OPTIMAL EMBEDDINGS OF THE FFT
GRAPH IN THE HYPERCUBE

David S. Greenberg*
Lenwood S. Heath™**
Arnold L. Rosenberg

COINS Technical Report 88-23

*Current address: Department of Computer Science,
Yale University, New Haven, CT 06520

**Current address: Department of Computer Science,
Virginia Polytechnic Institute, Blacksburg, VA 24061

OPTIMAL EMBEDDINGS OF THE FFT
GRAPH IN THE HYPERCUBE

Dawid S. Greenberg
Department of Computer Science
Yale University
New Haven, CT 06520

Lenwood S. Heath
Department of Computer Science
Virginia Polytechnic Institute
Blacksburg, VA 24061

Arnold L. Rosenberg
Department of Computer and Information Science
University of Massachuselts
Ambherst, MA 01003

March 21, 1988

Abstract

We present two linear-time algorithms for embedding the n-level FFT graph,
which has (n + 1)2" vertices, in the (n + [log(n + 1)])-dimensional Hypercube,
with unit dilation. Thus, the FFT graph is a subgraph of the smallest Boolean
Hypercube that is big enough to hold it. The simpler of our algorithins uses
Gray codes to perform the embedding; the more complicated has the advantage of
being modular. Either embedding yields a mapping of the FFT algorithm onto the
[ypercube architecture, with unit (hence, optimal) dilation and optimal expansion.

.

1. INTRODUCTION

1.1. The Main Result and Motivation

The main result of this paper is:

The FFT graph is a subgraph of the smallest Boolean Hypercube that is
big enough to hold it.

We present two proofs of the result, each by means of a linear-time algorithm that.
embeds the n-level FFT graph F(n), which has (n + 1)2" vertices, in the! (n 4 [log(n |
1)])-dimensional Hypercube Q(n + [log(n + 1)]), with unit dilation?. The simpler of
our algorithms uses Gray codes to perform the embedding; the more complicated has
the advantage of being modular, in the sense that it obtains its optimal embedding of
F(n +1) in Q(n + 1 + [log(n + 2)]) by extending its optimal embedding of F(n) in
Q(n + [log(n + 1)]).

Motivating our study is the logical mapping problem for parallel arrays of processors,
i.e. the problem of mapping a parallel algorithm onto a processor array: On the one
hand, the algorithm has some natural subtask-interdependence structure, defined by
cither data dependencies or control dependencies; on the other hand, the array has a
fixed processor-intercommunication network. The mapping problem is the problem of
accommodating the algorithm’s interdependence structure to the array's intercommu-
nication structure. One typically studies the mapping problem by viewing both of the
structures of interest as simple undirected graphs and viewing the mapping problem as
one of finding an efficient embedding of the algorithm-graph in the array-graph |2, 3,
5, 6]. The major notions of the efficiency of an embedding are enunciated in [10}; they
are the dilation of the embedding, which measures the maximum delay engendered by
the accommodaltion, and the ezpansion of the embedding, which is one measure of the
efficiency of utilizing the processors of the array.

In this paper, we study the mapping problem for the important Fast Fourter Trans-
form (FFT) algorithm [1, Ch. 7|, which is paradigmatic for convolution-based algo-
rithns, in the popular (Boolean) Hypercube architecture |3, 5, 8], versions of which
have been built by Intel, N-cube, BBN, and Thinking Machines. The embeddings that
comprise our main results can be interpreted as mappings of the FFT algorithm onto
the Hypercube architecture, with unit (hence, optimal) dilation and optimal expansion.

LAl logarithms are to the base 2.
“Technical terms are defined in Section 1.2.

This mapping provides yet another example of the efficiency of the Hypercube as an
interconnection structure, to supplement earlier work that has shown the Hypercube to
be an efficient host for divide-and-conquer algorithms (3] and for grid-based algorithms
[9]. A resull superficially similar to ours appears in [7]; in that paper, it is shown that
each single level of the FFT graph is a spanning subgraph of the Hypercube, whence
one can run the FFT algorithm on the Hypercube as fast as one can run it on the FFT
graph. Our result is materially harder than that of [7], in that we embed the entire
FFT graph into the Hypercube at once.

