Plausible Explanations to Cope with
Unanticipated Behavior in Planning

Carol A. Broverman

W. Bruce Croft

COINS Technical Report 88-56
June 1988

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

Complex tasks can be accomplished efficiently by human agents with the assistance of
a hierarchical nonlinear planner. However, since such a paradigm implies an active role of
the human agents in making decisions and providing information, an interactive interface
must be prepared to encounter unusual behavior which deviates from system expectations.
This paper describes a system (SPANDEX) which constructs plausible ezplanations as justi-
fications for agent behavior. The verification of an explanation can involve a reorganization
of existing knowledge or require the acquisition of additional knowledge. Selected expla-
nations are implemented through proposed emendments to the knowledge base. Detailed
examples of the operation of the system are presented.

‘This work is supported by the Air Force Systems Command, Rome Air Devclopment Center, Griffiss Air
Force Bage, New York 13441-5700, the Air Force Office of Scientific Research, Bolling Air Force Base, District
of Columbia 20332, under contract F30602-85-C-0008, and by a contract with Ing. C. Olivetti & C.

Contents

1 Introduction 1
2 An architecture to support exception handling 3
2.1 The SPANDEX architecture 5
22 Anexample e e e 5
3 Plausible explanations 6
3.1 Plausibleinferencerules 000, 8
3.2 Explanations e 9
4 Amendments 10
5 Status 13
6 Appendix 14

1 Introduction

No matter how carefully a plan is conceived, things frequently go wrong during its exe-
cution. When human agents are responsible for executing plan steps this problem is of
particular importance. People change their minds or opportunistically revise a plan mid-
execution. In addition, they are prone to error and misjudgement. Consequently, a system
designed to support the performance of human tasks in an interactive setting (4,5] must
be prepared to cope with frequent unanticipated occurrences (ezceptions [2]) during the

planning and execution process.

In [2], we describe an interactive planning system and its requirements for a general
exception handling mechanism. In this setting, the input of human agents is required for
task completion and thus exceptions can be generated by the actions of known agents. In
particular, an agent may perform an action which is inconsistent with system predictions.
For example, an agent may leave out a step in a task as a deliberate short cut, or he
may perform an unexpected action as an intentional substitution of an expected action.
In other cases, the action of an agent may not be an intentional aberration, but may be

viewed initially as an exception due to an incomplete or incorrect domain plan library.

Such exceptions are referred to as accountable since it is presumed that agents behave
purposefully and there are molivations' for their behavior. Actions which initially appear
to be “errors” can often be recognized and explained as actions consistent with the goals
of the plan. We contrast this class of accountable exceptions with the more frequently
addressed arbitrary changes in world state brought about by unknown agents. For example,
a system that is planning a travel itinerary may have to contend with the effects of an
earthquake which has forced the cancellation of a scheduled train. We refer to this latter
type of exception as unaccountable and recognize replanning as an effective approach for

plan recovery [11,15].

Accountable exceptions, however, should be justified rather than “counteracted” through
replanning. Explanations of unanticipated agent behavior can result in improvements in
both system understanding and performance. As an initial step towards achieving this aim,
we have defined the categories of accountable exceptions that can arise in a cooperative
planning framework. The types of exceptions defined by this behavioral perspective are:

action not in plan, out of order aclion, repcated action, user assertion, and ezpecled action

'What constitutes a relevant agent motivation may vary from one domain to the next, since the policies
and constraints of the work setting are influential. For example, an environment with strong financial
incentives may encourage individuals to act in ways to cut costs even at the expense of lengthy tasks, while
in other settings financial expense may be considered as secondary to task simplification. Other possible

motivations for deviating from expected procedure include: anticipation, partial achievement of an expected

plan step, and special case handling.

with parameter causing constraint violation. A complete description of this taxonomy and

additional groundwork for the approach described in this paper can be found in [3].

