Goal Relationships in
Blackboard Architectures

Victor R. Lesser
Daniel D. Corkill
Joseph A. ngnandez
Robert C. Whitehair

COINS Technical Report 88-19
March 1988
Supercedes COINS Technical Report 87-24

Abstract

How can we ensure that systems employing a blackboard architecture make appropriate
focus-of-control decisions? This is a complex problem requiring the system to relate the
predicted results of future activities to existing hypotheses and to stimulate activities along
promising problem solving paths while inhibiting activities found to be redundant. This
paper shows that mechanisms for achieving these capabilities can be introduced as natural
extensions to a unified data-directed and goal-directed control framework. These mechanisms
are based on adding new goal relationships and a new goal type, inhibiting-goal, to the unified
framework. These additions improve the system’s ability to evaluate potential activities. We
provide examples demonstrating the benefits of these mechanisms.

This research was sponsored, in part, by the National Science Foundation under CER Grant DCR-
8500332, and by the Office of Naval Research under University Research Initiative Grant Contract
N00014-86-K-0764, and under Contract N0G014-79-C-0439.



1 Introduction

Making appropriate focus-of-control decisions in a blackboard-based problem solver is
difficult because the full range of interrelationships among partial results is not readily
observable. The blackboard architecture permits the same partial results to be used
in many contexts. Thus, producing a specific result may affect many alternative
solutions. The problem space is represented at multiple levels of abstraction on the
blackboard, and multiple solution paths for the same result may be available. This
provides the problem solver with flexibility in choosing problem-solving activities.
However, by providing many solution paths, it becomes possible to rederive results
along one of the alternative paths without recognizing the redundancy until the final
step. Furthermore, the asynchronous, opportunistic style of problem solving leads to
situations where it is unclear whether a solution is missing due to a lack of data, in
which case the solution will never be generated, or due to a lack of processing, in which
case additional work will drive up the low-level data needed to produce the solution.
Thus, exploiting the richness of problem-solving capabilities in a blackboard-based
system and at the same time making intelligent control decisions is a formidable task
[1,2,3].

Several years ago, we presented extensions to the cooperating knowledge source
architecture of Hearsay-II [4] that unified data-directed and goal-directed control [5].
This was a first step toward developing the needed interrelationships among actions
and results necessary for making intelligent control decisions. In the interim, we
have gained considerable experience with this control architecture. In particular, we
have identified the need for a new type of goal and for local relationships among
goals. These extensions allow us to more accurately relate the predicted results of
future activities to existing results in order to make more informed tactical control
decisions [6,7]. This is in contrast to the work by Durfee and Lesser [8,9] and Hayes-
Roth [10] that involve interrelationships that are more global in character and relate

to strategic control decisions.



In Section 2 we briefly review the unified data-directed and goal-directed control
architecture. Section 3 describes the new relationships we have defined to implement
the desired control capabilities. Section 4 outlines how these new mechanisms work

and Section 5 is a brief presentation and discussion of our experimental results.

2 A Review of Goal-based Control

Figure 1 presents a high-level schematic for the integrated data-directed and goal-
directed control architecture as implemented in the DVMT [11,12]. The basic Hearsay-
II architecture is modified to include a goal blackboard and a goal processor. The
goal blackboard, which mirrors the data blackboard in dimensionality, contains goals
representing intentions to create particular results on the data blackboard. Goals
provide an abstraction over the potential actions for achieving a particular type of
result and allow the system to reason about its intentions independently of the par-

ticular knowledge source (KS) actions at its disposal.

The two general classes of goals are data-directed and goal-directed. The black-
board monitor uses domain knowledge to create data-directed goals in response to the
addition or modification of hypotheses on the data blackboard. Each data-directed
goal specifies the range of hypotheses that could result if the triggering hypotheses
were extended at the same blackboard level or abstracted to the next higher level.