1.2. The Formal Framework

The technical vehicle for our investigation is the following notion of graph embedding.
Let G and H be simple undirected graphs, having |G| vertices and |H| vertices, re- '
spectively. An embedding of G in H is a one-to-one association of the vertices of ¢/
with the vertices of H. The dilation of the embedding is the maximum distance (in 1)
hetween vertices of H that are the images of adjacent vertices of G. The erpansion of
ihe embedding is the ratio |H|/|G|. Clearly, no embedding can have better than unit
dilation, and such dilation is achievable only if G is a subgraph of H.

The graph G represents our algorithm: the vertices of G represent the tasks
of the algorithm; the edges of G represent the intertask dependencies. The
graph H represents our processor array: the vertices of H represent the
processors of the array; its edges represent the interprocessor communica-
tion links. Thus, the dilation of an embedding can be viewed as a measure
of the delay incurred by executing “algorithm” G on “processor array” H,
and the expansion of the embedding can be viewed as a measure of how
efficiently G utilizes the processors of H.

Our specific focus here is on embeddings between two given finite families of graphs
G and X. We seek the best possible embeddings - relative to dilation - of each G € §
in the smallest H € X that will hold it, i.e., for which |H|/|G| > 1. Thus, we optimize
expansion-cost and then try to optimize dilation-cost. We are able here to achieve unit
(hence, optimal) dilation, even while optimizing expansion.

The targel graphs for our investigation are FFT graphs (which play the role of our
(:"s) and Boolean hypercubes (which play the role of our H’s).

e Let m be a positive integer. The 2™-input FFT graph F(m) (so named because it
reflects the data-dependency structure of the 2™-input FFT algorithm) is defined

as follows. F(m) has vertex-set®

Ve = {0,1,---,m} ~ {0,1}™

—

For each vertex v = (¢, é) € V,,, we call € the level of v and & the position-within-
level (PWL) string of v. Vertices at level 0 of F'(m) are called fnputs, and vertices
al level m of F(m) are called outputs (in deference to the algorithmic origins of
the graph). The edges of F(m) are of two types: For cach £ {0,---,m - 1} and
each 606y - - - 6,y = {0,1}™, the vertex

(€, 646y -+ bpm-1), on level € of F(m),
is connecled by a straight-edge with vertex
(€+ 1, 86y - bm_y), on level £ + 1 of F(m);
and it is connected by a cross-edge with vertex!
(€41, b0by -+ 6g_1(6e® 1)bps1 -+ by}, on level € 1 1 of F(m).

(See Fig. 1.) It is often useful to view F(m), m > 2 (F(1) = Iy, being given),
as being constructed inductively, by taking two copies of F(m - 1), and 2" new
output vertices, and constructing butterflies (or, copies of the complete bipartite
graph I;;) connecting the &™ outputs of each copy of F(m 1). on the one
side, to the k'™ and (k +2™°')'™ new outputs, on the other side. Thus, F(m) has
(m + 1)2™ vertices and m2™*! edges.

e Let d be a nonnegative integer. The d-dimensional Boolean Hypercube Q(d) is the
graph whose vertices are all binary strings of length d and whose edges connect.
cach string-vertex x with the d strings that differ from r in precisely one bit
position. (See Fig. 2.) Thus, Q(d) has 2! vertices and d2* ' edges.

It is not hard to find a unit-dilation embedding of F(m) in Q(2m), by assigning two
new dimensions for each level of F(m); but this embedding has expansion 2(N/ log N).
Likewise, it is not hard to find a dilation-2 (expansion-optimal) embedding of F'(n) in
(2 (m+[log(m+1)]), which is the smallest Hypercube that holds F'(m), using embedding
techniques analogous to those used in [5]. What we accomplish here is to optimize both
cost measures simultaneously, and to do so via linear-time algorithms (which specify

“For any set. S and positive integer k, we denote by 8% the set of all length-k strings of elements of
S,
@ denotes addition modulo 2.

the vertex-mappings). In fact, we present two such algorithms: The first algorithm,
which is based on Gray codes. is simple in both specification and verification; the second
algorithm is a bit more complicated in both regards, but it has the advantage of being
modular, in the sense mentioned in the Introduction. Stated formally, we prove

Theorem. FEvery FFT graph is embeddable with unit dilation and optimal expansion
in a Hypercube. Thus, for each m, F(m) is a subgraph of Q(d,), where d,, =g
m + [log(m + 1)]; moreover, there is a linear-time algorithm that finds this optimal
embedding.

