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ABSTRACT

Motion in the environment manifests itself in changes of many kinds,
not just image plane velocities, yet these are all that an optical flow field
makes explicit. We view oplical flow as a useful low-level represeniation
from which a symbolic description of change, in the form of token matches,
can be computed. The tokens of interest to us are those produced by
perceptual organization processes, and are more abstract than edges or
interest points. We demonstratc a working system for matching line tokens
which uses the optical flow field in a heuristic manner to limit the search
for the minimal bipartite cover of the set of tokens from each frame. As an
example application, we demonstrate a technique for computing distance to
environmental surfaces suitable for obstacle recognition by a mobile robot.
Accurate knowledge of the camera motion parameters is not required. We
describe how motion in depth manifests itself in the projected lengths and
arcas of environmental surfaces whose extent in depth is small relative to
their distance from the camera. Results on two sequences taken by a mobile
robot are presented to demonstrate the accuracy of the method.

This research is sponsored in part by the Rome Air Development Center (RADC) and
the Defense Advanced Rescarch Projects Agency (DA RPA) under contract F30602-87-C-
0140,



1 Introduction

It is our position that the inherently local measurement of visual motion
provided by optical flow is insufficient to meet the varied requirements of
dynamic image understanding. We choose to describe the time varying
image by computing correspondence between tokens of arbitrary spatial
scale produced by perceptual organization processes. We believe that this
will result not only in more accurate measurement of visual motion, but
also facilitate the use of motion information in object recognition and scene
understanding.

For the purposes of this paper, techniques for measuring visual mo-
tion can be roughly categorized as either optical low methods or token
matching methods. This taxonomy is based upon the nature of the output
representation.

Specifically, a distinction is drawn between methods whose purpose is
the computation of a velocity or displacement field, and methods which
compute correspondence in time between tokens that serve as descriptors
of spatial structure.

The goal of the optical flow methods is to compute a vector function
of the image plane. Depending on the particular method, each vector rep-

resents either a velocity or a displacement. The typically pixel-parallel



nature of the computation is dictated largely by the form of the input and
output representations, which are arrays of values in registration with the
original scene. Optical flow methods have been more successful than token
matching methods, and much of this success is due to the fact that these
methods implicitly exploit information carried directly in the “shape” of
the image intensity surface. This is usually effected through the use of an
intensily constancy constraint (e.g. See Horn and Schunk {12]). The utility
of optical flow methods has been further increased by the ease with which
they can be expressed hierarchically, resulting in faster algorithms capable
of describing larger motions [2,9,19].

The token matching methods which concern us compute correspondence
in time belween spatial structures produced by grouping processes. These
tokens belong to what Marr has called the full primal skeich, [16] and are
more abstract than edge segments [17] or interest points (3,18,21]. Tokens
map directly to environmental structure, and descriptions of their move-
ment correlate more closely with the motion of physical objects, than does
optical flow. Most importantly, token matching allows change through time
to be expressed in a wide variety of ways. A token match represents more
than a spatial displacement, also explicit are the changing values of any pa-

rameters associated with the token. These can include orientation, length,



area, contrast, color, etc. Although this information is explicit in the out-
put of a token matching method, it is difficult or impossible to compute
from an optical flow field. These parameters are often solely the prod-
ucts of the particular grouping process responsible for the creation of the
token and therefore have no local counterparts. For example, there have
been attempts to characterize the rotational component of the optical flow
through operators with purely local spatial support such as div and curl
[13]. In constrast, knowing the actual value of the orientation of a line token
(produced by a grouping process, and possessing arbitrarily large spatial
support) as it changes through time results in a2 more accurate determi-
nation of angular velocity. As a further example, in Section 3 we show
how precise knowledge of changing lengths and arcas of tokens composed
of two or more straight line segments allows determination of distance to
that structure in the environment.

While spatial structure is better described by a set of tokens than by an
array of values, current perceptual organization processes fail to adequately
describe the shape of the image intensity surface. Indeed, this information
is usually intentionally discarded during the abstraction process. However,
even if a sufficiently powerful descriptive language were developed (.e.g.

[4,10]), and a token matching approach were formulated, it is difficult to sce



how such an approach could rival the efficiency and simplicity of methods
which exploit this information implicitly, through an intensity constancy
constraint.