In this paper we investigate the construction of plausible ezplanations of accountable
exceptions. Section 2 describes the implemented system SPANDEX (Support for Planning
and EXception handling) and its interface to POLYMER, a hierarchical planning system
similar to NOAH [12] and NONLIN [14]. SPANDEX allows a planning system to continue the
planning and execution of a task after encountering an exception. The approach described
here facilitates the extension of an existing knowledge base to accommodate alternative
ways to complete task goals, as learned through the handling of previous exceptions. In
section 3, we introduce the concept of plausible ezplanations as justifications of presumed
agent motives and describe how they are constructed. Section 4 discusses how amend-
ments to the knowledge base are proposed to restore consistency to the plan network upon
acceptance of an explanation. An example of the operation of SPANDEX in the domain
of journal editing is presented throughout for illustration, and an additional example from

the software development domain is given in the Appendix.

2 An architecture to support exception handling

POLYMER [5,6] is an interactive planning system designed to assist in the management of
tasks in a cooperative setting. It uses a hierarchical planner to construct a procedural net
that specifies the sequences of actions required to achieve a goal. POLYMER constructs
partial plans and executes them in cooperation with agents. The actual actions taken by
these agents are compared to expected actions, and when differences are found (produc-
ing an exception) SPANDEX is invoked. This architecture is shown in Figure 1. In this
section, we describe the SPANDEX architecture and introduce an example to illustrate the

mechanisms described.

PLANNER
(including expander,

Users plan critic and replanner) World
(POLYMER)
Execution
Monitor
! AT !
| ; ' Exception ’ |
| (SP ANDEX) Classifier |
I 1
| | | |
| f (|
. | Explanation | . | Exception
: l KB Modifier |' ‘,.._Generalizerﬁ'- " l Negotiator }' ‘ Analyst ‘ |
! I
L e S = — — 3N Y T e e J

KNOWLEDGE
BASE

Figure 1: Architecture for a cooperative planning system

2.1 The SPANDEX architecture

When an exception is detected by the plan execution meonitor, the exception classifier is
invoked to determine the exception type. The plan critic determines if goal nodes have
been violated in the plan as a result of the exception. The replanner handles unaccountable

exceptions (generated by world in Figure 1).

The ezception analyst applies domain knowledge to construct plausible ezplanations of
accountable exceptions. The function of the exception analyst is described in more detail
in [2,3] and plausible explanations are discussed further in the following section. Since
several agents can be affected by an exception, we propose to use negotiation [10,13] to
establish a consensus among them regarding the explanation and proposed plan modifi-
cations. The negotiator identifies the affected agents and uses the information provided
by the exception analyst to conduct a dialogue. The output of the negotiation phase is a
selected explanation, along with approved changes to be made to either the plan network

for this particular instance or to the permanent plan library.

The ezplanation generalizer produces a generalized form of the verified explanation,
using taxonomic information in the knowledge base. This new knowledge about domain
activities, along with any suggested knowledge base changes resulting from negotiation, is
passed to the knowledge base modifier. Thus, a successful negotiation can result in a system
which has “learned,” that is, the static domain plans may be augmented with knowledge

about the exception and thus the system is able to handle future similar exceptions.

2.2 An example

To illustrate the mechanisms discussed in this paper, we will develop an example involving
a journal editing task. The goal of the task is to decide whether or not to accept a paper
for publication. The primary agent initiating the task is the editor, who has received a
paper for review in the area of artificial intelligence. POLYMER generates a partial plan

network for this task, and executes it in conjunction with the relevant agents. There are

three ordered subgoals generated for this task: reviewers-selected (the editor must select
reviewers to judge the submission), reviews-received (the actual reviews must be obtained),
and decision-reached (the editor must make a final decision based on the responses). A
constraint on the reviewers-selected task subgoal specifies that each reviewer selected must

have an area of expertise which matches the area of the paper to be reviewed.

