OPTIMAL SIMULATIONS BY BUTTERFLY
NETWORKS!

Sandeep N. Bhattf, Fan R.K. Chung§,
Jia-Wei Hongi, F. Thomson Leighton€,
Arnold L. Rosenberg
Computer and Information Science Department
University of Massachusetts

COINS Technical Report 88-55

tYale University, New Haven CT

§Bell Communications Research, Morristown, NJ
iBeijing Computer Institute, Beijing, CHINA
IMIT, Cambridge, MA

! A preliminary version of this paper was presented at the 20th ACM Symposium
on Theory of Computing, Chicago, IL, May 2-4, 1988

OPTIMAL EMBEDDINGS OF
BUTTERFLY-LIKE GRAPHS IN THE HYPERCUBE
(Extended Abstract)

David S. Greenberg Lenwood S. Heath Arnold L. Rosenberg
Computer Science Computer Science ~ Computer and Information Science
Yale Univ. Virginia Tech Univ. Massachusetts
New Haven, CT 06520 Blacksburg, VA 24061 Ambherst, MA 01003
Abstract

We present optimal embeddings of three genres of butterfly-like graphs in the Hypercube;
each embedding is specified via a linear-time algorithm. Our first embedding finds an
instance of the order-n FFT graph as a subgraph of the smallest Hypercube that is big
enough to hold it, i.e., the (n+[log,(n+1)])-dimensional Hypercube. This embedding yields
an on-line mapping of the pipelined FFT algorithm on the Hypercube architecture, which
is optimal in all resources. Our other two embeddings map each of the order-n Butterfly
graph and the order-n Cube-Clonnected Cycles graph into the smallest Hypercube that is
big enough to hold it, i.e., the (n + [log, n])-dimensional Hypercube. These embeddings,
too, are optimal in all resources: They have dilation 1 + (n mod 2), which is best possible.

1. INTRODUCTION

1.1. The Main Results and Motivation

We prove that the Hypercube can simulate butterfly-like communication patterns with essen-
tially no time loss:

1. The FFT graph is a subgraph of the smallest Hypercube that is big enough to hold it.

2. Each of the Butterfly graph and the Cube-Connected-Cycles (CCC) graph is efficiently
embeddable in the smallest Hypercube that is big enough to hold it. An even-order
Butterfly or CCC is embeddable as a subgraph; an odd-order graph is embeddable with
unit congestion, but only with dilation 2. The increased dilation is inevitable.

All three of our embeddings are specified by means of linear-time algorithms.

Motivating our first result is the problem of mapping a parallel. algorithm onto a processor
array, accommodating the algorithm’s intertask dependence structure to the array’s interpro-
cessor communication structure. Traditionally, one views both structures as simple undirected
graphs and views the mapping problem as one of finding an efficient embedding of the algorithm-
graph in the array-graph [1, 2, 5]. Our first result studies the mapping problem for the Fast

Fourier Transform (FFT) algorithm, which is paradigmatic for convolution-based algorithms,
in the Hypercube architecture {2, 4, 6-8, 11]. We present a family of embeddings, each of which
finds an instance of the n-level FFT graph F(n) in the d,-dimensional! Hypercube Q(d,), as a
subgraph. We also construct optimal embeddings that are modular, in that the embedding of
F(n+1) in Q(dn41) is an extension of the embedding of F(n) in Q(d,). Our embeddings map
the pipelined FFT algorithm onto the Hypercube architecture, utilizing all resources optimally;
our modular embeddings are on-line, in that inputs can be added to the Transform at any time,
even after computation has begun. Our mappings supplement earlier work which has shown
the Hypercube to be an efficient host for divide-and-conquer [2] and grid-based algorithms [8],
as well as for a number of specific algorithms [6, 7).

Motivating our second result is the question of how efficiently one interconnection network
can simulate another. This problem, too, is frequently studied via graph embeddings: The guest
graph represents the interconnection network to be simulated, and the host graph represents
the simulating network [3, 4]. Our second result studies the Butterfly and CCC networks —
bounded-degree approximations to the Hypercube which equal its speed on the important class
of ascend-descend algorithms [9] Our embeddings show that the Butterfly and CCC do not
possess any communication power that is not already present in the Hypercube.