Both of the embeddings of F(m) in Q(d,) that we use to prove the Theorem are
specified via two labelling schemes:

o We assign each vertex v of F(m) a unique d-bit label L(v), which is its image
vertex in Q(dn).

o We assign cach edge (w.v) of F(m) a bit-position label B(u,v) € {1,2,---,dp,}
such that L(u) and L(v) differ exactly in bit-position B(u,v).

We simplify our embeddings by using a single pair (s;,¢;) of bit-positions, called a
bp-pair (bit-position pair), for label assignments to edges between levels 7 — 1 and 7 of
F'(m), 1 < i < mg in particular, all straight-edges between these levels flip® bit-position
si, and all cross-edges between these levels flip bit-position ¢;.

Note that edge (u.v) of F(m) is mapped by our embeddings onto the edge
crossing dimension B(u.v) of Q(d,,), between vertex L(u) and vertex L(v)
(whence the unit dilation of our embeddings). Note also that flipping bit-
position b corresponds to crossing dimension b of Q(d,.).

Thus, our embedding is specified by means of a levelled bp-pair sequence (LBPS, [or
short)

S = (s1,e1),(s2,¢2),- - (Sm, Cm).-

The reader can verify ecasily that the LBPS gives us almost all the information we
need to specily the embedding completely: When we assign a d-bit label L(v) to any
single vertex v of F(m), the labels of all remaining vertices are completely determined
by the LBPS. We can, and shall, therefore, specify our embeddings by labelling input
vertex g =q¢ (0, 00---0) of F(m) with the length-d,, string of 0’s (thereby assigning
il to vertex 00---0 of Q(d,n) in the embedding) and using an appropriate LBPS to

“Fdge (u, v) of I'(m) flips hit-position p if L(x) and L(v) differ precisely in bit-position p.

specily inductively the labelling of all remaining vertices. This strategy reduces the
problem of specifying an embedding to the problem of specifying an LBPS: S(m) for
each FFT graph F(m); and, it reduces the problem of validating a given labelling
i.e., verifying that it actually specifies an embedding - to the problem of proving that
the label-assigniment is one-to-one. This last assertion (about the reduction) is true
since any mapping produced by the strategy is well-defined. in the sense that the lahel
inductively assigned to each vertex of F(m) is independent of the order of inductively
assigning labels. Well-definition is verified as follows.

Proposition 1 Any mapping of the vertices of the FFT graph to the verlices of the
Hypercube that is induced by an LBPS is well-defined.

Proof. Assume that vertex v is assigned label L(v)} when the labelling is induced by
the path P from vertex v to v and that it is assigned label L'(r) when the labelling is
induced by the path I’ from vertex v, to v. We shall show that L(v) L'(»).

We begin with three basic facts about cycles in F'(m).

1. For each level £ € {0,1,---,m}, the number of level-¢ edges in any cycle in F(mn)
is even.

2. For each level € < {0,1,---,m}, the number of level-(cross-edges in any cycle in
I?(m) is cven.

3. For each level £ < {0,1,---,m}. the number of level-f straight-edges in any cycle
in F(m) is even.

The first fact follows since there is no “wraparound™ in F(m}, so any cvele must re-
cross levels. The second fact follows since every level-¢ cross-edge Hips bit-position ¢
of the current vertex’s PWL string, and no straight-edge flips a bit; therefore, in order
o regain a previous vertex, one must restore every flipped bit-position by re-crossing
level ¢ via a cross-edge. The third fact follows from the first two via arithmetic.

Next, note that since we are dealing here only with labelling schemes that are
induced by LBPS’s, crossing a level of F(m) twice using the same lype of edge a
cross-edge or a straight-edge — flips the same bit-position of the Hypercube label twice,
hence leaves the label unchanged.

Finally, consider the cycle formed by tracing path I’ from vertex v, to vertex r,
followed by tracing the reverse of path /” from vertex v to vertex v,. By the foregoing
facts, each Hypercube dimension appears an even number of times around the cycle;

hence, the parity of the number of appearances of each dimension on P must be the
same as the corresponding parity on P'. It follows that L(v) = L'(v). 00

The next two sections are devoted to specifying and validating our embeddings
within this simplified framework.