The agent (editor) is instructed to perform the activity select-reviewer to achieve the
first subgoal. The activity is performed and the reviewer selected is Seymour. Wright.
When the constraint is evaluated, it is discovered that the area of expertise of Sey-
mour. Wright is computer.vision rather than artificial.intelligence. SPANDEX is invoked
by POLYMER upon detection of this exception, ahd the exception classifier determines that
a constraint which was dynamically posted on a knowledge base object has been violated
(a dynamic object constraint violation exception). The ezception record pictured in Figure
2 is generated to summarize the exception. The exception classifier first records the action
which generated the exception, and the type of exception which was detected. The actual
constraint which was violated (targel.constraint) is recorded, and SPANDEX also deter-
mines the actual value in the knowledge base object that triggered the constraint violation
(contained in perceived.constraint). SPANDEX then invokes the exception analyst, which
uses the strategy.selector to choose one-of the strategies to generate explanations for the

exception.

In the next section, we describe how explanations are generated for exceptions, and

illustrate the behavior of the exception analyst on the example introduced above.

3 Plausible explanations

The term ezplanation is broadly used in current artificial intelligent research. In ezplanation-
based learning |7,8,9], explanations are generated as proof that a sequence of steps achieves
its goal. This type of explanation is logically sound, and is in eflect a restructuring of exist-

ing knowledge. In POLYMER we also would like to construct explanations which justify how

Unit-name: DYNAMIC.OBJECT.CONSTRAINT.VIOLATION13
Unit-comment: “A constraint dynamically posted on a KB object has been violated. ”
Exceptional-action: select-reviewerl
Exception-summary:

“The target constraint: (area.of.ezpertise Seymour. Wright artificial.intelligence)

was not met; it is the case that (area.of ezpertise Seymour. Wright computer.vision).”
Target.constraint:(area.of.ezpertise Seymour. Wright artificial.intelligence)
Perceived.constraint (areas.of.ezpertise Seymour. Wright computer.vision)
Strategies: dynamic.object.constraint.strategy
Strategy.selector: strategy.selector.method
Explanations: specialization.const.mint.values.expl14, generalization.constraint.values.expl15

Figure 2: Dynamic.object.constraint.violation13

exceptions contribute toward current plan goals. Our approach, however, is not to supply
a rigorous proof, but rather to suggest plausible roles for the exception in the context of
the plan. Due to the interactive nature of our planner, we often have only a partial ac-
tion sequence available for analysis, and assume a potentially incomplete knowledge base.
Therefore, we are not always able to produce formal explanations of exceptions through
the reorganization of existing knowledge, but must rely on the construction of potentially
valid (plausible) explanations which may require user validation and additional knowledge

for verification.

The task of the exception analyst is to apply a set of algorithms to the knowledge
base in order to produce plausible explanations of exceptional behavior. The algorithms
are based on plausible inference rules and conduct a controlled exploration of a rich and
integrated representation of domain activities and objects [2]. In this section, we define
what we mean by explanations, and show how they are constructed, using the example

introduced in the previous section.

3.1 Plausible inference rules

For a given exception type, a set of Plausible inference rules are retrieved. These rules are
intended to reflect possible motivations of the responsible agents and are used to construct
explanations for the exception. The general form of a plausible inference rule is a set
of conditions (forming the premise of the rule) followed by the established rationale for
allowing the exception (conclusion). For example, one plausible inference rule used during

the resolution of an exceptional action resulting in a constraint violation is the following:

Plausible-inference-rulel: If the violating value in a constraint predicate is
a specialization of the target value of the violated constraint, then the violating

value may suffice as a substitution for the target value.

In this case, we have a single condition in the premise (specifying a taxonomic relation-
ship that must exist between actual and target values in a constraint), but in the general
case there may be several conditions. Each condition specifies a semantic relationship
which must hold among one or more entities in the knowledge base. These relationships
include: direct specialization, direct generalization, sibling or cousin taxonomic relation-
ships, and causal relationships. These and other semantic relationships are discussed in
more detail in [3]. Parameters are associated with some of the condition types; for ex-
ample, when a specialization relationship is established in an explanation, the number of
taxonomic links between the two objects is recorded (a measure of closeness), or for an
established generalization relationship, it may be the case that the more specific object has
five additional attributes (a measure of similarity). The values of the condition parameters
establish the degree of plausibility of each explanation to enable the ranking of multiple

explanations.

