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Abstract: Many applications of plan recognition involve open worlds, where information
about the state of the world is incomplete. Without this information, competing
interpretations cannot be disambiguated, predictions of future actions lack precision, and
certain errors go undetected. One solution to acquiring additional state information is to use
domain knowledge to make plausible assumptions about the missing values using the
observable values. We show how a plan recognition architecture (based on the hierarchical
planning paradigm) can be extended to incorporate a new type of domain knowledge:
knowledge that is imperfect, supporting assumptions that may have to be revised.
Credibility, the degree of agreement between an interpretation and current assumptions
about the world, provides the basis for improved disambiguation, prediction, and error
detection. The additional discrimination power is flexible—an interpretation that violates
some current assumptions can be pursued after reconciliation, the process of revising
assumptions to bring the world state into conformance with the interpretation. This
extension to plan recognition exploits deeper domain knowledge about the context for
actions, enabling deeper modeling of open worlds. -
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1.0 Introduction

Plan recognition has proved a useful paradigm for a variety of applications, such as
automated consultation [7], natural language discourse [1, 13], story understanding [16],
explanation-based learning [5], and interpreting behiavior of adversaries [2]. Many of these
applications involve open worlds, where information about the state of the world is
incomplete. When it is impossible (or infeasible) to acquire the missing information, plan
recognition is adversely affected. Competing interpretations of actions cannot be
disambiguated, some distinctions between legal and illegal actions/plans cannot be made,
predictions of future actions lack precision, and there is no basis to explain why observed
actions/plans were chosen over other alternatives.

As an example, consider a recognition-based intelligent assistant that supports a
programmer carrying out the process of software development [8]. The observable actions
consist of tool invocations, and the observable state of the world is reflected in the software
objects (source code, testcases, etc.) that exist and the relationships among them. One goal
might involve building a new system version; in turn, that goal might be decomposed into
creating source modules, compiling/linking, testing and finally archiving. To test a system
means running all applicable testcases, and only those cases (neither under- nor over-
testing is desirable). The problem is that applicability of testcases cannot be directly
observed as a result of past actions nor computed with certainty from observable data.
When a testcase is run, there is no independent basis for determining if the testcase is
indeed applicable, or if this signals the end of testing. Knowledge about testing strategies
(where a given strategy implies that certain categories of testcases are applicable) underlies
the choice of testcases, but this deeper knowledge cannot be exploited since the operative
testing strategy cannot be determined—it too is not observable.

Predicates such as applicable(<testcase>,<system version>) whose truth or falsity cannot
be determined cannot be used in operator definitions to define the relevancy of an operator
(preconditions), the decomposition and completion criteria (subgoals), or restrictions on
parameter bindings (constraints). When such predicates are omitted entirely, the operator
definitions are under-constrained and plan recognition is too permissive—"illegal" plans
will be accepted, predictions will be too general, and alternatives that are actually irrelevant
cannot be discarded. Attempting to compensate by substituting another expression for the
missing predicate may yield a definition that is over-constrained and plan recognition will
be too rigid.

One solution to acquiring additional state information is to use the observable state
information to make plausible assumptions about the missing values. In the testing
example, there is a correlation between the types of changes made during source editing
(something that can be measured) and the operative testing strategy, which in turn
determines the categories of tests that are applicable. For example, when changes are
simple (affecting a few lines of code), a weak test strategy would typically be appropriate—
only base testcases would be applicable. Otherwise, standard testing would typically be
appropriate—base and normal testcases would be applicable. This reasoning is inherently
non-monotonic; assumptions are made in the absence of information to the contrary, while
later, additional information may be acquired that defeats the earlier conclusion and its
consequences.

When assumptions about test strategy and applicability are added to the observable state of
the world, it is possible to evaluate the credibility of alternatives. Interpretations of actions
(or predictions of future actions) that agree with the current assumptions have the highest
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credibility; interpretations lose credibility with each assumption that is violated. If the
operative testing strategy is assumed to be standard testing, then an action to run one of the
normal cases is fully credible, because that case is assumed to be applicable. On the other
hand, an action to archive the system, which is predicated upon testing being completed,
would have less than full credibility as long as there are applicable (i.e., base or normal)
cases still to be run.