Since the creation of a goal does not guarantee sufficient information on the data
blackboard to execute a KS to satisfy the goal, the goal processor runs a precondition
procedure for the applicable KSs to make a detailed examination. When results
indicate that a KS has sufficient information to satisfy the goal, the goal triggers a
KS instantiation (KSI). The scheduler assigns the KSI a priority rating and places
it on the scheduling queue. The scheduler assigns priority by first determining the
set of goals that may be satisfied by a KSI’s predicted output. It then computes the
KSI's rating as a weighted average of the ratings of the potentially satisfied goals

and the credibility of the predicted results. If sufficient information is not available
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to run a KSI, the goal processor creates goal-directed goals (subgoals) for driving up
low-level data to be used to satisfy the original goal. Subgoals are rated the same
as the original high-level, highly-rated goal. Thus, the ratings of low-level KSIs that
could lead to satisfaction of the high-level goal will be increased.

Goal-based control does not require that control decisions be made in a top-
down, goal-directed manner. We use goals to make both data-directed and goal-
directed control decisions, and the classical data-directed/goal-directed dichotomy is
represented in our approach by the relative ratings among goals. By adjusting its
KSI rating computations, the scheduler can bias the system towards goal-directed or
data-directed control. Goal-based control attempts to incorporate domain data to
build an appropriate control abstraction that will predict the type of results which
can possibly be generated. This permits the system to develop non-local focus-of-
control strategies that take into account the interactions of work on data in different

parts of the problem-solving space.

3 Goal Relationships

We have found that by reasoning about the interrelationships among the goals we
can achieve more sophisticated control. Since goals represent an abstraction over a
set of possible hypotheses, they capture desired results independently of the actions
available to the system for achieving these results. In this way three important

questions necessary for effective control can be answered by relating goals to each

other:

e Can the same results be obtained by working on different goals?
o Will working on two distinct goals generate distinct partial solutions?

o Will work on a goal allow the system to differentiate between mutually exclusive

solutions?

We use the following goal relationships to answer these questions.



assistance: One goal, gl, is said to assist another goal, g2, if satisfaction of gl
implies satisfaction of g2. The assistance relationship identifies those goals

which represent alternative approaches to generating a particular solution.

competition: Two goals, gl and g2, are competing if they both specify the same
blackboard level and there is no possible hypothesis that will satisfy both goals.
By checking if two goals are competing, the system can determine if the knowl-

edge sources they have triggered will generate distinct results.

subsumption: Goal gl subsumes a second goal, g2, if the specifications of g2 are

completely encompassed by the specifications of gl.

subsumption-inhibition: We have added a new type of goal, called an inhibiting-
goal, to identify redundant work that can be eliminated. Goal gl completely
inhibits a second goal, g2, if gl is an inhibiting goal and gl subsumes g2.

assistance-inhibition: Goal gl partially inhibits goal g2 if gl is an inhibiting-goal
and gl assists g2. The assistance-inhibition relation limits work to those areas

of g2 not encompassed by gl.

cooperation: Two goals are cooperating if none of the previously defined relations
hold and it is possible for the goals to produce information that may be incor-

porated into a single result at some point in the future.

independence: Two goals are independent if none of the previously defined rela-

tionships apply.

To clarify these definitions, assume we represent a goal as a two dimensional
rectangle, [(z4, ¥5) (Tc, ya)], and a result that satisfies it as a sequence of points
((2as¥0)---(L(atk)sYk)--(TcsY(z.~zq))) Where ¥ < y; < ya. The diagrams in Figure 2

show the different goal relationships.
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4 Processing Goal Relationships

The goal relationships described in section three are used in two distinct ways, to
prevent redundant processing through the use of inhibiting goals, and to efficiently

schedule knowledge sources for execution based on their local context.