2. A SIMPLE EMBEDDING

2.1. The Embedding

Our first embedding is constructed using Gray codes to define the LBPS. The n'" Gray
code sequence GC, is defined inductively as folows.

GC| =

~

0
6Chyy = 6C,.n.6C,

We denote by G6C,(i) the i'" element of GC,,.

To specify the LBPS S(m), and thereby the embedding of F(m), let A = [log(m +
1)]. and let 0% denote a string of k 0's. Define the LBPS

Sy(m) = (siser)s (s2.€2) 0o o (SmosCm)
as lollows:
® Sy = e-*- A

o o= GC,(0)

for all € € {1,2,--,m}. Note in particular that, since GC, uses no integer greater than
A 1, the labels we assign to the cross-edges of F(m) are disjoint from the labels we
assign to the straight-edges.

2.2. Validation

Our proofl that the LBPS S)(m) labels F(m) injectively, hence specifies an embedding,
depends on two easily verified facts. The first exposes a well-known property of Gray
code sequences.

-1

Lemma 1 Every contiguous subsequence of GC,, contains at least one element an odd
number of times.

Proof Sketch. Every two occurrences of an integer k in the sequence GC , are separaled
by an occurrence of some integer > k + 1. It follows that the largest element in a
subsequence of §C,, occurs with odd multiplicity. O

The second is a property of FFT graphs.

Lemma 2 For all PWL strings 3,6 € {0,1}™, there is a unique length-m path in F(m)
connecting verter (0,7) and verter (m,6).

Proof. Level-€ edges of F(m) are the only ones that affect bit-position ¢ of vertices’
PWL strings. A length-m path that connects a vertex at level 0 with a vertex of level
m traverses each level of F (m) precisely once. Therefore, any path that connects the
vertices in the Lemma must traverse the straight-edge between levels ¢ and 7 4 | for
every bit-position 7 in which the PWL strings ¥ and 3 agree, and it must traverse the
cross-edge between levels 7 and t + 1 for every bit-position 7 in which the PWL, strings
4 and 6 differ. 3

Now, on to the proof of injectiveness of the labelling produced by S;(m).

Lt us assume. for contradiction, that there are two vertices of F(m), say u = (f,. 4,
and v = ((’,,,6) for which L(u) = L(v). Without loss of generality, assume that ¢, - (,.
Let u' = (m,6,) be the vertex of F(m) that is in the bottom level of the same “column”
as u, and let v' = (0.6,) be the vertex of F(m) that is in the top level of the same
“column” as v. Consider the path P in F(m) that starts at u. traverses straight-cdges
until it reaches u', thence follows the unique length-m path from v’ to v' (cf. Lemma
2). and finally traverses straight-edges to end up at v. Let u" and v" be, respectively,
the vertices at levels ¢, and ¢, along the subpath of P that connects v’ and v'. See I'ig.
3.

Since L(u) = L(v), the path P must cross every Hypercube dimension - i.e., flip
every bit-position - an even number of times. Consider what this means for the path
P: ‘

For each level k > ¢, and each level k < {,, the path P traverses two edges connect-
ing level k with level k£ + 1 - and one of these edges is a straight-edge. It follows that
the other edge must be a straight-edge also, since the LBPS S (1) assigns cach level-k
straight-cdge a bit-position that is shared by no cross-edge. and by no straight-cdge at
any other level of F(m). Thus, il the second level-k edge of I” were not also a straight-
cdge, the net eflect of traversing the two edges would be to [lip some bit-position of L(u)

that is Nipped nowhere clse, thereby preventing L(v) from being identical to L(u). We
conclude that the subpath of P that connects v to u' must coincide with the subpath
‘that connects u' to v", which means that u = v". By similar reasoning, v = v".

