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Abstract

Many problems in real-time systems can be modeled by multiple server queues
serving customers with deadlines. If a task is not completed within a certain time
interval of its arrival in such a system, it is useless and need not be served. It is
therefore desirable to schedule the customers such that the fraction of customers
served within their respective deadlines is maximized. For this measure of perfor-
mance it is shown that the shortest time to extinction (STE) policy is optimal for
a class of continuous and discrete time nonpreemptive G/M/c queﬁes that do not
allow unforced idle times for the case that customers must either begin service by
their deadline or complete service by their deadline. When unforced idle times are
allowed, the best policies belong to the class of shortest time to extinction with
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inserted idle time (STEI) policies. This result is shown to be true for the G/G/c
queue in the case that deadlines are to the beginning of service and the G/M/c
queue for the case that deadlines are to the end of service. Here an STEI policy re-
quires that the customer closest to his deadline be scheduled whenever a customer
is scheduled. An STEI policy also has the choice of inserting idle times while the
queue is nonempty. We is also show that STE is optimal for the continuous and
discrete time preemptive G/M/c queue where deadlines are to the end of service.
This last result for the preemptive G/M/c queue is generalized to a queue in which
the servers are allowed to take vacations.



1 Introduction

Increasing interest has been shown recently on the design and analysis of real-time
multiprocessor systems. The workloads to these systems consist of customers that
have real-time constraints, i.e., customers must complete or enter service by specified
deadlines. For some systems it is unacceptable for any task to miss its deadline. In
these systems task service demands are usually well understood and a substantial lit-
erature has focussed on the development and evaluation of scheduling policies for these
workloads, {10,11]. Other workloads consist of tasks for which it is not critical that all
tasks meet their constraints. Usually, the service requirements and the arrival patterns
are not as well understood and the objective is to design policies that will minimize
the fraction of tasks that miss their deadlines. The purpose of this paper is to study
optimal policies for this second class of workloads.

In this paper we consider as our model for a multiprocessor, a multiple server queue
that serves customers with deadlines. We wish to determine. the class of policies that
maximizes the fraction of customers which successfully complete service, i.e., do not
miss their deadlines. We consider two classes of workloads, 1) those workloads consist-
ing of customers that must begin service by their deadline and 2) those workloads in
which customers must complete service by their deadline. For the first class of work-
loads we obtain the following results for G/GI/c queues that do not allow preemptions.
We show that for any arbitrary policy, there exists a policy from the class of shortest
time to extinction with unforced idle times (STEI) policies. If an optimal policy does
exist, then it must be an STEI policy. Here an STEI policy is one that, whenever the
queue is not empty, may choose to schedule either no customer or the customer closest
to its deadline. When we restrict ourselves to the class of policies that do not allow
the processor to remain idle when there are customers in the queue, then the shortest
time to extinction (STE) policy is optimal for the G/M/c queue. Here the STE policy
schedules the customer closest to its deadline.

For the second class of systems, where the deadlines are to the e'nd of service, we have
results for the class of preemptive policies as well as non-preemptive policies. For the
first class of policies we show that STE is the optimum policy for the G/M/c queue.
For the class of non-preemptive policies, the best policies belong to the class of STEI
policies for the G/M/c queue. When we restrict ourselve to non-idling non-preemptive
policies then STE is the optimal policy for the G/M/c queue. We extend the optimality

results for the preemptive G/M/c queue where deadlines are to the end of service to



queues where servers take vacations.

All of the above results are shown to hold for both continuous time and discrete time
queues. These latter results are particularly useful in the context of communication
networks where discrete time queues are standard models for statistical multiplexers
and concentrators, [17].

The shortest time to extinction (STE) policy, which will be described in Section 2,

is very similar to the earliest due date (EDD) scheduling policy proposed by Jackson
[9). Consider a set of n tasks {T;,1 < i < n} with the corresponding n due dates

{di;;,1 <4 < n}. Let the finishing times under schedule S be f;(S). Then the lateness

of T is defined as f;(S) — d; and the tardiness is defined as maz{0, f;(S) — d;}. Jackson
showed that the maximum lateness and maximum tardiness are minimized by sequenc-

ing the tasks in the order of non-decreasing due dates. As we shall see in Section 3,

STE scheduling differs from EDD scheduling in that it never schedules tasks which are

already past their due dates. Note that the tasks and their due dates are known a

priori under Jackson’s model. Using the same a priori inforrﬁation, Moore [12] devised

an algorithm to minimize the number of late tasks. Pinedo [16] considered the problem

of minimizing the number of late jobs (customers) when the processing times are ex-

ponentially distributed and the deadlines are randomly distributed. He assumed that

no new jobs are allowed into the system once the processing begins. Su and Sevcik [18]

consider the problem of scheduling customers with deadlines in a queue. They showed

that EDD scheduling minimized performance parameters such as expected lateness and

tardiness.