The fact that a representation is easy to compute reveals nothing about
its utility. Interpretation of an optical flow field, independent of any knowl-
edge of the spatial structure from which it was derived, seems difficult at
best. Spatial structure can be characterized locally with an interest op-
erator [18] and interpretation can be restricted to the sparse set of points
with a high interest operator score. Alternatively, local structural measures
can be incorporated within the optical flow computation itself, allowing a
dense flow field to be computed through a smoothness consiraint. Nagel em-
ploys a second order approximation of the intensity variation to determine
the direction in which a smoothness constraint is enforced (20]. Anandan
analyzes the principle curvatures of the sum-of-squared-difference surface
to associate vector confidence measures with each displacement, which in
turn, indirectly influence the enforcement of a smoothness constraint [2].
The characterizations of spatial structure in the techniques of Anandan
and Nagel are simple and local, as s necessitated by the need to incor-
porate such characterizations within the formulations of the smoothness

constraints.



2 Token Matches From Optical Flow

Recent work in perceptual organization has given us a richer vocabulary
with which to describe spatial structure than has been available in the past
[15,16,22,27]. While local operators are useful for detecting local structures,
more powerful grouping processes are required to recognize structure of ar-
bitrary scale. Since the image structure revealed through grouping corre-
sponds directly with environmental structure [27), perceptual organization
provides the best measure of “interest.” Recently, Boldt has incorporated
these ideas in a working program for grouping long straight line segments
(6,24].

With this in mind, a logical course of action might be to enforce a
smoothness constraint along the length of a line segment produced by a
perceptual organization process such as Boldt’s. In fact, Hildreth’s smooth-
ness formulation can be enforced along an arbitrary contour, and for the
specific case of a line segment in three space undergoing rigid motion, she
demonstrates that it yields the physically correct flow [11]. If our goal were
to produce a better flow field, this would be a reasonable approach. How-
ever, il has already been suggested that knowledge of correspondence in
time betwcen the line segments themselves would result in a representation

more uscful to the interpretation task. We view the optical flow ficld as a



convenient way to represent the information provided by the intensily con-
stancy constraint for use by the symbolic matching process. It is a useful
low-level representation from which a more abstract description of change,

in the form of token matches, can be computed.

2.1 Grouping Failure

As tokens become more abstract, they also become more unique. Therefore,
it is often assumed that the more abstract a token is, the less ambiguous
matching will be. To a certain extent, this is true, but increased abstraction
brings with it a new source of ambiguity. Under ideal conditions, we might
expect two perceptual organization processes operating independently on
two frames of a motion sequence to partition each frame into the same set
of tokens. After all, each frame is a slightly different view of a predomi-
nantly stable physical world separated only slightly in time. Unfortunately,
in practice, due to the discrete sampling of image formation (and other im-
age effects such as shadows, highlights, and texture), the likelihood of two
frames being partitioned into the same set of tokens is very small. Since
the basic operation employed in perceptual organization is grouping, dis-
crepencies can arise in two ways: 1) failure to relate two tokens that have

a single physical cause, or undergrouping. and 2) mistakingly relating two
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tokens that have separate physical causes, or overgrouping. While both un-
dergrouping and overgrouping can be caused by noise, overgrouping errors
most often occur when two tokens satisfy the geometric criteria for group-
ing through pure chance. Unfortunately, this happens more frequently in
motion sequences depicting the view of the world from the vantage point
of a moving sensor. While the odds of two unrelated tokens accidently
satisfying the grouping criteria in any single view are small, the odds of
the moving sensor passing through such degenerate views in the course of
a motion secquence are much higher. The solution to this problem is be-
yond the scope of a simple, two-frame matching approach, and it will be
discussed in greater detail when suggestions for a multiple frame approach
are presented later in the paper.