Given two alternative interpretations that differ in credibility, the more credible alternative is
more likely to be the correct interpretation. Given two choices for completing an
unsatisfied subgoal, the more credible alternative is the better prediction of the future. An
action whose "best" interpretation is below a certain credibility threshold is a possible user
error. Thus, the programmer can be advised of a possible oversight when archiving prior
to running all applicable testcases. Finally, it is possible to give the underlying reason for
the credibility of running or not running a particular testcase, by citing the operative testing
strategy and its implications.

Credibility can be combined with other discriminators to determine which interpretations to
pursue. Sometimes it will be necessary or desirable to pursue an interpretation that is not
fully credible; for example, the interpretation may still be the "best" considering all available
discrimination information. In order to proceed with such an interpretation, it is necessary
to reconcile the assumptions about the state of the world with the requirements of the
desired interpretation. For example, suppose the operative testing strategy is assumed to be
standard testing. To pursue an interpretation in which archiving starts when only base
cases have been run, it is necessary to revise the assumption that testing is not done. While
this can trivially be accomplished by simply recording that testing is done, it is far more
interesting to provide some rationale for testing being done. And, indeed, the preferred
reconciliation is to change the operative testing strategy from standard to weak testing, after
which it follows that testing is now done. The full implementation of this example is given
later.

In this paper, we describe how a plan recognition system, based on the classical
hierarchical planning paradigm, can be extended to incorporate a new type of domain
knowledge about the context for actions; unlike the knowledge already reflected in operator
definitions, this knowledge is approximate rather than absolute. This approach allows
plausible inference and plausible explanation within a deeper model of domain activities
than is otherwise possible. In Section 2, we show how to capture this deeper knowled ge,
and how to exploit it for reasoning about world state. This is accomplished through
monotonic and non-monotonic rules in a truth maintenance system (TMS). In Section 3,
we explore the impact on a plan recognition architecture. Credibility represents a new
perspective from which competing interpretations can be disambiguated. Reconciliation is
the means by which assumptions are revised when that is necessary. We end with a brief
summary.

2.0 Reasoning About the State of the World

Reasoning about the state of the world is a potentially complex activity. It includes
gathering evidence from many sources, refining this evidence by applying additional
domain-specific knowledge, and reaching plausible assumptions as well as hard
conclusions. For the predicate applicable, there are two disparate sources of evidence (the
nature of changes made during editing and the categories to which individual testcases
belong); additional domain-specific knowledge, defining test strategies and relevancy of
testcase categories, is needed to put this evidence to actual use. It is difficult to see how the
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knowledge about testcase applicability can be parceled out among operator definitions
(which are the standard vehicles for expressing domain knowledge). A separate rule
system is needed, allowing all the new domain knowledge, detailing what evidence to
gather as well as how to refine the evidence, to be collected in one place, so that related
rules can be grouped together. In order to meet the requirement for making assumptions,

the rule system should be non-monotonic.

A truth maintenance system (TMS) [6] is one approach to implementin g non-monotonic
reasoning, based on multi-valued logic. A TMS maintains a network of nodes, each of
which can be labelled IN or OUT. Separate nodes are used for a predicate and its negation.
If the node for a predicate is IN and the node for its negation is OUT, the predicate is true
if the node is OUT and the negation is IN, the predicate is false. If both are OUT, the truth
value is unknown,; if both are IN, there is a contradiction. Justifications capture the

Figure 1: Example Operators
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relationships between the nodes, correlating a set of support nodes and a set of exception
nodes with a conclusion node. A justification of the form A EXCEPT B —> C means that
if A is IN and B is OUT then C is IN. The exception node B represents the non-monotonic
content of the justification; a monotonic justification has an empty list of exceptions. In
order for a node to be IN, it must have at least one valid justification; a justification is valid
if all its support nodes are IN and all its exception nodes are OUT. A premise justification
has empty support and exception lists, so it is always valid.