Pierskalla and Roach [15] showed that a policy similar to the STE policy is an optimal
issuing policy under the conditions which prevail in blood banks. Here, the additions to
the blood bank (“customer arrivals”) are random as is the demand (“customer service
times”) and the issuing policy should be such that the amount of blood which becomes
unusable as a result of being stored too long is minimized. More recently, while con-
sidering scheduling problems which arise in the area of real time systems, Dertouzos
[6] has shown that for any arbitrary set of arrivals with arbitrary processing times and
deadlines the EDD policy is optimal if preemptions are allowed. Here a (real time)
scheduling policy is considered optimal if it produces a feasible schedule whenever a
clairvoyant scheduling policy (which is aware of future job arrivals) can do so. Interest-
ingly, the EDD policy is under study by GTE, Inc., which is considering this policy for

its integrated packet-switched networks [21]. In queueing theory literature, queues with



impatient customers have been usually analyzed assuming a FCFS scheduling policy
[1,4,7).

In [14], we have considered the problem of a single server queue with impatient cus-
tomers under the assumption that deadlines are until customers enter service. We show
that the STE policy is.optimal for a large class of single server queues. The shortest
time to extinction with unforced idle times (STEI) class of policies are shown to be
optimal for a larger class of queues. Similar results for the continuous time single server
queue when the deadlines are to the end of service can be found in [13,2]. The results
found in this paper extend the results in [13,2] in several ways. First, our results are for

multiple server queues. Last, neither of the above references consider queues in which
servers take vacations.

This paper is organized as follows. Section 2 contains a model of the system under
study along with definitions of the different scheduling policies of interest to us. The
main results of the paper are contained in sections 3, 4, and 5. Section 3 contains the
results for systems with deadlines to the beginning of service,‘section 4 contains results
for systems with deadlines to the end of service that allow preemptions and section 5
contains results for systems with deadlines to the end of service without preemptions.
In Section 6, we conclude the paper by summarizing our results.

2 Definitions and Notation

We consider three different multiple server queues,

¢ Nonpreemptive queues with deadlines to the beginning of service,

¢ Nonpreemptive queues with deadlines to the end of service where a customer that
misses its deadline while in service is aborted,

e Preemptive queues with deadlines to the end of service.

In all of these systems let T} denote the arrival time of the i-th customer. Let 4; denote
the time between the arrivals of the (i — 1)-th and i-th customers. We assume that
A; is a random variable with arbitrary distribution. Let E; denote the extinction time
of the i-th customer (i.e., the time by which it must be served). Here E; = T; + D;
where D; is a random variable with a general distribution. We shall refer to D; as the
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real time constraint or the relative deadline for customer 7. Last, let {Bi}i<i be an

independent and identically distributed (i.i.d.) sequence of random variables with a

general distribution which will be used to assign service times to customers.

We shall use the notation Ay = {4;}1<i<nv, Dy = {Dihici<n, Bn = {Bi}i<i<n, and
Sy = (An,Dy,By),1 < N. In addition, whenever we focus on a specific sample
realization of the above r.v.’s, we shall use lowercase notation (i.e., a; for 4;, etc .. .-
Furthermore, we shall let @ = {a;}1<i, b = {bi}1<i, d = {dihi<i, an = {a:}<ich, by =
{bi}i<i<n, and dy = {di}1<i<n. Last, let s = (a,d,b) and sy = (an,dn,by), N =
1,.... These last two quantities will be referred to as an input sample and finite input
sample respectively.

At this point in the paper we will not specify how service times from the sequence {B;}
are assigned to customers. The assignment rule will depend on which system we are
interested in and what property we wish to prove with regard to that system. We use
the notation A/B/C + D to denote a queue with customer deadlines where A, B and
C has the same meaning as in Kendall’s notation while D gives the distribution of the
relative deadlines.

We make the following additional assumptions
A1l {B;|1 <1} is independent of {4;} and {D;},

A2 lim, ,o P[T7, 4: <t]=0forany 0 <t < oo.

The second assumption is not particularly restrictive. For example, it is valid for a

Poisson arrival process.

Lemma 1 If arrivals are described by a Poisson process with intensity Athenlim,_o P[T, 4; <
t] =0 for any 0 <t < co.

Proof. We perform the following calculation.

