB IR IR I IR IR ImI@i@Mimimimtas toime

wimimsme
nimiwomsmemems

B

OouB

or——tt
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 $50 1000

Time in seconds -->

—»*— 10,000 packets/iteration
—+-— 5000 packets/iteration
1000 packets/iteration
---------- 500 packets/iteration

.step size = 0.01E-05

Fig. 12: Effect of Observation Period Length on Routing Algorithm Convergence (Example 5).

< P r-~0o O o XO P g Do

B o

oo unpg

& 8 8 3 8 8

5000 packets/iteration. step size =

1901

Lttt il i i R it J T TR SR S
-

34

iteration §#

with MM1 result
with PA Estimates

0.01E-05

Fig. 13: Comparison of Algorithm Performance with PA estimation vs. MIM/1 Approximation

(Example 6)

35

One final important point is that to use the M/M/1 approximation and corresponding analytically
obtained marginal delays, one still has to estimate link flows throughout the network, in order to
use them as arrival and service rate parameters in the M/M/1 link models. At the end of an iteration,
one must then evaluate the response time sensitivity of all links, which is already available through
PA estimation without explicit knowledge of link flows and at little extra cost (the implementation

of equations (8) and (9)).

4. CONCLUSIONS

We have considered the problem of routing in computer networks in order to minimize the mean
delay of packets. One reason why optimal routing algorithms have not yet been very popular in
practical networks is that they are based on knowledge of delay gradients, and few methods exist
to estimate such quantities simply, efficiently, and in real time, without having to make restrictive
assumptions about the network traffic. In this paper, we have shown how the Perturbation
Analysis (PA) technique can be used for this purpose: no assumption is made regarding the
external arrival processes or the packet lengths. Furthermore, no explicit knowledge of the network
parameters (arrival rates, link capacities) is required. We have used PA estimates to implement a
distributed minimum delay routing algorithm on simulated networks. Through simulation
experiments, we have verified that the algorithm is able to achiéve nearly optimal routing (in a

minimum delay sense) for several different cases, and that it is able to adapt to large changes in the

_network.

-

The performance of the routing algorithm depends on the step size and the observation period
length used to apply PA in order to estimate delay gradients. We have studied the performance of
the algorithm with respect to both these parameters. From the results of section 4, some general
conclusions can be drawn.

First, most of the improvement in performance is obtained in the first few iterations. This initial

improvement is particularly dramatic if the initial routing is poor. As the optimal value is

36

approached, the performance improvement between successive iterations becomes increasingly
smaller. In practice, however, it is seldom necessary to attain the theoretically optimal routing. One
would often be content to be within 5-10% of the (theoretical) minimum mean delay value, and, as
seen from the examples in section 4, this can be achieved in relatively few iterations.

The convergence of the algorithm is critically dependent on the step size parameter, especially
for more complex traffic patterns (i.e. several O—D pairs with interacting traffic). Too small a step
size results in extremely slow convergence, while too large a value may preclude convergence
altogether. A moderately large step size, on the other hand, leads to fast convergence, but the mean
delay may exhibit some initial oscillations with very large values. In addition, the routing variables
(and the mean delay) may oscillate near the optimal values. We have also observed that for large
step sizes, a good initial routing results in faster convergence.

The algorithm converges even for short observation periods, which affects the accuracy of
delay gradient estimates, at the expense of higher mean delay variance over the sample points
defined by several iterations. In practice, it may be desirable to minimize the mean packet delay in a
given interval of time. For instance, in a dynamically changing network environment, the specified
time interval would be properly chosen so that the algorithm attempts to provide near optimum
performance before a network change may occur. To achieve this goal, we have to choose a
combination of large step size and short observation period, since this would give the fastest initial
performance improvement.

One can expect that second derivative considerations (e.g. [2]) and certain heuristic
modifications may lead to improved performance of the algorithm used here. One such
modiﬁcation for reducing oscillatory behavior in the routing variables was suggested and
implemented in Example 4. Another possibility is to include a mechanism for adjusting the step
size used at each iteration, based on the change in mean delay at successive iterations (see [6]) and
to vary the step size depending on the link. Similarly, the observation period may be increased to

obtain more accurate marginal delay estimates only after the mean delay is near the optimum.