3.2 Explanations

Each plausible inference rule retrieved for an exception gives rise to the instance of an ez-
planation. Therefore, there may be many possible explanations for a given exception. An
explanation is considered complete if all of the conditions in the premise can be substan-
tiated by SPANDEX. If one or more of the conditions cannot be verified, the explanation
is incomplete. Complete explanations are a result of analyzing the existing knowledge to
infer information from existing facts. Incomplete explanations, on the other hand, rep-
resent lines of reasoning that may result in valid explanations of an exception if we are
able to verify the missing conditions. In other words, the construction and acceptance of
a complete explanation involves a reorganization of existing knowledge?, while incomplete
explanations require the acquisition of new knowledge in order to be substantiated and ac-
cepted. Complete explanations are preferred since they are already verified and can allow
the successful completion of a plan in progress, but incomplete explanations can potentially

lead to improved system performance through the acquisition of new knowledge.

When an explanation is considered to be incomplete, an attempt to complete it may
be warranted for one of two reasons. First, the knowledge base may be incomplete; an
unverified relationship or fact may be simply unknown, and might be acquired through
a dialogue with a responsible agent. Secondly, the knowledge base may be incorrect; a
condition in an explanation which is false could be established as true through a dialogue
with an agent. Thus, the negotiation involving incomplete explanations plays a primary

role in both the expansion and debugging of the initial knowledge base.

In the example introduced in section 2.2, SPANDEX constructs two plausible expla-
nations, one which is complete, and one which is incomplete (see Figure 3). In this
particular case, the complete explanation states that since the referee selected has an
area.of ezpertise which is a specialization of the required area.of.ezpertise, he is sufficiently
qualified to review the paper of concern. Note that since the specialization relationship

2Note that complete explanations are similar to those explanations produced by the explanation-based

learning paradigm discussed earlier.

Unit-name: SPECIALIZATION.CONSTRAINT.VALUES.EXPL15

Unit-comment: “Show that the actual value of the violated constraint predicate is a
specialization of the target value in the constraint.”

Explanation-summary: “The actual value of the area.of.ezpertise field of Seymour. Wright
(computer.vision) is sufficient since it is a specialization of the desired value artificial.intelligence.”

Status: complete

Reasoning.method: specialization.constraint.values

Hierarchy.level.difference: 1

Unit-name: GENERALIZATION.CONSTRAINT.VALUES.EXPL14

Unit-comment: “Show that the actual value of the violated constraint predicate is a
generalization of the target value in the constraint.”

Explanation-summary: “If the value of the area.of.ezpertise field of Seymour. Wright
(computer.vision) had been a generalization of the target constraint value artificial.intelligence,
this explanation would be valid.” ‘

Status: incomplete

Reasoning.method: generalization.constraint.values

Figure 3: Explanations for Dynamic.object.constraint.violationlJ

(computer.vision is a subclass of artificial. intelligence) exists in the knowledge base, gener-
alization.constraint.values.ezpll§ is not only incomplete but invalid, since an object can-
not be both a generalization and a specialization of the same object. To illustrate the
handling of incomplete explanations, suppose, however, that the taxonomic link between
compuler.vision and artificial intelligence was not initially specified in the knowledge base.
If this had been the case, the two explanations in Figure 3 would have been constructed as
incomplete (but potentially valid) explanations. Either one of them may have been chosen
during the negotiation process and completed by verifying with a knowledgeable agent that

the appropriate missing taxonomic link could indeed be added to the knowledge base.

4 Amendments

Once the candidate explanations for an exception have been generated by the exception

analyzer, a selection must be made. Currently, summaries of the candidate explanations are

10

presented to the user, who makes a choice. Once the selection of an explanation has been
made, it must be implemented to restore system consistency and enable the resumption of
execution. The implementation of an explanation is specified by one or more amendments
to be made to the static or dynamic state of the system. At this time, the choice of the
amendment is also made by the user, although this choice could be automated by weighing

the implementation costs of the candidate amendments.