Even relatively simple undergrouping errors, rule out the possibility of a
one-to-one mapping between tokens from successive frames, since the num-
ber of tokens in each frame will rarely be the same. Under these circum-
stances, it seems that the best mapping possible is a mapping that assigns
cach token at least one match, and optimizes some error function in the
process. Such a mapping is called a minimal bipartite cover. We first en-
countered the minimal bipartite cover, in the context of the correspondence

problem, as part of Ullman’s minimal mapping theory [28]. Intercstingly,



the motivation Ullman gives for its use is unrelated to the grouping failure
argument presented here. We believe that the minimal bipartite cover is
simply a more practical goal than a one-to-one mapping when matching

abstract tokens prone to grouping errors.

2.2 Frame-to-Frame Token Matches

Ullman’s minimal mapping theory, which presents the correspondence prob-
lem as an optimization problem in the abstract, is a very general paradigm,
and it serves as a useful point of departure for the discussion of the method
proposed in this section. In the minimal mapping theory, correspondence is
computed between tokens from two frames by finding the minimal bipartite
cover of the graph whose nodes are the tokens from each frame and whose
arcs reflect potential correspondence. Thc. weight of each arc in the graph
is called an affinity measure, and is a function of the relative similiarity and
spatial separation of the two tokens which the arc links. Ullman justifies
his choice of particular affinity values with data from studies of the human
visual system. Indeed, the minimal mapping theory is offered as a possible
explanation for the manner in which many of the classic Gestalt displays
such as Ternus’ configuration are interpreted by the human visual system.

Because of the explosively large number of possible mappings for matching



problems of even modest size, Ullman simplifies the general matching prob-
lem by assuming that the number of candidate matches that each token can
claim is equal to some small integer constant. He then shows, that under
this assumption, the optimization problem can be solved by a hill climbing
process, which leads to a relaxation algorithm. However, no method for
choosing initial candidate matches is offered, and the number of iterations
required for convergence is unclear.

The approach described in this paper reflects a natural synthesis of the
optical flow and token matching paradigms. Because the optical flow field
is a vector function of the image plane, it can be used to define a transfor-
mation that maps tokens from one frame to their predicted positions in the
next frame. The spatial area that must be searched for a potential match is
reduced to a small region surrounding the token’s predicted position. Fur-
thermore, the merit of a potential match is judged by its proximity to its
predicted position, not to its previous position. This simplifies the general

matching problem by restricling the number of candidate matches.

2.3 An Implementation Using Line Tokens

In this section, we describe an implementation of the general approach just

outlined. A schematic view of the implementation is depicted in Figure 1.
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Figure 1. Information flow diagram for an implementation using line tokens.

Figure 2. Frame one and two of a sequence depicting a moving soccer ball.



In a preliminary step, a set of line tokens is computed for each frame
using Boldt’s line grouping algorithm (Figures 2 and 3). Boldt’s algorithm
begins by extracting an initial set of line segments whose orientation is the
normal to the gradient direction along zero crossing contours of the Lapla-
cian operator. These initial line segments form the nodes of a graph whose
arcs (links in Boldt’s terminology) reflect a significant non-accidental geo-
metric relationship between the two line segments they join. Some of the
relations used as linking criteria are endpoint proximity, orientation differ-
ence, lateral distance, overlap and contrast difference. All paths through
the link graph within the current replacement radius are examined and the
path minimizing the mean-square-error of a straight line fit is replaced by
a new line segment. The program is then invoked recursively on the new
set of line segments, using a larger replacement radius, resulting in ever
smaller sets of increasingly longer lines. A final set of between one and two
hundred lines is produced by filtering on length and contrast.

In a second preliminary step, the optical flow field is computed using the
method developed by Anandan (2] (Figure 4). Strictly speaking, Anandan’s
algorithm produces a displacement field, not a flow field. The intensity con-
slancy constraint exists implicitly as a sum-of-squared-diflerence measurc

within a Laplacian pyramid. Anandan’s algorithm uses knowledge of the

11
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direction of principle curvature of the sum-of-squared-difference surface to
enforce a smoothness constraint at each level of the Laplacian pyramid.
These design choices together comprise a working system that appears to
consistently yield reliable estimates of image displacements.

The predicted position for each line from the first frame is computed
by a least squares fit 1o the points comprising the image of that line under
the transformation defined by the optical flow field. All lines from the
second frame passing through a narrow rectangular region surrounding this
predicied position are retrieved (Figure 5). The size of the search region
is a paramecter of the system. Although currently a constant, it could
conceivably be coupled to the value of confidence measures associated with
the optical flow, such as those computed by Anandan’s algorithm. In this
way, the window size would be smaller in areas of high confidence and larger
in areas of low confidence.