A result superficially similar to our first result appears in [7], where it is shown that each
single level of the FFT graph is a spanning subgraph of the Hypercube. Our result is materially
harder, in that we embed the entire FFT graph into the Hypercube at once. In a somewhat
similar vein, it is shown in [6] that if one stores the data for any one level of the FFT algorithm
in Hypercube processors according to a binary reflected Gray code, then any two data items
that are combined via a butterfly at that level of the algorithm reside at processors that are at
worst at distance 2 from one another. This result, too, is much weaker than ours, because of
the “distance 2” assertion as well as the fact that ouly one level of the algorithm is embedded
at a time.

1.2. The Formal Framework

Let G and H be simple undirected graphs, having |G| and |H| vertices, respectively. An
embedding of G in H is a one-to-one association of the vertices of G with the vertices of H,
together with a routing of each edge of G within H. The dilation of the embedding is the
maximum length of the routing of any edge of G; the congestion is the maximum number of
edges of G that are routed over a single edge of H; the ezpansion is the ratio |H|/|G|. Clearly,
a unit-dilation embedding finds an instance of G as a subgraph of H.

We focus here on embedding three finite families of graphs &, G2, and &3 in a fourth
finite family ¥. We seek dilation- and congestion-optimal embeddings of each G € &; in the
smallest H € ¥ that will hold it, i.e., for which |H|/|G| > 1. Thus, we optimize expansion and
then try to optimize dilation and congestion. We succeed in optimizing all three cost measures

'd, =uaef 2+ [log(n + 1)]; all logarithms are to the base 2.

simultaneously. The graph families §; are FFT graphs, Butterfly graphs, and CCC graphs; the
graph family ¥ is the Hypercubes. Let n be a positive integer:

o The order-n FFT graph F(n) has vertex-set’ V,, = Z,,; x Z3. For each vertex v =

—~

(€,) € Vn, we call € the level of v and § the position-within-level (PWL) string of v.
Vertices at level O are called inputs, and vertices at level n are called oulputs. The edges
of F'(n) are of two types: For each £ € Z, and 806y - -6p_; € Z3, vertex

(€, 806y --+6,_1), on level £ of F(n),
is connected by a straight-edge with vertex
(€+ 1, 806y -6n-1), on level £+ 1 of F(n)
and is connected by a cross-edge with vertex
(€+ 1, 606y---6p—1(1 — 8)6441 -+ 6n-1), on level £+ 1 of F(n);

One can view F(n) inductively: F(1) = K2, the butterfly (or, complete bipartite graph
on two inputs and two outputs); for n > 2, one obtains F(n) by taking two copies of
F(n — 1) and 2" new output vertices, and constructing butterflies connecting the k'P
outputs of each copy of F(n — 1) to the k'" and (k + 2"~!)th new outputs.

e The order-n Butterfly graph B(n) is F(n), with “wraparound” obtained by identifying

each input vertex (0, §) with the corresponding output vertex (n, &)

e The order-n Cube-Connected Cycles (CCC) graph C(n) has vertex-set W,, = Z,, ~ VAS
The edges of C(n) are of two types: For each £ € Z, and 66y --6,_, € Z7. vertex

(€, 8061+ -6a_1), on level £ of C(n),
is connected by a straight-edge with vertex

(€, 6061+ 6n_1), on level & = £+ 1 (mod n) of C(n),
and is connected by a level-edge with vertex

(€, 806y -+ bg—1(1 = 8¢)8pt1 -+ 6pn—1).

® The n-dimensional Hypercube Q(n) has vertex-set ZJ'; the edges of Q(n) connect each
string-vertex z with the n strings that differ from z in precisely one bit-position.

For any set S and positive integer k: Zx =..f {0,1,--- k — 1}; S denotes the set of all length-k strings of
elements of S.