Each plausible inference rule has one or more amendment types associated with it, based
on the conditions involved in its premise. Amendments are generated only for complete
explanations, unless an incomplete explanation is chosen and verified through agent inter-
action. In this paper, we will describe the concept of amendments by discussing the subset
of exceptions which generate constraint violations, and illustrate with the amendments (see

Figure 4) generated for the complete explanation .specialization.conatraint.values.ezpl] 5.

In general, when encountering a constraint violation, there are three fundamental ap-

proaches to resolving the problem?:

1. Relax the constraint. Possible ways to do this are:

(a) Disjunct addition (add a disjunct to the specification);
(b) Conjunct elimination (eliminate one or more conjuncts from the specification);

(c) Taxonomic generalization (replace a class specification with a more general su-

perclass);

(d) Taxonomic expansion (replace a class specification by a set of classes which are

subsumed by the original class specification);
(e) Range extension (extend a numeric or other ordinal range);

(f) Constraint elimination (eliminate the constraint);

2. Remove the source of constraint violation.

3The first approach is largely based on work described in [1].

11

Unit-name: CONSTRAINT.VALUE.DISJUNCT.ADDITION16
Unit-comment: “Modify a current.constraint by adding an additional.value
in a disjunct.clause to produce a new.constraint.”
Amendment-summary: “Replace the current constraint
(area.of .expertise Seymour. Wright artificial.intelligence) with the new constraint
(or (area.of.ezpertise Seymour. Wright artificial.intelligence)
(area.of .ezpertise Seymour. Wright computer.vision})).”
Implementation: (add-values-to-constraint (computer.vision)
(area.of.expertise Seymour. Wright artificial.intelligence))

Unit-name: CONSTRAINT.VALUE.TAXONOMIC.EXPANSION17
Unit-comment: “Modify a current.constraint by replacing the existing.value with
its taxonomic.expansion to produce a new.constraint.”
Amendment-summary: “Replace the current constraint
(area.of.ezpertise Seymour. Wright artificial.intelligence) with the new constraint
(area.of ezpertise Seymour. Wright
(or artificial.intelligence distributed.ai planning robotics computer.vision)).”
Implementation: (replace-values-in-constraint
(artificial.intelligence distributed.ai planning robotics computer.vision)
(area.of.expertise Seymour. Wright artificial.intelligence))

Unit-name: TARGET.OBJECT.ATTRIBUTE.VALUE.ADDITION18
Unit-comment: “Modify a KB object by adding a new.value to
the existing.values in an object.attribute field of the object.”
Amendment-summary: “Add the new value ariificial.intelligence to the current values
(computer.vision) of the area.of.ezpertise field of the KB object Seymour. Wright.”
Implementation: (add-attribute-values-to-kb-object (artificial.intelligence)
area.of.expertise Seymour. Wright)

Figure 4: Amendments for Specialization.constraint.values.ezpll§

12

(a) The constraint may have failed because of unknown information. Perhaps the
missing knowledge can be acquired, resulting in a successful evaluation of the

constraint.

(b) Information in the knowledge base may be incorrect. A change should be made
to the knowledge base so that the subsequent evaluation of the constraint is

successful.

3. Undo what was done, and do it differently (replan).

Conceptually, the first approach implies that a constraint was specified incorrectly; it
was too strict. The second appoach implies that some knowledge is either not explicit or is
incorrect in the knowledge base, and that additional information can either be inferred or
acquired in order to nullify the violation. With these concepts in mind, the amendments
shown in Figure 4 were produced for the example exception summarized in Figure 2.
Note that the first two proposed amendments illustrate the first approach. They use the
techniques of disjunct addition and taxonomic expansion to actually change the constraint
specification to accommodate the exception. The third amendment is based on the second
approach, and involves making an actual change to a knowledge base domain object. Thus,
the actual source of the constraint violation is removed. The user selects one of these
amendments to indicate how the explanation should be implemented. The knowledge
base modifier performs the indicated changes specified in the implementation field of the

amendment, and planning and execution by POLYMER is resumed.