A bipartite graph, henceforward called the time-link graph, is constructed.
Its arcs conncct line segments from the frame one token set, to all candi-
date matches retricved from the second frame (Figurc 6). The weight of
cach arc in the time-link graph is a measure of the discrepancy in position
between the predicted position of the frame one line segment and the po-

sition of the candidate match. Since the line seginents’ lengths are highly

12



Figure 5. The rectangular search regions computed for each line token by a least squares fit to the
tips of the displacement vectors. Lines from frame two that intersect the search region become candidate
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Figure 6. The time-link graph, where the arcs connect lines in frame one with their candidate matches



unstable (because of undergrouping errors) information about length is not
incorporated into the positional discrepancy metric. Instead, the measure
approximates the average distance between the two segments, independent
of their lengths (Figure 7). Ideally, one would use a measure similiar to that
employed by Lowe in his model matching system [15], which computes the
probability of the juxtaposition of two line segments being due to chance
alone, using knowledge of the distribution of background line segments.
By computing the connected-components of the time-link graph, the
global matching problem is conveniently divided into smaller, individually
tractable pieces which reflect the scope of potential interactions. For cach
connected-component, the bipartite cover minimizing the positional dis-
crepancy mctric is found. This is accomplished through a simple blind
search of the sub-graphs of each connected-component. Although Ullman
suggests solving the optimization problem through network relaxation, the
need for such an approach is climinated here because of the relatively small
size of each connected-component. Indeed, a connected-component often
contains only a single arc, in which case the match is uniquely determined.
This is directly due to the heuristic use of the optical flow field. The bipar-
tite cover reflects the final correspondences reported by the system (Figure

8).

13
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Figure 7. The positional discrepancy metric approximates the average distance between the candidate
match and the predicted position of the frame two line.

Figure 8. The minimal bipartite cover for each connected-component of the time-link graph. In this
example, a single arc has been removed.



This system has been used to process more than fifty different two-frame
matching problems drawn from six different multi-frame sequences. All the
sequences are composed of images of real scenes and contain more than one
hundred lines each. No special attention was paid to the magnitude of the
displacements between frames, and the system seems reasonably robust to
the problems posed by undergrouping errors. Encouraged by the quality of
the two-frame results, the system was run repeatedly on successive frames
of a multi-frame sequence, creating a directed acyclic graph, or dag, repre-
senting the splitling and merging of line segments over time. The results
of one such multi-frame experiment, involving several rotating objects, are
shown in Figures 9-12. Results from a second sequence, taken by a camera
mountéd on a mobile robot panning by a stairway, are shown in Figures
13-16. |

Unfortunately, the interpretation of such a representation is non-trivial.
For example, one can not tell from local information alone whether a par-
ticular split or merge in the dag is due to an undergrouping or overgrouping
failure. Although the minimal bipartite cover functions well when the set
of line segments in each frame is the same (except for fragmentation due to
undergrouping) it performs badly when wholly new line segments appear

or dissapcar. This can be caused by the initial filtering operation used to

14



Figure 10. The line tokens computed for the first frame. Line tokens which will be used to illustrate
the output of the matching process are displayed thick.



*gotif] pajdapes 10§ ssadoxd Surydpgeur ayy jo gndyno Ay, ‘g1 By

‘[[eq 12208 23} pue Xoq 3y} jo uoijejol
al[j ajop ‘aduanbas ay) jo surelj puodds pue JsIy 1) IoJ pamduxoa PIRY zuauxaa'e[dsq) ayy, "11 2an3i

- — W T e~

NN DY
\\\ b S P P e PP~
Y --~";/k;;//”’/-*\\
N .o/ S S e
. r//////////'..,._:
..rf ff////‘_\
o ffff//f . C
EO | t“l‘ll,\\\
\I{% ‘%%\‘]‘\ AN
! v
1 1 f‘\\\\\ :l\
R %\\“'\\\\\\-,:\
\\l\\ i\\\\\'\\\\,/‘\
_,_\.\‘\\\\\\\\\\\'\\ / \\
.,ﬁ,f,,1Q§§§\\\\\\\\g o
o AR
f,,///‘//‘/u—-\ D BN
///////‘,,-_..:\\'\\\\-\x. - s
/// /‘/0’ '''' o .
/j////f\ L T S S R S T v
\K(:l. - . - ey
\ ..e_ P L I L e . P
\h\‘\‘_‘“/\‘/n.n—g-‘.,s\\“//



Figure 13.