=1 k=n



It is possible to bound the sum on the right hand side by an expression of the form

Can™ T2, aF for n > ny where no is chosen so that (At)/ne < a < 1. Thus we have

. N . . n—ng - k
7}1_'r1°1°nP[i§; A;<t] < limnCa l;)a ,

= lim nCa™ ™ /(1 — a),

n—oo

= 0.

QED

Similar arguments can be used to extend the above result in a number of different
directions. First, renewal processes with interarrival times given by a phase type dis-
tribution also satisfy A2. Second, customers may arrive in batches so long as the mean
batch size is finite. Third, many non-renewal processes whose structure can be de-
scribed by a discrete state Markov process can also be shown to exhibit this property.
An example of such a process is the Markov- modulated Poisson process [8].

Let 7 be a policy that determines what customer in the queue is to be executed (if
any) whenever the server is free. This policy makes its decision based on the customers.
that are eligible for service as well as on the past history of the system. We wish to
choose 7 so that we maximize the fraction of customers beginning service before their
respective extinction times. Consider a system in which exactly N customers arrive for
service. We define Vy(7) to be the number of customers served for this system. We are
interested in the fraction, Vy(w) = E[Vy(7)]/N, of customers served in this system.

We define the fraction of customers served in the system as N — oo (under policy )
to be

V(r) = liArrnianN('ir).
Finally, let V = sup, V(=). A policy 7~ is optimalif V(7*) = V.

We are also interested in the fraction of customers served by time ¢. Let Vi(7) denote

the number of customers that make their deadlines by time t. Let V() = E[Vi(x)).

We find it easier to work with V y(). Fortunately, all of the results that we prove for

V n(m) also hold for V(r) as a consequence of assumption A2.

A customer is eligible under policy 7 at time ? if it has neither exceeded its deadline
nor ended service. Consequently, the set of customers of interest at any time ¢ will
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be denoted by Cx(t) = {cj,,cj,, - ,¢j.} consisting of all the eligible customers at time
t,7: 21, 1 <1 < n. Here ¢; denotes the i-th customer to arrive to the system. The set
of extinction times of these customers will be denoted by E.(t).

Consider the actions that policy 7 can take at time ¢. If all the servers are busy,
then 7 takes no action if preemptions are not allowed. If any server is idle at time
t or if preemptions are allowed, then 7 can either schedule no customer or schedule
customers from C,(t). Policy 7 is allowed to choose one of these actions according to
some distribution that depends on w,C,(t) and the previous history H; (to be defined
later in this section). We define p;(m,t, H,) to be the probability that = schedules
customer ¢; € Cr(t),1 <t < n on an idle server and po(m,t, H;) to be the probability
that m chooses to schedule no customer.

If m chooses not to schedule a customer at time t and C.(t) # 0, then it delays making a
new scheduling decision by a random amount of time = with some arbitrary distribution
function F;(z|H,) (7 takes on discrete values in the case of a discrete time queue). The
policy does not perform a scheduling decision until either 7 time units elapse or an
arrival occurs. Without loss of generality, we may impose one last constraint on ,
namely, 7 is prohibited from scheduling two successive idle times on the same server

when the queue is nonempty unless they are separated by the arrival of one or more
customers.

In the case that = is allowed to preempt customers, we introduce some additional
parameters. If 7w decides to schedule a customer at time ¢, then g(=,t,H,) is the
probability that the customer will not be preempted in the absence of customer arrivals
and service completions. The customer is scheduled for preemption with probability
1—gq(m,t, H,) and is provided with 7 units of service where 7 has cumulative distribution
function H,(z|H,). The customer is preempted after 7 units of time provided it has
not completed by that time and there have been no arrivals or service completions
of other customers. If an arrival or a service completion occurs, then 7 is allowed to
reschedule the customer if it so desires.

The history of the system up to time ¢{ may be defined by H, = (a:,d:, 7, fi, €0, 1)
where a, is an ordered set of arrival times of all customers that arrive prior to ¢,d, is an
ordered set of relative deadlines corresponding to the customers that arrive prior to t, 7,
fi, and e, are ordered sets containing the times of all scheduling decisions prior to time ¢,
the identities of the customers and the servers to which they were scheduled respectively.

In addition, u, is an ordered set of the service times for customers completed prior to



time t.

We now define the policies that we will study in this paper. Let ¢, denote the time of

the k* scheduling decision since time ¢ = 0.

Definition 1 Policy  is the shortest time to extinction (STE) policy if at time ¢}, (1 <
k), it always schedules the eligible customer with the smallest deadline on any one of the
available servers. In addition, the server is always busy as long as eligible customers

are available which have not yet been served, i.e po(m,t) = 0 whenever the server is
available and C,(t) # ¢.