37

Several challenging problems in routing remain to be studied. The algorithm we have used here
is suitable for quasistatic environments, where periodic or infrequent routing changes are required.
For networks experiencing more frequent changes, "dynamic" routing algorithms are preferable.
Such algorithms make routing decisions on a packet-by-packet basis, using instantaneous state
observations (e.g. queue lengths), preferably in a decentralized manner. One such approach,
currently under study, uses threshold dependent routing. Finally, we have restricted ourselves to a
single class of packets in the network, with FCFS service disciplines at all nodes. There is
increasing evidence, however, that multiclass environments need to be analyzed (e.g. [12]), with

each class characterized by different service requirements, including real-time constraints.

REFERENCES

[11 M.V. Abidi, "Use of Perturbation Analysis Techniques for Optimal Routing in Computer
Networks", Dept. of Electrical and Computer Engineering Technical Report, University of
Massachusetts/Amherst, 1987.

(21 D.P. Bertsekas, E.M. Gafni, and R.G. Gallager, "Second Derivative Algorithms for
Minimum Delay Distributed Routing in Networks", IEEE Trans. Commun., COM-32, 8, pp.
911-919, 1984. ‘

[3] D.G. Cantor, and M. Gerla, "Optimal Routing in a Packet-Switched Computer Network",
IEEE Trans. Comput., C-23, pp. 1062-1069, 1974.

[4] X. Cao, "Convergence of Parameter Sensitivity Estimates in a Stochastic Experiment", IEEE
Trans. Automatic Control, AC-30, 9, pp. 690-700, 1986.

[5] C.G. Cassandras, "Error properties of Perturbation Analysis for Queueing Systems”, subm.
to Operations Research, 1987.

[6] F. Chang, and L. Wu, "An Optimal Adaptive Routing Algorithm", IEEE Trans. Automatic
Control, AC-31, 8, pp. 845-853, 198S5.

[7] L. Fratta, M. Gerla, and L. Kleinrock, "The Flow Deviation Method: An Approach to Store-
and-Forward Communication Network Design", Networks, 3, pp. 97-133, 1973.

(81 R.G. Gallager, "A Minimum Delay Routing Algorithm Using Distributed Computation",
IEEE Trans. Commun., COM-25, 1, pp. 73-85, 1977.

38

[91 Y.C. Ho, and CG. Cassandras, "A New Approach to the Analysis of Discrete Event
Dynamic Systems", Automatica, 19, pp. 149-167, 1983.

[10] Y.C. Ho, X. Cao, and C.G. Cassandras, "Infinitesimal and Finite Perturbation Analysis for
Queueing Networks", Automatica, 19, pp. 439-445, 1983,

[11] L. Kleinrock, "Communication Nets: Stochastic Message Flow and Delay", New York:
McGraw-Hill, 1964.

[12] K.J. Lee, D.F. Towsley, and M. Choi, "Distributed Algorithms for Minimum Delay Routing
with Constraints in Communication Networks", Proc. INFOCOM °87, pp. 188-201, 1987.

[13] M.L Reiman, and A. Weiss, "Sensitivity Analysis for Simulations via Likelihood Ratios",
manuscript, AT&T Laboratories, 1986.

[14] M. Schwartz, and CK. Cheung, "The Gradient Projection Algorithm for Multiple Routing in
Message-Switched Networks", IEEE Trans. Commun., COM-24, pp. 449-456, 1976.

[15] A. Segall, "The Modeling of Adaptive Routing in Data Communication Networks", IEEE
Trans. Commun., COM-25, 1, pp. 85-95, 1977.

[16] R. Suri, "Implementation of Sensitivity Calculation on a Monte Carlo Experiment",J. Optim.
Theory and Applications, Vol. 40, pp. 625-630, 1983,

[17] R. Suri, and M.A. Zazanis, "Perturbation Analysis gives Strongly Consistent Estimates for
the M/G/1 Queue", subm. to Management Science, 1986.

[18] M.A. Zazanis, and R. Suri, "Estimating First and Second Derivatives of Response Time for
G/G/1 Queues from a Single Sample Path", subm. to Queueing Systems, 1986.