Figure 14. The line tokens computed for the first frame. Line tokens which will be used to illustrate
the output of the matching process are displayed thick.
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Figure 15. The displacement field computed for the first and second frame of the pan sequence.

Figure 16. The output of the matching process for selected lines.



reduce the number of line segments in each frame.

2.4 P.O. In Parameter Space

As mentioned before, overgrouping occurs when, through chance, iwo to-
kens are juxtaposed in such a way as to satisfy the requirements for group-
ing. For example, two coplanar line segments, will appear colinear when
viewed from any point in the plane in which they both lie (i.e. the degen-
erale view plane). Such a pair of segments is likely to satisfy the grouping
requirements in an algorithm such as Boldt’s, and will be grouped as a
single line segment; See Figures 17 and 18. The probability of a moving
sensor passing through the degenerate view plane for some pair of lines is
relatively high, especially in a man made environment, due to the plethora
of horizontal and vertical lines. However, if we choose to describe cach lirne
as a point in the p — @ parameter space, and examine the set of such points
through time, we will find two distinct trajectories that intersect during the
degenerate view. The appropriate solution seems to be to divide the set of
points in parameter space into distinct trajectories corresponding to sepa-
rate physical entities. This is a perceptual organization problem, and the
space to be organized is defined by the parameters of the token. For point

tokens, the parameter space happens to.be thec image plane, but for line
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Figure 17. The fifteenth frame of a multiframe sequence depicting a degenerate view of line segments
on the staircase and doorway. The line segments and the camera are coplanar in three space.

Figure 18. The overgrouping error resulting from the accidental satisfaction of the grouping criteria
for Boldt’s algorithm.



segments, the most suitable parameters might be p and 8, which are stable
even when undergrouping errors make the determination of the segment’s
endpoints impossible. Perceptual organization of line token trajectories in
p -8 --1space has not yet been fully explored. However, by extending the
“perceptual radius” to a larger number of frames, we hope to take advan-
tage of good continuity, which will permit matching in spite of single frame

grouping errors.

3 Depth From Looming Structure

‘The remainder of this paper describes a representative application, in which
the line token matches are used to recover depth to environmental surfaces.
Perspective geometry tells us that the optical flow which confronts an
organism moving through its environment is purely a function of the mo-
tion of the organism and the distance to surfaces in the environment. In
principle, precise knowledge of the nature of the motion would allow its
effccts to be subtracted, and the distance to environmental surfaces to be
computed. In this way, the organism establishes a relationship with its
cnvironment [8]. Conveniently, the motion of the organism itself, or the
cgomolion, can, in principal, he computed from the optical flow.

The problem of computing the parameters of the cgomolion is vastly

16



simplified when it is known, a priori, thal the motion is purely transla-
tional. For the case of pure translational motion, knowledge of the position
of the focus of ezpansion, or FOE, provides two of three translation param-
eters, the third being velocity in the direction of gaze. There have been
several attempts o use this assumption for computing distance to environ-
mental surfaces [14,5]. Unfortunately, although this assumption is sound
in theory, even a very small deviation from pure translational motion (in
the form of rotation) results in significant errors in the determination of
the position of the FOE (Sce [7]). This renders techniques which rely on
accurate knowledge of the position of the FOE effectively useless.

Although there has been some success in computing distance to envi-
ronmental surfaces assuming completely general motion [1,7], depth valucs
computed in this manner are, likewise, only as accurate as the estimates
of the egomotion parameters. The goal of computing distance to cnvi-
ronmental surfaces without full and accurate knowledge of the egomotion
parameters remains attractive.

In this section, we derive equations illustrating how motion in depth
manifests itself in the projected lengths and areas of environmentai surfaces
whose extent in depth is small relative to their distance from the camera.