An example of how the STE policy schedules a given set of arrivals is shown in Fig.
1(a) for a single server system when deadlines are to beginning of service.

Definition 2 Unforced idle times are time intervals when-any server is idle while

eligible customers are available.

Definition 8 Policy 7 is a shortest time to eztinction with unforced idle times (STEI)
policy if, at time t}, it schedules the eligible customer with the smallest deadline on
any one of the available servers. In other words, po(m, ;) > 0,p;(m,t) > 0 if j =

ATGMIN; 4. iec, (i) Ex(t}) and p;(m,t,) = 0 otherwise.

The STE policy, defined earlier, is an example of a STEI policy. Fig.1(b) shows how
an STEI policy might schedule the same set of arrivals as shown in Fig. 1(a). Note
that the STEI policy schedules all the arrivals while the STE policy leads to the loss
of one arrival in this particular case. Fig. 1(c) illustrates how a FCFS (first-come,

first-served) policy schedules the arrivals.

3 The Nonpreemptive Queue with Deadlines to Be-
ginning of Service

In this section we show that there is no class of policies better than the STEI policies for
the non-preemptive G/G/c+G queue when the deadline is to the beginning of service.
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We also show that STE is the best policy out of the class of non-idling policies for this
class of systems when service times are restricted to be independent and identically
distributed exponential random variables with parameter p (geometrically distributed
in the case of a discrete time queue). In the course of proving these results, we shall
compare sets of extinction times and show that one set dominates another set. Con-
sequently, the first step is to define dominance and establish some properties that are
satisfied by this relation.

Consider two sets of nonnegative real numbers R = {z,z,,---,zo} and S = {t1,¥%2, " s Ym }
each ordered so that z; > z;1,,t=1,---nand y; > yiy1,2=1,---m.

Definition 4 We say that R dominates S (R > S)ifn >mandz; > y;,1=1,2,---m.
We define the following three operations
o Large(R,k) = {z1,22, - ,zx}, 0<k <n.

o Small(R,k) = {Zn—ks1," " Z0n}, 0< k< n.

o Shift(R,z) = {z; —z | z; > z}.

The following lemma gives conditions under which dominance is preserved when set
operations, the Large operation, and the Shift operation are performed on R and S.

Lemma 2 If R > S, then:
1. R+ {z} > S + {z}, for z > 0,
2. R—{z} > S, where = minic;<x{z;} and n > m,
3. R> S —{y}, wherey € S,

4. R—{z} > S —{y}, wherez € R, y€ S, and z < v,

5. Assume that R = {1, ,z,} where z; > 2,41, 1 > i <n and S = {y1," -+, Ym}
where y; > yip, 1 21 <m. Then R — {z;} = S — {y;} for k > 7,

6. Shift(R,z) = Shift(S,z).
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7. Large(R,m) > S.

Proof: The proof of 1, 2, 3, and 6 may be found in [14]. Properties 4, 5 and 7 follow

from the operations performed on R and S and the definition of “>".
QED

We first show that any non-STEI policy #* can be emulated by some STEI policy 7 in
the sense that Vy(x) = Vy(n*) for all N and V,(7) = V(=) for all ¢t. Consequently,
the STEI class of policies contains the best policies, i.e., those with the highest per-

formance. Thus the designer of a real-time system need only consider this class of
policies.

Theorem 1 For any policy w, there exists an STEI policy n* such that Vy(7*) =
Va(x), 0 < N, V(7)) = V(n), and V(7~) = Vi(x), 0 < t for the G/G/c + G queue
without preemplions and with deadline to beginning of service.

Proof: Consider any policy 7 not in the class of STEI policies We shall construct an
STEI policy n* that exhibits the same performance as that of 7. Policy =~ is defined
as follows:

1. 7 maintains an ordered list of customers at time t,.A(t) that would be eligible

under 7 at that time when provided the same input sample, i.e., A(t) = C,(t).

2. 7" maintains a history H] identical to the history that = would produce when

given the same input sample, i.e., H] = H;.
3. 7 makes scheduling decisions according to the following rules

(a) At time ¢, it schedules the customer closest to its deadline with probability
1 — po(m, ¢, HY).

(b) At time ¢, it schedules no customer with probability po(w,t, H;).