2.1 TMS Justifications

As an example, take the selection of operators in Figure 1 for building a system version.
These operator definitions follow the standard hierarchical planning paradi gm [12, 14, 15};
their effects determine the core state of observable facts. The use of the extended state
predicates that cannot be observed is highlighted. For example, the precondition in
run_one_case requires that the testcase be applicable; the iteration completion criteria in
run_cases is that tests_done be true; and, there is a subgoal in build that will allow
archiving to be skipped when waiving it is appropriate. The objective is to use TMS
justifications to derive truth values for these extended state predicates.

Example domain knowledge about applicable and tests_done is given in Justification form
in Figure 2. In order to express this knowledge, several additional predicates have been
introduced. Changes made during editing are used to conjecture whether the test strategy
should be standard or not (rules J1-J2). The non-monotonic rule J1 can be read "If
substantive changes are made during editing, then typically a standard testing strategy is
appropriate.” Testing strategy determines whether normal testcases are relevant (rules J4-
J5); base cases are always relevant (rule J3). Rules J6-J7 establish that cases that are
relevant are applicable unless they are specifically excluded (as they would be if infected
by some catastrophic bug that is not yet fixed). Rule J8 states that typically cases are not
specifically_excluded. Tests_done does not hold until all applicable testcases have been
tried (J9-J10). Note that both monotonic and non-monotonic rules have been used; the
meaning of the testing strategies is defined monotonically, for example.

Figure 2: Justifications

Operative Test Strategy
J1: substantive_changes(Sys) EXCEPT not standard_test(Sys) —> standard_test(Sys)
J2: EXCEPT standard_test(Sys) —> not standard_test(Sys) %weak testing = not standard_test

Relevancy of Cases, By Category
J3: type(Case,base) —> relevant(Case,Sys)
J4: type(Case,normal) and not standard_test(Sys) —> not relevant(Case,Sys)
JS: type(Case,normal) and standard_test(Sys) —> relevant(Case,Sys)

Applicability of Cases
J6: relevant(Case,Sys) and not spec_excluded(Case,Sys) —> applicable(Case,Sys)
J7: EXCEPT applicable(Case,Sys) —> not applicable(Case,Sys)

J8: EXCEPT spec_excluded(Case,Sys) —> not spec_excluded(Case,Sys)
Completion of Testing '

J9: applicable(Case,Sys) and not case_tried(Case,Sys) —> not tests_done(Sys)
J10: EXCEPT not tests_done(Sys) —> tests_done(Sys)
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2.2 TMS Node Labels

Justifications provide a way to derive the extended state from the core state. When the
justifications are instantiated, and the truth values of core state predicates entered (with
premise justifications), the truth maintenance process will label the nodes, giving a read-out
on the truth values of the extended state predicates. When the core state changes as a result
of an action, the nodes will be relabelled and the extended state predicates may change*; in
this way, the extended state predicates may vary over time**. The TMS will also
determine whether the truth value of a predicate is certain or by-assumption. A predicate is
certain unless one or more non-monotonic rules were used to determine its truth value.
(The truth values of predicates that are certain cannot be changed in order to reconcile an
interpretation.)

As an example, consider a situation where the building of system version SV has
progressed to the point where testing is in progress; suppose also that the source editin g
changes were substantive. Let there be three testcases, where TC1 is a base case, and TC2
and TC3 are normal cases; suppose TC1 has been run. The state of instantiated
justifications is given in Figure 3, showing that standard testing is assumed to be operative,

* A preference facility is used to distinguish stronger rules from weaker ones; as the state changes,
Bf_efcrences ensure that weak evidence does not block str%ﬁer evidence supporting the opposite conclusion.

eferences address the issue of multiple labellings in a TMS with even loops [4]. Rules such as J1 and J2
(which are in normal form [11], to borrow a term from default logic [10]), cause even loops. Preferences
would be used, for example, to ensure that if J2 currently supports not standard_test(x) when
substantive_changes(x) becomes true, J2 will be made invalid and J1 valid.