4.1 Inhibiting Goals

We have found it necessary to add a new goal type, described earlier as an inhibiting-
goal, to augment the existing data-directed and goal-directed goal types. The original
formulation of the goal-based control approach was unable to control redundant pro-
cessing. After deriving a high-level result with sufficient confidence, the only way
to minimize redundant activity was to decrease the ratings of the goal and subgoals
that generated it. This method prevented additional work only on the original so-
lution path used to derive the high-level result. It did not limit activity on any of
the alternative paths that lead to the same result. In order to effectively control re-
dundant processing, a separate mechanism was needed to eliminate derivation of any
intermediate result that would eventually produce the high-level result. Thus, when
a satisfactory, high-level result is produced, this new mechanism allows the system
to work only on data it determines to be independent, competing, or cooperating in
relation to the high-level result.

An inhibiting-goal and its associated subgoals are generated when the system
determines that sufficient work has been done on refining a high-level result. All
knowledge sources are then inhibited from producing results that are subsumed by
the inhibiting-goal. The specification of the inhibiting-goal is taken from the char-
acteristics of the high-level result. By specifying a tolerance around the inhibiting-
goal, its characteristics can be generalized to extend the range of inhibition. This
can eliminate solutions that are similar, though not identical. This is appropriate in
environments where answers that have characteristics close to the correct answer are

acceptable. The algorithm we have implemented is the following:



FOR each newly created hypothesis
IF (hypothesis.level > *inhibiting-goal-creation-level*) AND
(hypothesis.rating > *inhibiting-goal-creation-threshold*)
THEN
Create inhibiting-goal and associated inhibiting-subgoals
For each stimulating-goal subsumed by the inhibiting-goal
Terminate efforts to satisfy the subsumed goal
For each stimulating-goal assisting the inhibiting-goal
Restrict processing in areas encompassed by the inhibiting-goal

4.2 Local Context

Along with inhibiting activity based on high-level results, there is also a need to
inhibit activity based on a more local context. For example, since a KSI's rating is
based partly on the ratings of the goals it is predicted to satisfy, if any of those goals
are satisfied before the KSI is invoked, and if the KSI cannot improve on the results
used to satisfy the goal, then the KSI should have its rating decreased. Thus, how
a goal is satisfied is an important issue. If the scheduler gave priority to the KSI
with the most comprehensive triggering goal, its results might satisfy other goals
and eliminate the need to execute their triggered KSI's. The following situation
demonstrates this point.

Consider the pending activities KSI1 and KSI2, generated from work on two
different derivation paths. If executed, KSI1 would produce result R1 which would
subsume R2, the result of executing KSI2. Thus, executing KSI1 first would make
KS12’s results redundant, so the scheduler should give KSI1 priority. However, from
a local, data-directed perspective, KSI2 might be given higher priority, even though
KSI1 is the more promising of the two. This can occur if the scheduler incorporates
an average of input data credibility in its KSI rating function, and if KSI1 uses lower
rated data in addition to highly rated data used by KSI2. For example, KSI1 may
generate R1 by extending highly credible data into areas of weak data, and KSI2
may use only the highly credible data to produce the highest rated component of R1.

Our earlier approach to rating KSIs tried to balance the quality of the predicted



result with its scope. However, we found that the right balance seemed to be sit-
uation (iependent. Too much priority to séope had the undesirable consequence of
making the problem solution search too depth-first, while too much priority to qual-
ity led to redundant activity as illustrated in the above example. Instead, we found
that, to choose among the pending KSls, we need to explicitly take into account the
relationships among their predicted outputs.

Using the goal relationships specified in the previous section, the system can form
a local understanding of why a KSI is scheduled to be invoked and may instead invoke
a different KSI which produces the same results more efficiently. In general, before
executing a KSI, the Local Context mechanism examines the KSI’s triggering goals
and searches for a more comprehensive KSI which would also satisfy these goals. If
this more comprehensive KSI produces an actual result that is as good in the sub-
suming area as that expected from the less comprehensive KSI, the subsumed results
are removed from the output set of the less comprehensive KSI. This is implemented
as a combination of the following two mechanisms:

FOR every goal in a KSI’s triggering-goal list
For each satisfying hypothesis
IF the hypothesis subsumes any element of the KSI's predicted outputs
AND the predicted output can not improve the hypothesis in any way THEN
Remove the subsumed item from the KSI’s set of predicted outputs
Recalculate the KSI's rating

Prior to invoking the highest rated KSI
IF the KSI's assisting goal list is non-nil THEN
Invoke the KSI triggered by the most comprehensive assisting-goal
ELSE
Invoke the original KSI

5 Experimental Results

The Distributed Vehicle Monitoring Testbed (DVMT) simulates a network of vehicle

monitoring nodes, where each node applies simplified signal processing knowledge



Table 1: Experiment Summary.

Exp Env_Mech? KSex Hyps Goals

Ei 1 no 184 246 488
E2 1 yes 64 157 443
E3 2 no 207 335 661
E4 2 yes 130 297 712
E5 3 no 806 938 1894
" E6 3 yes 437 728 1714
Abbreviations
Exp: Experiment
Env: The problem solving environment;

1) single vehicle track, no noise
2) single vehicle track, random noise
3) crossing vehicle tracks, random noise
Mech?: Whether the Inhibiting-goal and Local Context
mechanisma are used.
KS ex: The number of knowledge source executions required
to find the solution(s)
Hyps: Number or hyps generated during problem solving.
Goals:  Number of goals generated during problem solving.

to acoustically sensed data in an attempt to identify, locate and track patterns of
vehicles moving through a two-dimensional space. A node is responsible for a specific
area and attempts to recognize and eliminate errorful sensor data as it integrates
the correct data into an answer map. Each node has a blackboard architecture
with knowledge sources and blackboard levels of abstraction appropriate for vehicle
monitoring. Knowledge sources perform the basic problem solving tasks of extending
and refining hypotheses (partial solutions). As described earlier, data-directed and

goal-directed goals are used to control problem solving activities.

We have implemented the mechanisms described in this paper and carried out
experiments to test their effectiveness in a single node system. The results are sum-
marized in Table 1. Three environments were used for testing; a simple environment
with a single vehicle track and no sensor noise, an environment with the same vehicle
track but with random noise added, and a complex environment with two crossing

vehicle tracks and a significant amount of noise. The features used for comparison
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were number of knowledge source executions required to produce the solution(s),
number of hypotheses created, and number of goals created. As shown in Table 1,
the system performed more efficiently with the new mechanisms. For the environ-
ment with a single track, 36% fewer hypotheses and 9% fewer goals were produced
and the system required 65% fewer KS executions to compute the answer. In the
second environment, 11% fewer hypotheses and 8% more goals were produced and
the solution was found with 37% fewer KS executions. Finally, in the complex envi-
ronment, 22% fewer hypotheses and 10% fewer goals were produced and the solutions
were found with 46% fewer KS executions.

In each of the environments, the new mechanisms were effective in preventing
redundant processing in areas where strongly believed, high-level results were found.
This enabled the system to allocate resources for work in noisy areas and areas where
the sensed signals were weak. Although the new mechanisms caused the system to
generate additional goals, most noticeably in environment 2, the resulting improve-
ment in focusing capabilities resulted in a considerable reduction in the number of

knowledge sources executed.

6 Conclusion

We have shown that mechanisms for accurately controlling the flexibility provided by
the multi-level, cooperative knowledge source model of problem solving can be built
as natural extensions to the integrated data-directed and goal-directed architecture.
We have introduced a new type of goal, the inhibiting-goal, and we have presented a
taxonomy of generic goal relationships. These mechanisms have applicability to tasks
in which combined data-directed and goal-directed control is appropriate and where
it is possible to roughly predict the quality and characteristics of a KSI's output.
Performance results were given demonstrating the effectiveness of this approach to
control. Our future research plans include experimenting in more complex environ-

ments in order to gain insights into further uses of these mechanisms and the use of
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these mechanisms for real time control.

4
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