For every remaining level k of I'(m), the path P traverses only one edge connecting
level k to level k + 1. If this edge were a straight-edge, then — as above - it would flip
a unique bit-position, thereby preventing the coincidence of L(u) and L(v). Therefore,
all the edges on these levels must be cross-edges. However, cross-edges on a consecutive
sequence of levels of FF(m) flip bit-positions that are specified by a contiguous subse-
quence of a Gray code sequence. By Lemma 1, some element occurs an odd number of
times in this subsequence; hence, some bit-position is flipped an odd number of times
along the indicated portion of path P. This fact prevents the coincidence of L{x) and

L(v). .

Since the existence of conflicting vertices v and v guarantees the existence of an
“oven-flipping” path P, and we have just shown that no such path can exist, we conclude
that the mapping induced by the LBPS Si(m) is injective. We thus have our first proof
of the Theorem. (1

3. A MODULAR EMBEDDING

3.1. The Embedding

Call an LBPS S = (sy,¢1).(s2.¢2)0. .. (Sm,cm) proper if, for each 1, at least one of s,
or ¢; does not occur at an earlier level, i.e., in the set {s;,¢; : j < t}; call such a virgin
s; or ¢; new. We construct the LBPS S;(m) that specifies our second embedding by
proceeding in stages, concentrating on ensuring propriety at every stage.

Partition the levels {0,1,---,m} of F(m) into tiers: tier k is the set of levels
{i : 2x<i<2¥ ~1}3n{o0,1,---,m}.

Let the singleton {0} constitute tier —1. If the level of vertex v in F(m) is in tier k.
then we say that vertex v 1s in tier k.

Our second embedding is incremental, hence modular, in that we obtain the LBPS
Sa(m + 1) from the LBPS Sy(m). Clearly, when we specify S;(m + 1) and its induced
labelling, a new bit-position can never lead to duplicated labels. We shall, therefore,
always use any new bit-position as one becomes availalile (which happens when we
must add a new dimension to the host Hypercube in order to accommodate the next

bigger FFT graph). As we proceed from F(m) to F(m + 1), the number of dimensions
in the smallest Hypercube that holds the FFT graph increases by at least one; hence,
there is always at least one new bit-position to use in Sa(m + 1). Let us always use
this new bit-position to label the straight-edge at level i, i.e., to be bit-position s;.
Whenever m = 2¥ is a power of 2, two new bit-positions are available for the expanded
labelling when we proceed to F(m +1). In this case, we call the pair ($ms€m) of new
bit-positions shield positions for tier k of all F(n), n ~ m. Given this stralegy, we can
specify explicitly

o sy ={+[logl] forall €€ {1,2,---,m}:

o (y = 28 4 k + 1 for all k € {1,27"'9“0g7n”'n

We complete our specification of S;(m + 1) by specifying the ¢,’s that are not shield
positions. We proceed inductively, based on the tier number k. the case k = 1| being
trivial. Having chosen the ¢;’s for tier k — 1, we choose the 2% — I ¢,'s for tier k as
follows.

Sqh-1y; i1 <0 < 2K
® Cokyi = § Sgk-i if £ = 2k-1
cor 1y (f 261 < f < 2K

3.2. Validation

We simplify the task of verifying that S;(m) induces a unique label for each vertex of
F(m), by showing that we need consider S;(m)’s behavior only on the m-level complete
binary tree rooted at vertex vy (which is clearly a subgraph of I'(m)).

For any vertex v € V,,, let T(v) be the complete binary tree rooted at » and
extending monotonically downward (i.e., to increasing levels) so that the leaves of 7'(1)
are outputs of F(m). If vertices u,v € V,, are at the same level of F(m), then there is
a unique isomorphism ¢,, : T(u) — T(v) that preserves the bit-positions assigned to
edges.

Lemma 3 Let S be a proper LBPS for F(m). If the labelling L of V,, induced by S is

injective on the vertices of T(vy), then L is injective on the vertices of F(m).

“To sec the consistency with our specification of the s, note that 2% 1 k 1 1= ¢ ¢ [logf] 1 1 when
R X
o2

10

Proof. Suppose, for contradiction, that the Lemma is false. Then the labelling L is
injective on the vertices of the tree T(vy), but there are distinct vertices u,v ¢V, for

which L{u) = L(v).

Note first that there is no input z € Vi, of F(m) such that both v and v reside in
the tree T'(z). If there were such a z, then one sees easily that the vertices ¢, (1) and
Lz (v) Of T'(0) must also be assigned the same label, since the labelling of T'(v) is
dictated by the same LBPS S as is the labelling of T(z). This would contradict the
assumed uniqueness of labels in T'(vo).