+~ One might want to sanction certain inferences about system Y (that is in some way related L0 systcm
X) only during the time that X is the current customer release; a rule to do this would includec
curr_cust_rel(X) as one of its hypotheses.

Figure 3: Instantiated Justifications
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that TC2 and TC3 are assumed to be applicable in testing SV, and that testing is not done as
there are (two) applicable cases that have not yet been run.

Normally in plan recognition, predicates describing the world state evaluate to true or false,
the evaluation is known to be certain, and interpretations are either valid or invalid. Wiih
the introduction of TMS justifications, there is a middle ground between valid and not valid—
described by degree of credibility. In the next section we discuss how a plan recognizer
can capitalize on this new information.

3.0 Impact on Plan Recognition Architecture

Effective plan recognition involves making timely and knowledgeable choices between
competing interpretations. Deferring decisions, thereby allowing further actions to narrow
the field, restricts the ability to make inferences about the current situation. Making
arbitrary choices is computationally expensive since they often have to be re-visited. In
[9], the domain-independent assumption that the preferred interpretation contains a minimal
number of top-level plans is used to make reasoned choices in the presence of uncertainty.
In [3], both domain-independent and domain-dependent heuristics could be expressed and
used to guide choices. Credibility represents an additional source of discrimination
knowledge, as described below.

3.1 Use of Credibility

As an example of the use of credibility, consider the following scenario. Let building of
system version SV be in progress as described in Figure 3, where substantive changes
were made during source editing, standard testing is assumed operative, cases TC1-TC3

Figure 4: Plan in Progress Figure 5: Edit as Make one newcase
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are assumed applicable, and only case TC1 has been run. Further, let there be assumptions
that new testcases are needed, and that archiving is not waived. The state of the plan for
building SV is shown in Figure 4. Let the next action be edir. Given the operator library
of Figure 1, there are two interpretations for edit: editing to make a new testcase and editing
to get source code ready.

Consider the interpretation of edit as part of malcing new testcases; in this interpretation
(Figure 5), edit continues the work of building system SV. Edir itself has no
preconditions, but it inherits the precondition newcases_needed from make_one _newcase.
Since newcases_needed is true by assumption, this interpretation is fully credible—it
depends on (one) extended state predicate that is assumed to be satisfied. Note that if
newcases_needed had been true with certainty, then the interpretation would be valid
absolutely.

Now consider the interpretation of edit as part of getting source code ready; in this
interpretation, edit starts a new top-level plan (shown to the right in Figure 6). Again, ediz
has no preconditions, and make_newmodule has no preconditions, but make_source has a
precondition that the baseline system (on which this new system version is to be based) is
built. Built(SV) is not true, but there is a plan to achieve it that is in progress. Three

assumptions enter into believing that this plan is not finished*. They are that new testcases

* The algorithm that discovers this is simply a planning algorithr_n—in general, it may be necessary 10
choose and instantiate complex operators, bind variables, an the like. Here, the planner must find a plan
that can be considered satisfied (not one that calls for overt actions to be taken). "In that context, making
assumptions about the world state is an important means of completing a plan, Including a fplar;ner within
a plan recognizer has other advantages, such as the ability to handle missing observations of actions and (o
predict future actions.

Figure 6: Edit as Maké_newmodule
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are needed (affecting the first subgoal of test), that testing is not done (affecting the iterated
subgoal of run_cases), and that archiving is not waived (affecting the last subgoal of
build). Thus, the interpretation of edit as part of starting a new build plan has low
credibility— it conflicts with three current assumptions.

Credibility is a basis for distinguishing the relative likelihood of these two competing
interpretations, establishing a clear preference for edit as making testcases. It so happens
that discrimination based on the domain-independent heuristic preferring interpretations
with the minimal number of top-level plans reinforces this preference, although in other
cases there will be conflicts between credibility and the minimal-plans criterion. The best
discrimination decisions will result from combining the evidence from multiple,
independent perspectives. Credibility represents a new perspective, derived from deeper
modeling of the context of actions.