4. = modifies A(2) as follows,

(a) customer ¢; is removed from A(t) either 1) when its deadline expires, or 2)

with probability p;(w,t, H]) at a time ¢ when 7~ schedules a customer,

(b) customer c¢; is added to A(t) when it arrives to the system.
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5. 7 modifies H| as follows,

(a) at the time of an arrival the arrival time and relative deadline the customer
are added to a; and d;.

(b) at the time of a departure, the service time of the customer is added to d;.

(c) at the time that 7~ assigns a customer to service, the identity of the customer
removed from A(t) (see 4.(a) above) and the time of the assignment are

added to r; and e, respectively.

We focus on the behavior of 7 and 7~ given § = s. Here service times are assigned
service times in the order that they are scheduled, i.e., the i-th customer scheduled is
given b; as its service time.

Policy 7 exhibits the same behavior as 7 (i.e., E[Vy(n")|S = s] = E[Vy(n)|S =
s}, N =1,2,---) provided that A(t) and C,(t) exhibit the same behavior. This latter

statement is true if E,.(t) > E,(¢) for all s. We prove this last dominance relation by
induction.

Consider policy 7, policy 7 as defined above, and a single input sample s. We need
only focus on the points of time that either a customer arrives, a customer departs,
a customer misses a deadline, or a customer is scheduled into service in the systems
operating under 7 and 7. Let t, =0 <#; <--- < ¢; <t;41 < --- denote these times.

It is useful to distinguish among the following events:

& - Arrival of a customer at both systems.

&; - Service completion at one or both systems.

&

Loss of one or more customers at one or both systems due to missing of deadline.

&

Scheduling of a customer to service in one or both systems.

A more complete description of the history of both systems is given by the sequence of
event-time pairs (to,Uo),(tl, 01)y s (ti,0:),- -+, (tn,0n) where oo = &£ and 1; is the time
at which an event of type o; € {£,,£,,&;,£,} (1 < i < n) occurs. If two types of events
occur simultaneously, we represent them as separate events with identical event times.
In some cases the order of the events is determined by the mechanics of the system, i.e.,

scheduling a server immediately after a departure. Otherwise *(*(the order in which
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they are listed is immaterial. Because of the simultaneity of events we will abuse the
notation E.(t;) and E,(¢) in the case that ¢; = t;1; or ; = t;_,. If t; = tit1, then
E.(t;) will denote the set of waiting customers immediately after processing event o;

but before processing event o;,;. Similarly, E.(t;) denotes the state of the queue prior
to processing o; but after processing event o;_;.

In addition to observing the behavior of E,(t) and E..(t), we also focus on the number
of customers that have received some or all of their service and the remaining service
times of customers in service. Let I.(t) and I;(t) denote the first of these quantities
and R.(t) = {r}(t),--,7> ()} and R,.(t) = {rl.(t), - -, 7" ) (#)} denote the latter
quantities where n,(t) and n,-(t) are the number of busy servers at time ¢ under 7 and
7™ respectively. In addition to showing E,.(t) > E.(t) we will also show I(t) = I..(t)
and R.(t) = R,-(t) for t > 0. ! We will abuse the notation R.(%;), I(t), R({), and
I.(t7) as well. Here, the primary purpose of I, and I,. is to identify the next service
time to assign to a customer.

First observe that whenever E..(t;) = E.(t;), I.-(t;) = I.(t;), Rx-(3:) = Rx(t;), and
tiv1 > i, then E,r-(i) - Eﬂ-(t), I,.,--(t) = I,r(t), R,,-(t) = R.,r(t), for t; <t< tir- The
first and third of these relations are a consequence of property 5 in Lemma 2. The
second holds true since no new customer begins service in the interval (t;,¢;41). Thus
we need only show that E,.(t) > E.(t), Ir-(t) = I(t), R (t) = R.(t) for t = to,%1,-- -
This we do by induction.

Basis Step: As both systems are initially in the same state at ¢ = {; = 0, the relations
hold.

Inductive step: Let us assume that the hypothesis is true for tx, £ =0,1,.--,7. We
now show that it is also holds for ¢;;;. There are several cases according to the type of
event that occurs at time 2;44.

Case 1 (041 = & ): First, note that E..(t7,,) > E(t7,,). Application of property 1
in Lemma 2 then yields E,-(t;4+1) > Ex(ti+1). Neither the number of customers that

have begun service nor the remaining service times are affected in this case.

Case 2 (0iy1 = &): If a service completion occurs under 7, then a service comple-
tion occurs under 7~ at the same time. Application of property 5 of Lemma 2 yields

E,.(tiy1) > Ex(tis1). Similarly, application of the same property along with the re-

1More correctly, we prove these relations for ¢ < limy, . t,,. This last quantity may be finite.
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moval of the remaining service time corresponding to the completed customer yields
er‘(ti+1) = Rr(ti+l)- La,st, clearly I.,r- (t,’+1) = I-,r(t;_*.-l).