Let u reside at level €, in F(m), and let v reside at level (,. Without loss of
generality, say that £, < £,. Since u and v do not reside in the same T'(z), it follows
that there exists an input z of F(m) such that u is not in T'(z), but v is. Say we have
chosen such a z.

Consider the graph G(z,u) =4 T(2) U T(u). Choose a path P from u to v in
(i(z,u), of the following form: P proceeds monotonically down T (u) until a vertex p of
T(z) is reached; P then proceeds monotonically up T(z) to an ancestor (not necessarily
proper) of v; P finally goes down to v. The path P is guaranteed to exist, since the
graph C(z,u) is connected: the leaves of T'(z) comprise all of the outputs of F(m)
(z being an input of F(m)) while the leaves of T(u) comprise some of the outputs of
F(m). Since L(u) = L(v), it lollows that every bit-position flips on edges of /> an even
number of times. Now, let ¢ € V,, be the vertex that precedes p in P, and let r € Vi
be the vertex that succeeds p in P; moreover, let k be the level of vertex p in F(m)
(casily, ¢, < €, <~ k). The edges (q,p) and (p,r) are the only edges in P that connect
verlices on levels k — 1 and k. Since these edges are distinct (r being in T'(z) while
q is not) and share an endpoint, it follows that bit-position s, flips on one of these
cdges, and bit-position ¢, flips on the other. Since the LBPS S is proper, at least one
of the bil-positions sg, ¢, must be new, hence flip only once in P, contradicting the
even-flipping requirement. This contradiction establishes the Lemma. OO

We complete our verification by showing that the labelling induced by the proper
LBPS Sy(m) is injective on T'(vo).

Lemma 4 The LBPS Sy(m) is proper. Its induced vertez-labelling 1s injective on
T(vn).

Proof. Sy(m) being proper by construction, we concentrate only on the injectiveness of
its induced labelling. Assume, for the sake of contradiction, that the distinct vertices
u and v of T(vy) are assigned the same label by the LBPS S3(m): L(u) = L(v).

Claiin. u and v reside in the same tier.

11

Let u reside al level £, of T(vg), and let v reside at level £,. Say that £, is in tier
k; then €, must also be in tier k. since the shield bit-position that L(u) has on? from
tier k must also be on in L(v). Without loss of generality. assume that £, (hence k) is
smallest possible, and that €, < ¢,,.

One verifies by inspection that the like-labelled vertices u and v cannot exist il
k - 2; therefore, assume henceforth that k > 2.

Let P(u) (resp., P(r)) be the path from », to u (resp.. to v) in T'(v,). With no
loss of generality, we may assume that the path P(r) has a special form: Note that
P(u) (resp., P(v)) can be viewed as choosing either bit-position s, or ¢, at cach level 7,
|27 <0, (resp.. 1 <7 (). We say that a path chooses the s-alternative (resp.. the
c-alternative) at level 7 il it chooses bit-position s; (resp.. bit-position ¢;). Say that. at a
particular level 7, we force path P(u) (resp., path ’(¢)) to make the opposite choice of
bit-position. Then the label of the vertex u' (resp.. ¢') at level (,, (resp.. £,) that the new
path leads to is L(u') = L{u) @ 2" "2 (resp.. L(+') L(v) 12 " 27 '); hence,
we obtain another pair of vertices with identical labels. It follows that by switching
bit-position choices at precisely those levels + where PP(¢) makes the choice e,, and by
making the corresponding switches in P(u), we obtain two vertices ut and v+ with
identical labels and with the property that the path P(r1), which was obtained by
switching all ¢;’s 1o s;’s in P(v), always chooses the s-alternative. Thus, when we
look at the like-labelled vertices v and v, we lose no generality by assuming that P(r)
chooses the s-alternaiive at every level.