1.3. Basic Tools and Facts

A. Gray Codes and Their Transition Sequences

A length-m d-dimensional Gray code is a cyclically ordered sequence of m distinct length-d
binary words, with every pair of adjacent words differing in precisely one bit-position. Such a
sequence clearly specifies an m-vertex cycle in the d-dimensional Hypercube Q(d).

We use Gray code transition sequences [10] to construct the Gray codes used here. Let d
be the dimensionality of the target Hypercubes, hence, of the desired Gray codes; let D =
(do,dy,"--,d;) be an ordered sequence of bit-positions (ie., do < dy <:-- < d; < d). For any
r < t, the r*" Gray code transition sequence specified by D, denoted G S[r; D] is the length-(2"—1)
sequence of integers defined inductively by the following scheme.

95[1; D] = do
GSlk+1;D] = GS[k; D), dg, GS[k; D)
We denote by GS[r; D]; the i*h element of G$|r; D] (counting, as usual, from 0). For any‘

integer k 271, one can use GS[r; D] to construct a length-2k d-dimensional Gray code

<
€0, €1, --,&2x_1, as follows.

1. Select any length-d binary string as word £, of the code.

2. For 0 <7 < k — 1, generate word &, by flipping bit-position GS[r; D) of €.

3. Generate word £, by flipping bit-position d of &;_;.

4. ForQ <i < k — 1, generate word €;,;,, by flipping bit-position & S[r; D); of €.

Automatically, word & is obtained by flipping bit-position d of £_;. Denote by GS|[r; D; 2k]
the sequence of bit-positions flipped in this procedure:

6S|r;D); if ie€{0,1,--- k -2}
GS[riD;2kli=< d if te{k-1,2k-1}
GS[r;iD)ick if i€ {kk+1,---,2k -2}

B. Easily Verified Facts

The following easily verified facts are used in developing and/or analyzing our embeddings.

Lemma 1 (a) Every contiguous subsequence of GS[r; D| contains at least one element an odd
number of times.

(b) The just-described procedure generates a length-2k d-dimensional Gray code.

(c) The d-dimensional Hypercube Q(d) contains a cycle of every even length 2k, 2 < k < 24-1,
(d) For all d, the d-dimensional Hypercube Q(d) contains no cycle of odd length.

2. EMBEDDING THE FFT GRAPH

It is not hard to optimize either dilation or expansion when embedding FFT graphs in Hyper-
cubes; what we accomplish here is to optimize both cost measures simultaneously, and to do so

via linear-time algorithms (which specify the vertex-mappings). In fact, we present a family of
such algorithms:

Theorem 1 For each n, F(n) is embeddable as a subgraph of Q(dn); moreover, one can find
the embedding in a modular fashion — the embedding of F(n) is an extension of the embedding
of F(n ~ 1). All of these embeddings are produced by a linear-time algorithm.

2.1. The Embedding Strategy

All of the embeddings of F(n) in Q(d,) that we use to prove the Theorem are specified via two
labelling schemes:

e We assign each vertex v of F(n) a unique dn-bit label L(v), which is its image vertex in

Q(dn).

» We assign each edge (u,v) of F(n) a bit-position label B(u,v) € {0,1,---,d, — 1} such
that L(u) and L(v) differ exactly in bit-position B(u,v).

We simplify our embedding by using a single bit-position pair (bp-pair, for short) (si,¢;) to
assign labels to edges between levels 7 — 1 and 7 of F(n), 1 <7 < n; all straight-edges between
these levels flip® bit-position s;, and all cross-edges between these levels flip bit-position c;.

Notes: (a) Edge (u,v) of F(n) maps onto the edge crossing dimension B(u,.n) of
Q(dr), between vertices L(u) and L(v); hence the unit dilation of our embeddings.
(b) Flipping bit-position b corresponds to crossing dimension b of Q(d,).

Thus, our embedding is specified by means of a levelled bp-pair sequence (LBPS, for short)

S= (51, Cl)7 (32)02)1 ceey (Sn,Cn).