Case 3 (0i41 = &3): There are three subcases according to whether a customer is lost un-
der 77, m, or both policies. In all of these subcases the quantities R.(t), Rx-(t), Ix(t),
and I,.(t) are unaffected by losses so that Ry-(t;41) = Rr(ti41) and Ipe(tig1) = Ln(tis1)-
Consider the case where a customer is lost under 7~ but not w. For this to happen and
the inductive hypothesis to hold, E,.(t;;,;) must contain at least one more customer
than E(t;,,). Consequently, property 2 of Lemma 2 can be applied to show that
Er-(tiy1) = Ex(titr).

If 0;41 = &3 corresponds to the loss of a customer under 7, then property 3 of Lemma
2 can be used to show E .(t;41) > Er(tiy1). Similarly, property 4 of Lemma 2 can be
used in the case of loss of a customer under both 7~ and 7 to show Er-(ti41) > Ex(ti41)-
Case { (0541 = &4): Since Eqn.(t,) > Ex(t;,,), policy 7" also schedules a customer
at the same time as m. Thus Er.(ti31) > Ex(tiy1) by property 4 of Lemma 5. Since
Ie- (1) = Ine(ti1)s I (tit1) = Iz(ti41) and the customer scheduled under each of these

policies are given the same service time, by, y,,). Consequently Rqy.(tis1) = Ry(tiy1).

This completes the inductive step. We have shown that E,;-(t) >~ E,(t) for 0 < t for
a sample path s. It follows that E[Vy(7)|S = s] = E[Vy(7~)|S ™= s|, and E[Vy(7)] =
E[Vn(7™)] for N =1,2,---. It also follows that Vy(7*) = V(7) for N =1,2,--- and
V(=) = V(n).

The argument that V(n~) = V() requires an additional calculation that accounts for
all sample paths s for which lim,_, ¢, < t. This is because the induction argument
does not cover such sample paths. Define £(t) = {s|limp—cotn > t} and T(¢) =
{s|limp—oo tn < t}. We write the expectation of V(r) as

Vi(r) = E[Vi(r)ls € Z(t)]P[s € Z(t)] + E[Vi(w)|s € T(t)] P[s € Z(1)],
= E[Vi(nr)|s € (1)} + E[W(vr)ls € f(t)]P[s € T(t)], Consequence of A2

< E[V(m)ls € Z(t)] + lim nP[Y ] 4; < 1},

=1

= E[V(n)|s € £(t)]. Consequence of A2

As a consequence of this calculation, we can ignore all sample paths belonging to ()

as they do not contribute to V(7). Thus we conclude that V(7~) = Vi(x), 0 < t.
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QED

We complete the section on multiple server queues with deadlines until the beginning
of service by proving that STE is the optimal policy out of the class of policies that
do not allow a server to remain idle when there are jobs to be served for the G/M/c
system. Before we prove this result we first discuss the method with which we will assign
service times to jobs. Let BY) = {B;;}ic1.. (1 < 7 < ¢) be ¢ mutually independent
sequences of i.i.d. exponential random variables with parameter yu. Let these sequences
be mutually independent. If a customer is assigned to the kth server at time ¢, then it
receives an amount of service equal to Y72, Byx — t where m = min{i|¢_, Bix > t}.
We emphasize that, due to the assumptions on the service times, the service time
received by this customer will be exponentially distributed and independent of other

events in the system. We redefine S and s to be S = (4,D,B® ... BE) and
s = (a,d,b®M, ... b))

Theorem 2 If w is any non-preemptive, non-idling policy, then VN(STE) > V n(7)
for N =1,.-., V(STE) > V(x), and V,(STE) > V=), 0 < t for the G/M/c+G

system.

Proof: Define R,(t) = (r((2),---,7{)(t)) where #{)(¢) = 1 if server j is busy under =
at time ¢ and 0 otherwise. We focus on the behavior of # and STE given S = s.

STE exhibits better performance than 7 provided

. ESTE(t) - Ew(t), for 0 <t,

L] RSTE(t) 2 R-,r(t), for 0 S t.

Here the latter inequality is defined componentwise. We prove these inequalities by
induction.

We need only focus on the points of time that either a customer arrives, a customer
departs, a customer misses a dcadline, or a customer is scheduled into service in the
systems operating under w and STE. Let t, = 0 < ¢, < --- < t; £ tiz1 < -+ denote

these times.