3.2 Reconciliation

Reconciliation is the process of revising assumptions to make world state conform to the
requirements of an interpretation. This is only necessary when the "best" alternative
(considering all available discriminators) still violates a few assumptions about the state of
the world, or when other more attractive alternatives were originally chosen but led to
contradictions. Reconciliation can be trivially accomplished by adopting the desired
assumptions; but then, clues that other assumptions are wrong will be ignored. Since the
justifications provide the accepted rationale for various assumptions, it is better to find a
rationale for the desired assumption than to adopt it outright. We first describe an
algorithm for reconciliation, and then give an example.

The reconciliation algorithm is based on dependency-directed backtracking for TMS's 6],
although different in several respects. Originally, TMS's were used both to record chains
of inference and to record the dependency of specific problem-solving decisions on those
inferences. A difficulty, reported by various researchers, was that when it was discovered
that a particular decision led to a contradiction, there was no way to make an informed
choice about which assumption(s), of the many that entered into the decision, to retract. In
contrast, we use the TMS only to record the inference chains leading to the extended state
predicates; dependencies between these predicates and a particular interpretation are tracked
by the plan recognizer. Thus, when reconciliation is required, the particular assumptions
that need revising have already been identified. While this does not guarantee that there is a
unique way to achieve reconciliation, in practice there are very few viable choices, and
these can usually be disambiguated by a simple domain-independent heuristic.

The reconciliation process begins with the identification of all alternatives for bringing a list
of nodes IN; this involves backtracking through the inference chains, moving from a
conclusion node via a particular justification to its support and exception nodes. Two types
of atomic changes are allowed when one can backtrack no further: adding a "dummy"
justification to bring IN a node that is OUT and blocking a valid non-monotonic
justification to force OUT a node that is IN. Alternatives are ranked according to the
number of changes required; the alternative with the minimum number of changes is
selected (this is the simple heuristic). Thus, if changing a single node will bring two
desired nodes IN, that solution is preferred to any alternative requiring two or more node
changes. Because the analysis of possible changes does not consider interactions, the
"best" choice may be infeasible; a method of bringing one node IN may bring another node
OUT. If a choice fails to bring all desired nodes IN, it is rejected and another choice made.
(Reconciliation will fail when multiple assumptions are bein g revised but cannot be made
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true simultaneously due to interactions among them. In this event, the interpretation is
rejected—it depends upon inconsistent assumptions. )

As an example of reconciliation, consider how to explain that testing is in fact done given
the situation diagrammed in Figure 3; this is one part of reconciling the interpretation
shown in Figure 6. To bring tests_done(SV) IN, we must force not tests_done(SV) OUT;
that means forcing OUT both the nodes applicable(TC2,SV) and applicable(TC3,5V).
This can be done in two ways. One is to bring IN both spec_excluded(TC2,SV) and
spec_excluded(TC3,5V) by adding two "dummy" justifications to support these nodes.
The other is to block justification J1 that currently supports standard_test(SV ), note that this
change affects only this instance of rule J1, not any other instances.” This latter alternative
is preferred, since it involves one rather than two changes. The result of choosing and
installing this alternative is shown in Figure 7.

4.0 Summary

Effective problem-solving performance in plan recognition requires extensive domain
knowledge. In open world applications of plan recognition, the only way to exploit deeper
knowledge about the context for actions is to introduce uncertainty, in the form of plausible
assumptions about missing data. We have shown how to formalize this deeper knowled ge,
how assumptions determine the credibility (rather than validity) of interpretations, how
credibility can be used to make reasoned choices, and how faulty assumptions can be
revised when necessary. This extension to plan recognition has been implemented in the
GRAPPLE system, which runs the examples in this paper.

Figure 7: Example of Reconciliation
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