An LBPS almost completely specifies an embedding: When we assign a d,-bit label L(v) to
any single vertex v of F(n), the labels of all remaining vertices are completely determined
by the LBPS. We can, and shall, therefore, specify our embeddings by labelling input vertex
vo =der (0, 0) of F(n) with the length-d,, string 0 (thereby assigning it to vertex 0 of Q(d,)) and
using an appropriate LBPS to induce the labelling of all other vertices. This strategy reduces
the problem of specifying an embedding to the problem of specifying an LBPS S(n) for each
FFT graph F(n); and, it reduces the problem of validating a given labelling to the problemn

*Edge (u,v) of F(n) is said to flip bit-position p if L(u) and L(v) differ precisely in bit-position p.

of proving that the label-assignment is one-to-one. This last assertion (about the reduction)
is true since any mapping produced by the strategy is well-defined, in the sense that the label
inductively assigned to each vertex of F(n) is independent of the order of assigning labels.
Well-definition is verified by showing that distinct paths from vg to any v, which represent
distinct inductive label assignments, form cycles in F(n). Since F(n) lacks wraparound, such
a cycle must cross each Hypercube dimension an even number of times; hence, each path must
assign the same label to v.

The next subsection presents a broad family of embeddings which meet the initial demands
of Theorem 1; i.e., they find instances of F(n) as a subgraph of Q(d,). Subsection 2.3 identifies
a subfamily of these embeddings that are modular in the sense of the Theorem. The reader can
verily that the emmbeddings can be specified by linear-time algorithms.

2.2. A Family of Embeddings

Let A, = [log(n + 1)}, and let D be any Ap-element subset of Z;,. Define the LBPS

SD(n) = (Sl,Cl), (82,02), ey (Sn, Cn)

as follows:

o sp = GS|An; D)oy

e ¢y = the £'M largest integer in the set Zy, — D

for all £€ {1,2,---,n}. Note the crucial facts that
(a) we assign disjoint bit-positions to straight-edges and cross-edges;
(b) the cross-edges at each level of F(n) are assigned a unique bit-position.

Claim. For all D, the LBPS Sp(n) specifies an optimal embedding of F(n) in Q(dy,).

Proof Sketch. Focus on two arbitrary distinct vertices of F(n), u = (¢,) and v = (€, &,);
say that £, > €,. Let v' = (n, 7,) (resp., v' = (0, 7,)) be the vertex in the bottom (resp., the
top) level of F(n), which is attained by following only cross-edges from vertex u (resp., from
vertex v). Consider the path P in F(n) that starts at u, follows cross-edges to u', thence follows
the unique length-n path from u' to ', and finally follows cross-edges to v. Let u" and v" be,
respectively, the vertices at levels £, and £, along the subpath of P that connects v’ and v'. We
analyze the structure of path P.

The ends of the path. For each level k > £, and each level k < ¢,, path P traverses two edges
connecting level k with level k + 1 — one being a cross-edge. If at any level, the other edge
is not a cross-edge, then clearly L(u) # L(v), because Sp(n) assigns each level-k cross-edge a
bit-position which is shared by no straight-edge and by no cross-edge at any other level of F(n). .
Hence, the subpath of P that connects u to u' coincides with the subpath that connects v’ to
u”, so u = u"; similarly, v = v".

The middle of the path. For each remaining level k of F(n), path P traverses only one edge
connecting level k to level k + 1. If this edge were a cross-edge, then it would Hip a unique
bit-position, thereby assuring that L(u) # L(v). Assume, therefore, that all these edges are
straight-edges. Since straight-edges on a consecutive sequence of levels of F'(n) flip bit-positions
that are specified by a contiguous subsequence of a Gray code transition sequence, Lemma 1(a)
guarantees that some bit-position is flipped an odd number of times along the middle portion
of path P. Once again, this assures that L(u) # L(v). O

The just verified Claim establishes the unit dilation, hence, unit congestion of our embed-
dings; optimality of expansion follows from our choice of A, which ensures that we embed F(n)
into @(dy). This completes the proof of Theorem 1. O

2.3. A Modular Family of Embeddings

We want to choose an infinite sequence of integers
d0<d1<d2<°°'

with the following property. If we define D, to be the first A, elements of the sequence, then
for each set Dy, the LBPS Sp, (as specified in Section 2.1) specifies an optimal embedding of
F(n) in Q(dn). The embeddings defined by the sequence of LBPS’s Sp, will be the desired
modular family of optimal embeddings.