It is useful to distinguish among the following events:
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&1 - Arrival of a customer to both systems.

&, - Service completion at one or both systems.
&s - Loss of one or more customers at one or both systems due to missing of deadline.
&4 - Scheduling of a customer to service in one or both systems.

A more complete description of the history of both systems is given by the sequence
of event-time pairs (2o, 00),(t1,01), -, (t:;0%), -+, (tn,0n) where 0o = & and t; is the
time at which an event of type o; € {&,,&,,85,&} (1 <1 < n) occurs. If two types of
events occur simultaneously, we represent them as separate events with the identical
event times. In some cases the order of the events is determined by the mechanics of
the system, i.e., scheduling a server immediately after a departure. Otherwise the order
in which they are listed is immaterial.

We note as in Theorem 1 that if Esrg(t;) > Ex(t;), Rsre(t:) > R.(t), and t; < £,
then Esrp(t) > E.(t) and Rsrgp(t) > R (t) for t; <t <t

We proceed with our inductive argument.
Basis Step: The hypothesis is trivially true for t = .

Inductive step: Assume that Esre(te) = Ex(tx), Rsre(te) > Ra(t) for k < i. We

now show that the relations also hold for i 4+ 1. There are four cases according to the
event type.

Case 1 (041 = &): In this case neither R, nor Rgrg are affected. Furthermore,

EsrE(tiz1) > Er(ti41) as a consequence of property 1 of Lemma 2.

Case 2 (041 = &): In this case, neither E, nor Egrg are affected. The only way for
Rsre(tiz1) 2 Ra(tiyy) is if there is a server occupied under both STE and 7 at t7,
and a completion occurs only under STE. However, this is impossible under the rule
used to assign service times to jobs. Therefore Rsre(tiv1) > Ra(tis1)-

Case J (7;41 = £3): We have three subcases according to whether the customer misses
his deadline under m, STE, or both policies. This event does not affect R, or Rsrg.
The proof that Egrg(tiy) > E.(l;+1) in this case is identical to that provided in
theorem 1.

Case 4 (041 = &4): If there exists at least one zero element in Rsrg(ti,,1), say the jth

element, then it is also zero in R,(t;,). In this case, both policies schedule this server
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(unless E.(t,) = 0). Clearly Rsrg(tis1) > R, (t;+1) in this case. Property 2 or 4
from Lemma 2 guarantee Esrp(tis1) > Ex(tix1). In the case that all servers are busy
under STE, then again Rsrg(ti+1) > Rx(t:s1) and property 3 of Lemma 2 guarantees
Esre(tiv1) = Ex(tis).

This completes the inductive step. Since we have shown that Esrg(t) > E.(t) for
0 <t for any sample path s, it follows that E[Vy(STE)|S = s] > E[Vn(r)|S = s] and
E[VN(STE)] 2 E[Vy(w)] for N =1,2,---. 1t also follows that Vx(STE) > Vn(r) for
N=1,2,--- and V(STE) > V(n).

The argument that V,(STE) > V,(n), 0 < t is similar to that given at the end of
theorem 1. QED

Last, we state an analogous result for the discrete time G/M/c+G queue where service

times form an i.i.d. sequence of geometric r.v.’s.

Theorem 3 If w is any non-preemptive, non-idling policy, then Vy(STE) > V n(r)
for N =1,---, V(STE) > V(x), and V(STE) > V(7), 0 < t for the discrete time
G/M/c+G system.

Proof: The argument is identical to the one given for the previous theorem. We note
that an alternate induction argument can be based on each discrete time unit rather
than on events in order to show the dominance relation.

QED

4 Preemptive Systems with Deadline to End of Ser-
vice

In this section we show that STE is the best policy for the preemptive continuous
time and discrete time G/M/c+G queue when deadlines are to the end of service.
We conclude the section by generalizing this result to queues in which servers take
vacations. Proof s of these results necessitate the introduction of the notation X ,(t) =
(nx(t), E-(t)) where n.(t) is the number of customers successfully completed by time
t. We refer to this as the state of the system at time ¢ under policy 7. We introduce
the following notion of dominance between states.
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Definition 5 We say that X, (t) dominates X .,(t) (X, (t) = Xx(2)) iff

1. ng(t) 2 na,(t),

8. By, (t) > Small(Enr,(t), |EBny(8)] + nas(t) = 1y (1)).

Before we prove the main result of this section we describe some guidelines used to
assign customers to servers and service times to customers. First, we restrict ourselves
to policies that satisfy the following rules.

o If the number of customers being served at some point in time is ¢ < ¢, then the
first ¢ servers are busy.

o If servers : and j are occupied where 7z < 7, then the deadlines of the customers
assigned to these servers must be in non-decreasing order.