We can now determine enough about the labels L{u) and L(r) to complete the
proofl. Consider the choices that the paths P(u) and P’(r) make as they traverse tier
k. Since bit-positions s,,..., s, are new in tier k and are on in L(v) (because P(v)
always chooses the s-alternative). they must be on in L(u); hence, P(u) makes the
same choices as P(v) al levels 2¥,...,(,. Also, since bit-positions sq, yy.... .8, arc new
in tier k and are off in L(v) (since P(v) terminates at v), path P(x) must choose the
c-alternative at levels €, + 1,...,¢,. We now know all the choices P(x) and P(v) make
in tier k, so we turn our attention to tier k - 1.

Our analysis breaks into two cases, depending on which half-tier of tier k the vertices
w and v reside in. Say the first half-tier of tier k comprises levels 2% 2F | 1, .. 2%
25 V1, and the second half-tier comprises levels 25 | 2% ' 2k 2k Vo okt

Claim. u and v reside tn the same half-tier.

If this were not true, then, by assumption, v would reside in the first half-tier, while
u would reside in the second half-tier. Now, bit-position sac 1 is on, and bitl-position

"Bit-position 1 ix onin a label if it contains a “17; otherwise it s off.

12

epe 1 is off in L(v), since P(v) always chooses the s-alternative, which is always new;
hence, the same configuration must appear in L(u). However, we have seen that P(u)
must always choose the c-alternative at levels below (., so in particular, P(u) mus
choose bil-position egt o6 1 = Sc-1. But now consider the choice that P(u) makes at
lovel 25°1. If it chooses the c-alternative at that level, then since that bit-position is
new there and has not recurred, L(u) would have both bit-positions sy and cz-1 on.
Alternatively, if P(x) chooses the s-alternative at that level, then this choice would
“cancel” the choice of ¢y, 901~ Sy 1, 50 L(u) would have both bit-positions sy and
ot 1 off. Either contingency would contradict the assumption that L(u) - L(v). We
conclude that w and v are in the same hall-tier.

We are now ready Lo complete the proof.
Claim. v and v cannot be in the first half-tier.

Suppose that u and v were both in the first half-tier. Since bit-positions sy, . 2x-144,..

Stzl 1

e arc new in tier k| (by definition),
e are on in L(v) (since P(v) always chooses the s-alternative),

e do not recur until levels - ¢,

these positions must be on in L(u) also, so P(u) must make the same choices as P(r)
al levels €, - 2F ' 1 1,....2F 1. By construction of S3(m), bit-positions ¢, yy..... ¢,
are identical to hit-positions s, gt 1,1,...,5y, .2+ -1. These bit-positions are on in L(r)
by virtue of tier k — 1 (where they are new); they must, therefore, be on in L(u), since
L(v) = L(v). However, if they are on in L(u). it must be by virlue of the ¢; choices
that we have already noted that P(u) must make in tier k. It follows that P(x) must
choose the c-alternative at levels ¢, — 281 +1,...,¢, — 2%7!: if P(u) were to choose
the s-alternative at any of those levels, that choice would combine with the matching
¢; choice in tier k Lo turn off a bit-position that is on in L(v).

We now have a total picture of the choices made by paths P(u) and P(v) in tier k
and in the bottom portion of tier k - 1, when u and v reside in the first hall-tier. Let
the path P'(u) be obtained from P(u) by truncating the latter at level £, — 2¥°'; let
the path P'(v) be obtained from P(v) by truncating the latter at level ¢, — 2¥" 1. Let
1/(x) and L'(v) be the vertex-labels obtained by following P'(u) and P'(v), respectively.
Since this truncation removes the same bit-position settings from P(u) and P(v), one
sces easily that L'(v) = L'(v), even though the corresponding vertices reside within tier
k 1 of FF(m). This contradicts the assumed minimality of k.

13

Claim. u and v cannot be in the second half-tier.

Finally, suppose that u and v are both in the second hall-tier. By assumption, P ()
chooses the s-alternative at levels €, —2¥ + 1,...,2* - 1. P(u) must also make the same
choices, since those bit-position settings in L(u) must agree with L(v): and we have
seen that P(u) does not choose those bit-positions when they recur (by definition of
Sy(m)) in the first half-tier of tier k.