Claim. The infinite sequence of integers defined by
dy = 2+ k-1
yields the desired sequence of LBPS’s.

Proof Sketch. Our construction of LBPS’s always assigns to each cross-edge bit-position ¢;
a dimension that is new, i.e., used for no edge at a lower numbered level than 7; in contrast,
bit-positions used for straight-edges are reused. However, a new dimension must be introduced
for straight-edges at least at every level of the form 2*, since a set D of dimensions can be used
for only 2/P1 — 1 levels of an LBPS if the induced embedding is to be injective. In other words. a
set D leads to an optimal embedding of F(2/P! - 2); but D must be augmented if a bigger FFT
is to be embedded, by adding to it a dimension which is new. To wit, the dimensionality of the
smnallest Hypercube that will hold an FFT graph usually increases by 1 when we expand F(n)
to F(n+1) (which is why just a new c; suffices); but when n is a power of 2, the dimensionality
increases by 2 — so bit-position s; must be new also. In order to minimize expansion, we
add the smallest as-yet-unused bit-position, namely, 2P| 4 |D| — 1 to D. (Straight-edges have
consumed |D| — 1 bit-positions; cross-edges have consumed 2/P — 1 bit-positions.) O

3. EMBEDDING THE BUTTERFLY AND CCC

Theorem 2 Every order-n Butterfly graph or CCC graph is embeddable in a Hypercube with

unit congestion, with optimal ezpansion, and with dilation 1 + (n mod 2). These embeddings
are optimal in all three cost measures and are computable in linear time.

We establish the upper bounds of Theorem 2 in the next two subsections. Lemma 1(d)
establishes optimality of dilation.

Since B(n) and C(n) are smaller than F(n), our embeddings in this Section will be into a
(sometimes) smaller Hypercube than in Section 2, namely, Q(6,), where 6, =4¢r n + [log n]

3.1. Embedding The Butterfly Graph

A. The Underlying Embedding of the FFT Graph

Our embedding of B(n) derives from one specific member of our family of embeddings of
F(n). Letting Even(n) =qer n + (n mod 2), we define the LBPS

Sp(n) = (s1,¢1), (s2,¢2)s . .-, (8n,Cn)

that specifies the desired embedding by setting D = Z,, and defining, for £ € {1,2,---,n}.

o 5p= GS[An; D; Even(n)e-

o cp =L+ A,

Remarks. (1) Since &S&[An; D; Even(n)] uses no integer > A, — I, we assign disjoint labels to
straight-edges and cross-edges. (2) When n is even, the straight-edges of F(n) induce a cycle
in @(8,); when n is odd, all but one adjacent pair of image-strings differ in one bit-position,
while the remaining pair differ in two bit-positions.

B. The Embedding

Our embedding views B(n) as two copies of F(n —1), along with edges between each output
and its corresponding input in both copies of F(n - 1).

Our embedding of B(n) reserves dimension 6, of Q(6,) as special, thereby partitioning
Q(8n) into two copies of Q(8, — 1). We use the embedding of Section 3.1A to embed a copy of
F(n—1) into the copy of @(é, — 1) in which every vertex-address has a 0 in bit-position §,; let
@0 be the address of the image in Q(&,) of output (n— 1, 0) of F(n—1). Next, we embed a copy
of F(n — 1) into the copy of Q(8, — 1) in which every vertex-address has a 1 in bit-position é,,,
using the same simple embedding, but mapping the origin vertex (0, 0) of F(n — 1) to vertex
@l of Q(8y,) rather than to vertex 0.

It follows from the analyses in Section 2 that our embedding of B(n)

e is well-defined and injective

* embeds all edges of B(n) that do not connect outputs of the copies of F(n— 1) with inputs
as edges of Q(6,).

We need therefore look only at the output-to-input edges.