We then present results of an experiment with an image sequence from the

17



mobile robot domain to demonstrate the potential accuracy of the method.

3.1 The Time Adjacency Relation

Perspective projection can be approximated by a scaled orthographic pro-
jection when two conditions are met [23]. First, the depth to the centroid
of the environmental structure in question must be large wit’ respect to
the focal length of the camcra. Second, the total extent in depth of the
structure must be small compared to the depth of its centroid. We call an
environmental structure satlis{ying these two requirements a shallow struc-
ture. We assume that for shallow structures, scaled orthographic projection
and perspective projection are equivalent. Assuming that environmental
structure, of length L, satisfies the shallow structure requirement and lies

at a distance, z, from the image plane, then its projected length, lp will be

o= 22 (1)

where f is the focal length of the camera.

If the imaging device is translating into the environment with velocity,

T, then the component of the velocity in the direction of gaze, T;, 1s
T,=T-%=|T|cos8 (2)
where, @ 1s the angle between the direction of gaze and the FOE. Thus,

18



knowledge of the position of the FOE is required only to compute the
component of T in the direction of gaze. Since T is proportional to cos ¥,
and since cos @ is essentially equal to one when the FOE and the direction
of gaze are close (which is normally the case), errors of several degrees in
the determination of the position of the FOE can be tolerated. After tiine

i, the projected length {; will be

From this, we see that the ratio, L*ll is

l z—-T.t
L= @
Solving for z, we get
Tt

This is essentially the time adjacency relation,

Z
A (6)

where [y and [; are not the distances from the I'OE of a point at {wo diflerent
times, but are rather the lengths of the projcction of some environmental

structure. We can thus view the time adjacency relation of [14] as a special

19



case of the looming structure relation; the FOE and the point in motion
define the projection of an imaginary line segment.

We can generalize the looming structure relation for projected lengths
to projected areas. Assuming that environmental structure, with area A,
satisfies the shallow structure requirement and lies at distance, z, from the

image plane, then its projected area, ag will be

Qg = — - (7)

After time, ¢ the projected area will be

__Ar
“~ G-t “

As with lengths, we compute the ratio, o> and see that it is

- T,t)? .
@ _ (z-T.t)? (9)
a 22
Solving for z, we get
T.t :
z= - (10)

3.2 Experimental Results

The sequences used to demonstrate these ideas were taken with a camera

mounted on a mobile robot and have rotational components large enough

. 20



lo frustrate an algorithm dependent on accurate knowledge of the posi-
tion of the FOE (Figure 19). The line matching results are satisfactory,
although the lengths of the line segments produced by Boldt’s algorithm
[6] (or any grouping algorithm) are often unreliable. Fortunately, the ori-
entation and lateral placAement of the lines is accurate, and we exploited
this fact to define virtual lines whose length could be accurately measured
over the course of the motion sequence. The endpoints of the virtual lines
are defined by the intersections of two pairs of line segments. Knowledge of
the correspondence through time of the line segments defining the virtual
lines, provides information about the changing parameters of the virtual
lines themselves. Just as virtual lines can be defined by two pairs of phys-
ical lines, virtual regions can be defined with three or more pairs (Figure
20). For these experiments, virtual lines and regions satisfying the shallow
structure requirement were defined manually, through a graphic user inter-
face. It is our goal to eventually automate this process by exploiting general
organizational principles such as endpoint proximity, convexity, symmetry,
etc.

Although the virtual lines and regions used in this experiment are either
intensity discontinuities or are bounded by them, this is not a requirement.

The virtual lines and regions used appear with labels in Figures 21 and 22.
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Figure 19. The first frame of a motion sequence taken by a mobile robot moving down a hallway.
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Figure 20. Defining virtual lines and virtual regions with pairs of line segments.



Table 1.

Virtual Line | Depth (ft.) | Ground Truth (ft.) | % Error | t
Cone 1 19.1 20.0 4.5 1
Cone 2 23.6 25.0 5.6 3
Cone 3 28.3 35.0 19.1 1
Cone 4 42.1 40.0 5.3 7
Can 1 29.0 30.0 3.3 7
Wall 1 27.7 27.1 2.2 2
Wall 2 18.8 48.7 0.2 (f

Doorway 88.8 87.1 2.0 7

/

Wall 1

w1 AN

Al EN

Figure 21. The line segments used to define virtual lines.