5 Status

A prototype system implementing the SPANDEX architecture is integrated with the poLY-
MER planner and running on a Texas Instruments Explorer. The exception analyzer cur-
rently handles a subset of the exception types; algorithms for the remainder are being
implemented. Generalization techniques such as those described in (1] are being examined

as the basis for the explanation generalizer. The negotiator is not yet implemented.

13

6 Appendix

As an additional illustration of the mechanisms discussed in this paper, we present in
this section an example from a second domain, that of software development. The overall
goal of the example task is to create a new version of a software system, incorporating
desired changes and additions. The primary agent initiating the task is the project leader,
who is directing a programmer, Dave. Hildum, to effect the changes. POLYMER generates
a partial plan network for this task, and executes it in conjunction with the relevant
agents. There are three ordered subgoals generated for this task: decide-on-changes (the
programmer must decide which particular charnfges to make), make-changes (the editing
must be performed on the appropriate modules) and have-consistent-system (the entire

software system must be updated so that changed modules are recompiled and the system

is relinked).

The agent (Dave.Hildum) is instructed to perform the actions think and edit which
are selected by POLYMER to achieve the first two subgoals. The actions are performed as
anticipated. The planner attempts to achieve the third subgoal have-consistent-system by
selecting the activity update-software-system to achieve il. Upon requesting verification
from the user to perform the first primitive action in this activity expansion (compile the
first changed file), the user denies verification and instead initiates a uniz-make action.
SPANDEX is invoked by POLYMER upon detection of this exception, and the exception
classifier determines that an action mismatch has occurred, implying a possible attempt

at an action substitution or an out-of-order action?

. An ezception record (see Figure 5
below) is created to summarize the exception, recording the action which generated the
exception, and the type of exception which was detected. SPANDEX then invokes the
exception analyst, which uses a heuristic strategy.selector to choose a strategy to generate

an ezplanation for the exception.

In this example, a single applicable plausible inference rule is retrieved, and SPANDEX

"T'hese implications are derived from relevant plausible inference rules, as described in section 3.1.

14

Unit-name: ACTION.MISMATCH.01
Unit-comment: “The action taken by an agent did not match the action expected by the planner.
Exceptional-action: unix-make-1
Exception-summary:

“The target action: compile-file-01 did not occur,

it is the case that uniz-make-01 was performed.”
Target.action:compile-file-01
Perceived.action uniz-make-01
Strategies: action.substitution.strategy, out.of.order.action.strategy
Strategy.selector: strategy.selector.method
Explanations: substitute.for.higher.level.goal.01

»

Figure 5: ACTION.MISMATCH.01

constructs one plausible explanation, which is complete. (see Figure 6). In this particular
case, the complete explanation states that since the goal of the unexpected action (up-
dated(SPANDEX)) unifies with the goal of a parent® of the expected action node (the goal
of update-software-system, which is the parent node of the expected compile action, is also
updated(SPANDEX)) the unexpected action may be a substitution for the more abstract
parent node. Since there is only a single explanation in this example, there is no need for

negotiation among affected agents to choose among potential explanations.

An amendment is next constructed for the explanation which specifies the changes
that must be made to the current plan network and domain knowledge in order to restore
consistency to the system. The implementation of this explanation involves replacing the
wedge of the plan network subsumed by the more abstract parent node (update-software-
system-01) with the unexpected action (uniz-make-01). As a side effect, the nodes in the
expansion of update-software-system-01 are deactivated from the planner’s predictions (sce

Figure 7).

The changes specified by the implementation field of the amendment shown are per-

5The term “parent” here is used to refer to the more abstract node from which an expansion now in place

in the current network was derived.