Consider first the edges e(€) of B(n) that connect outputs (n—1,€) of a copy of F(n - 1)
with their corresponding input (0,) in that copy. Our underlying FFT embedding maps each
input-to-output path of straight-edges in F(n — 1) to a Hypercube cycle of length Even(n).
Hence, when n is even, the cycle has length n, so edge e(é) completes a cycle in Q(8,), hence
has unit dilation; when n is odd, the cycle has length n + 1, so edge e(é) must be routed along

a length-2 path in order to complete the cycle in Q(4,), engendering dilation 2 (but congestion
is still 1).

The edges that connect an output {n — 1, f-} of one copy of F(n — 1) and its corresponding
input (0,5) in the other copy are all embedded as Hypercube edges; in fact, we prove in the
complete paper that they all cross dimension 6, of Q(6,). O

3.2. Embedding The CCC Graph

Our efficient embedding of the CCC graph is simplified by the well-known (and easily verified)
fact that each Hypercube Q(c + d) is isomorphic to the product graph Q(c) x Q(d). lence, we
embed C(n) in Q(An-1) X Q(n), rather than explicitly in Q(6,).

Note that Lemma 1(c) guarantees the existence in Q(A,—1) of a cycle of length Ewven(n).
This cycle implicitly orders Even(n) of the 2*+~1 copies of Q(n) that are contained in the
product graph Q(An-1) x Q(n), so we can talk about “the i*" copy of Q(n),” call it Q;. To
embed C(n) in Q(An_1) x Q(n), we assign each vertex (¢, §) of C(n) to vertex § of Qy. This
association

1. is one-to-one: it maps distinct vertices of C(n) to distinct vertices of Q(An-1) x Q(n);
2. allows one to route each level-edge of C(n) as a single edge of some Q;;

3. allows one to route each straight-edge of C(n) as a single edge (resp., a path of length
2) in Q(An-1) x Q(n) if n is even (resp., if n is odd), for then the straight-edges form
length-n cycles (resp., length-(n + 1) cycles) in copies of Q(An—1).

Property 1 guarantees a valid embedding of C(n) in Q(6,,). Properties 2 and 3 guarantee unit
dilation when n is even and dilation 2 when n is odd. O

ACKNOWLEDGMENT. The research of D. S. Greenberg was supported in part by NSF
Grant MIP-86-01885. The research of L. S. Heath was supported in part by NSF Grant DCI-
85-04308. The research of A. L. Rosenberg was supported in part by NSF Grants DCI1-85-04308
and DCI-87-96236.

-1

10.

11.

REFERENCES

. F. Berman and L. Snyder (1984): On mapping parallel algorithms into parallel architec-

tures. Intl. Conf. on Parallel Processing.

. S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1988): Efficient embeddings

of trees in hypercubes. Typescript, Univ. of Massachusetts. See also, Optimal simulations
of tree machines. 27th IEEE Symp. on Foundations of Computer Science (1986) 274-282.

- 5.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, A.L. Rosenberg (1988): Optimal

sitnulations by Butterfly networks. 20th ACM Symp. on Theory of Computing, 192-204.

- S.N. Bhatt and L Ipsen (1985): Embedding trees in the hypercube. Tech. Rpt. DCS/RR-

443, Yale Univ.

. S.H. Bokhari (1981): On the mapping problem. IEEE Trans. Comp., C-30, 207-214.

. R.M. Chamberlain (1988): Gray codes, Fast Fourier Transforms and hypercubes. Parallci

Computing 6, 225-233.

. T.F. Chan (1986): On Gray code mapping for mesh-FFTs on binary .V-cubes. Tech. Rpt.

RIACS-86.17, NASA Ames Research Center.

. L. Johnsson (1985): Basic linear algebra computations on hypercube architectures. Tech.

Rpt., Yale Univ.

F.P. Preparata and J.E. Vuillemin (1981): The cube-connected cycles: a versatile network
for parallel computation. C. ACM 24, 300-309.

E. M. Reingold. J. Nievergelt, N. Deo (1977): Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, Englewood Cliffs, NJ.

Y. Saad and M.H. Schultz (1988): Topological properties of hypercubes. IEEE Trans.
Comp. 37, 867-872.

10