Table 2.

Virtual Region | Depth (ft.) | Ground Truth (ft.) | % Error | t
Cone 1 20.1 20.0 05 |1
Cone 2 25.8 25.0 3.2 3
Cone 3 35.5 35,0 - 14 1
Cone 4 40.0 40.0 0.0 7

/

D
Vi

Figure 22. The line segments used to define virtual regions.



To increase accuracy, each depth value was computed over the largest in-
terval that all line segments defining the virtual line or region were tracked,
that is to say, until one line exited the image or failed to have an acceptable
match.

Knowledge of the position of the FOE improves the accuracy of depth
estimates but is not critical. For this experiment, the position of the FOE
was estimated by hand, although algorithms exist which are at least as
accurate [14]. The robot moved a distance of 1.95 feet between frames.
Knowing the position of the FOE allowed us to estimate T}, the component
of the robot’s motion in the direction of gaze, as 1.91 feet. This results in
less than a 3% increase in accuracy over simply a.séuming that the FOE
and the direction of gaze are identical. The depths to the virtual lines are
shown in Table 1, along with the ground truths, percent errors and the
number of frames contributing to the depth estimate. Table 2 displays the
same information for the virtual regions.

The looming method was tested on a second sequence taken by the mo-
bile robot (Figure 23). The aggregate structures used are slightly different
than those employed in the hallway sequence. Figure 24 shows several four
point configurations which form virtual regions whose changing arca can

be mcasured. The depths are displayed in Table 3. Figure 25 shows sev-
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Figure 23. The first frame of a motion sequence taken by a mobile robot moving towards a stairway.
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Figure 24. Four point configurations used to define virtual regions, whose changing area can be
measured.



eral pairs of parallel lines, or bars, whose changing width can be measured.
The depths are displayed in Table 4. Since many of the structures are not
parallel to the image plane, the computed depths and ground truths are
approximate, and interpretation of the results is more subjective than in

the case of the hallway sequence.

4 Conclusion

An optical flow field is a vector function of the image plane. It is a very
simple characterization of the changing intensity function that results when
a dynamic scene is imaged. Compared to token matching, it is a relatively
well developed paradigm and several different algc;rithms exist for comput-
ing it. The first part of this paper explores the possibility of translating
optical flow into token matches, creating a more abstract representation of
motion based on a directed acyclic graph. The nodes of this graph are to-
kens corresponding to spatial structure and the arcs reflect correspondence
between frames. In addition to the spatial displacement of the token, this
representation makes the changing values of the token’s parameters explicit.
The approach is demonstrated by a working implementation which uses line
tokens. Finally, it is proposea that the best path to pursue in future work

is perceptual organization in the parameter space of the token. Hopefully,
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Table 3.

“ Virtual Region | Depth (ft.) Ground Truth (ft.) % Brror i.—“
Air Cond 23 23 0 1
" Doorway | 42 | . B 2 |6
Table 4.

Bar | Depth (ft.) Ground Truth (ft.) | % Error | ¢t
WirGondil™ 2 "7 W | 5 11
AirCond 2| 21 Ty 7 10

Stair 1 27 25 8 6
Stair 2 29 29 0 6
Doorway 1 44 43 2 6
Doorway 2 47 43 10 6

Doorway 1

Donrway 2

o
—

Figure 25. Pairs of parallel lines, or bars, whose changing width can be measured.



this will provide increased reliability in the face of single frame grouping
errors.

Finally, as an example application, we used the token matches gener-
ated with the line matching algorithm to demonstrate that depth to envi-
ronmental surfaces can often be computed from a motion sequence without
first complctely determining the egomotion parameters. Depth information
manifests itself not only in image plane velocities, but also in the chang-
ing lengths and areas of structural descriptors. A simple formulation for
the special casc of environmental structure whose extent in depth is small
compared to its distance from the camera has been derived. The potential
accuracy and utility of the "looming” method has been demonstrated in

experiments with image scquences from the mobile robot domain.
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