We now have a total picture of the choices made by paths P’(u) and P(») in ticr k
and in the hottom portion of tier £ — 1, when u and v reside in the second hall-tier.
Let the path P'(v) be obtained from P(v) by truncating the latter at level ¢, 2F !.
let P'(u) be obtained from P(u) by truncating the latter at level £, 2% ' and by
choosing the c-alternative at levels ¢, - 28" 4 ,....f, 2F ' Let L'(u) and L'(v)
be the vertex-labels obtained from following paths P'(u) and I’'(v), respectively. One
verifies as above that L'(ux) = L'(v) and that the corresponding vertices reside in tior
k -1 of I'(m). Once again, we have contradicted the assumed minimality of k.

These contradictions establish the Lemma. 1)

We have verified that the LBPS S,(m) specifies an embedding of F(m) in Q(m+ A).
The modularity of the embedding is obvious. [

4. FUTURE DIRECTIONS

Our results leave unresolved a number of significant questions.

1. Is every optimal embedding of the FFT graph into the Hypercube induced by an
LBPS?

2. How efficiently can a Butterfly network be embedded in a Hypercube, where the
m'" Butterfly network is obtained by identifying the input and output vertices of
I(1n)? The same question seems even harder if one substitutes certain Butter(ly-
derivatives for Butterflies, e.g., the deBruijn graph or (essentially equivalently)
the ShulHe-Exchange graph.

(=

3. llow robust a subgraph of the Hypercube is F'(m)? Specifically, we know from [3]
and lrom easy generalizations of the results there that many “popular™ networks
can be embedded efficiently® in the Hypercube, e.g.. binary trees, X-trees. and
meshes. We know from [4] that complete binary trees can he embedded efliciently

5By “efliciently”, we mean with simultancons dilation O(1) and expansion O(1).

114

in the Butterly, but that X-trees and meshes cannot be so embedded. We still do
not know yet if arbitrary binary trees can be embedded efficiently in the Butterfly.
nor if complete binary trees can be embedded efficiently in F(m)."

ACKNOWLEDGMENT. The research of D. S. Greenberg was supported in part
by NSF Grant MIP-86-01885. The research of L. S. Heath was supported in part by
NSFE Grant DCI-85-04308. The research of A. L. Rosenberg was supported in part by
NSIF Grants DCI-85-04308 and DCI-87-96236.

5.

.
-

g}

6.

-~

9.

REFERENCES

. A.V. Aho, L.E. Hopcroft, J.D. Ulliman (1974): The Design and Analysis of Com-

puler Algorithms. Addison-Wesley, Reading, MA.

IF. Berman and L. Snyder (1984): On mapping parallel algorithins into parallel
architectures. Intl. Conf. on Parallel Processing.

3. S.N. Bhatt, IF.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1986): Optimal simu-

lations of tree machines. 27th IEEE Symp. on Foundations of Computer Secience,
274-282.

. S.N. Bhatt, I.\R.K. Chung, J.-W. Hong, F.T. Leighton, A.L. Rosenberg (1988):

Optimal simulations by Butterfly networks. 20th ACM Symp. on Theory of
Compuling, to appear.

. S.N. Bhatt and 1. Ipsen (1985): Embedding trees in the hypercube. Yale Univ.

Rpt. RR-443.

S.H. Bokhari (1981): On the mapping problem. IEEE Trans. Comp., C-30.

. T.F. Chan (1986): On Gray code mapping for mesh-FFTs on binary N-cubes.

Tech. Rpt. RIACS-86.17, NASA Ames Research Center.

. T.C. Chen, M.D.F. Schlag, C.K. Wong (1983): The hypercube connection net-

work. 1BM Report RC-10219.

I.. Johnsson (1985): Basic linear algebra computations on hypercube architec-
tures. Tech. Rpt., Yale Univ.

f . . .
"The embedding in [4] uses the wraparound feature of the Butterfly heavily.

15

10. A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-
Theoretic Concepts in Computer Science: Proceedings of the International Work-
shop W80, Bad Honnef, Germany (H. Noltemeier. ed.) Lecture Notes in Com-
puler Science 100, Springer-Verlag, New York 150-176.

000

001

oLo

oL}

L00

0L

LLO

LEL

Figure 1: The 8input FFT graph /(3).

16

0101 [}

0111

IYigure 2: The 4-dimensional Hypercube Q(4).

17

F(m)

Figure 3: The path connecting u and v in the proof of Lemma 2.

18

alh connecting u and v in the proof of Lemma 3.

IFigure 4: The p

19