15

Unit-name: SUBSTITUTE.FOR.HIGHER.LEVEL.GOAL.01
Unit-comment: “Show that the unexpected action is a substitute
for an in.progress.parent.node of the expected action.”
Explanation-summary: “The unexpected action uniz-make-01 is sufficient since it
has a goal unifying with the goal of the parent node update-sofiware-system-01. »
Status: complete
Reasoning.method: substitute.for.higher.level.goal
In.progress.parent.activity: update-software-system-01
Pending.goal.achieved: updated(SPANDEX)
Unexpected.action.goal: updated(SPANDEX)
Hierarchy.level.difference: 2

Figure 6: Explanation for ACTION.MISMATCH.01

Unit-name: REPLACE.PLAN.WEDGE.O1
Unit-comment: “Replace a wedge of the plan subsumed by a single node by a new node.”
Amendment-summary: “Replace the plan wedge subsumed by
update-software-system-01 with uniz-make-01.”
Implementation: (do
(replace-wedge update-software-system-01 unix-make-01)
(deactivate compile-file-01 compile-file-02 compile-file-03
link-system-01)

Figure 7: Amendment for SUBSTITUTE.FOR.HIGHER.LEVEL.GOAL.01

16

formed, and planning and execution by POLYMER is resumed.

References

(1]

2]

[3]

[4]

[5]

[6]

[7]

(8]

Borgida, A., and K.E. Williamson, “ Accommodating Exceptions in Databases, and
Refining the Schema by Learning from Them,” Proceedings of the Very Large Dala
Base Conference, 1985, pp. 72-81.

Broverman, C.A., Croft, W.B. “Exception Handling During Plan Execution Moni-
toring,” Proceedings of the Sizth National Conference on Artificial Intelligence, July
1986, Seattle, WA., pp.190-195.

Broverman, C.A., Croft, W.B. “SPANDEX: An Approach to Exception Handling in
an Interactive Planning System,” COINS Technical Report No. 87-127, University of
Massachusetts, Amherst, Mass. December 1987.

Croft, W.B., Lefkowitz, L.S. “Task Support in an Office System,” ACM Transactions
on Office Information Systems, 2: 197-212; 1984.

Croft, W.B., Lefkowitz, L.S. “Knowledge-Based Support of Cooperative Activities,”

Proceedings of the Hawaii International Conference on System Scicnces, January

1988, pp. 312-318.

Croft, W.B., Lefkowitz, L.S. “A Goal-Based Representation of Office Work,” IFIP
Conference on Office Knowledge. North Holland, W. Lamersdorf, ed., 1988.

DeJong, G.F. “Generalizations Based on Explanations,” Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, Vancouver, B.C., Canada,

August 1981, pp. 67-70.

DeJong, G., Mooney, R. “Explanation-based Learning: An Alternative View,” Ma-
chine Learning, 1, 1986.

17

[9] DeJong, G. “An Approach to Learning From Observation,” Machine Learning, Vol. II.
Michalski, Carbonell, Mitchell, eds., Morgan Kaufmann Publishers, Inc., Los Altos,
CA, 1986, pp. 571-590.

[10] Fikes, R.E. “A Commitment-based Framework for Describing Informal Cooperative
Work”, Cognitive Science, 6: 331-347; 1982.

[11] Hayes, P.J. “A Representation for Robot Plans”, Proceedings IJCAI-75, 181-188, 1975.

[12] Sacerdoti, E.D. A Structure for Plans and Behavior, Elsevier North-Holland, Inc.,
New York, NY, 1977.

[13] Sathi, A., Morton, T.E., Roth, S.F. “Callisto: An Intelligent Project Management
System,” AI Magazine, 7:5, Winter, 1986, pp. 34-52.

[14] Tate, A. “Generating Project Networks”, Proceedings IJCAI-77, Boston, 888-893,
1977.

[15] Wilkins, D.E. “Recovering from Execution Errors in SIPE”, SRI International Tech-
nical Report 346, 1985.

18