If policy 7 does not satisfy the above rules, we can always construct a policy == that
satisfles these rules so that Vy(w) = V() for all N, V(x) = V(7*), and V() =
V(") for all t. There also exists an STE policy that satisfies the above rules.

We now discuss the method by which we will assign service times to jobs. Divide B
into ¢+ 1 sequences, BY) = {B; ;}i=y..., j = 1,2, --,c+ 1. Consider the i-th customer.
Let m; denote the number of times it is scheduled. Let 5i1,8i25° " " Si;m! be the times at
which it is scheduled, ¢;1,4;,--- »¢i;m;—1 be the times at which it is preempted, k; the
identity of the server at which it completes, and m; = min{j| 37, > Simt}. If the i-th

customer misses its deadline, then k; = 0. The service time, X; of the i-th customer is

Xi — { zlzil_l(qi.l - si,l) + Z?:l Bl,k - si,m:d ki # 03 (1)

mi-1
21='1 (q:',l - si,l) + Bi,c.*.], k,’ = 0.

We claim that the service times reccived by customers according to this assignment
rule are i.i.d. exponential r.v.’s with parameter y.

Theorem 4 STE is the optimum preemptive policy for the G/M/c+G queue when the
deadlines are to the end of service, i.c., VN(STE) > Vy(x), N > 0, V(STE) > V(x),

18



Proof: The proof is similar to that of earlier theorems and consists of an inductive
argument on the times that the following types of events occur,

o & - arrival to both systems,
o & - completion of a job in either or both systems,

¢ & - job missing deadline under one or both policies,

Let (%0,00),(t1,01),- -+ be the sequence of times and events that occur at those times,
l.e., event o; occurs at time t; where o; € {&0,&1,E:}.

We will demonstrate that X srg(t) = X .(t) for every sample S = 5 and ¢ > 0 provided
that XSTE(O) > .X,r(O).

We define R,(t) to be an ordered set of deadlines associated with the customers in
service at time ¢ under policy 7. As described earlier, we lose no generality in assuming
that the deadlines are in nondecreasing order and that if the number of customers,
| BA(t)|, in service is less than ¢, the customers occupy the first |R,(t)| servers.

We note as in Theorem 1 that if X srg(t;) > X(t:), and ¢; < t;41, then Xsrg(t) =
.X--,r(t) fOI' ti S i< ti+1.

We proceed with our inductive argument.
Basis Step: The hypothesis is trivially true for ¢ = ¢,.

Inductive step: Assume that X sre(t;) = X,(t) for [ < i. We now show that it also
holds for 7 + 1. There are three cases according to the type of event.

Case 1 (0i+1 = &): In this case neither n, nor ngrp are affected. Property 1 of
Lemma 2 guarantees that X srp(tiy1) > XA(ti41).

Case 2 (0:41 = &1): There are three subcases according to whether the completion

is under m, STE, or both policies. If the completion is under = only, then it oc-
curs on server j where j > |Esrg(t;,)|. This implies that |E.(t7;,)] > |Esre(ti,)]
which further implies that nsre(tiy,) > n.(t7,). A simple calculation yields that
Xsre(tiv) = Xa(tisa).

If the completion is under STE only, then a simple calculation yields X srp(tis1) >
X(tisr)-
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If the completion is under both policies, then we have an additional two possiblities.

Let the completion occur from the j-th server. Let rg%E and r{Y) denote the dead-

lines associated with these customers. If rgj%E < 79| then property 4 of Lemma 2

ensures that X srg(tit1) > Xa(tivy). If r¥p > rld), then the ordering that we im-

posed on R, and Rsrg ensures that we can apply property 5 of Lemma 2 to show
X sre(tiv1) > Xa(tis1)-

Case 3 (0;41 = &;): Again there are three subcases according to whether the customer
misses his deadline under =, STE, or both policies. If under =, property 3 of Lemma 2
is applicable. If under STE, property 2 of Lemma 2 is applicable. Last, property 4 of
Lemma 2 is applicable when the losses occur under both policies. ‘

It follows that E[VN(STE)|S = s] > E[Vn(7)|S = s} and Vy(STE) > Vy(r) for
N =1,2,--- and V(STE) > V(n). The argument that V,(STE) > V() is similar
again to that given at the end of Theorem 1.

QED

A similar result also can be proven for the discrete time bulk arrival G/M/c+G queue.
Here the service time consists of an integer number of time units that is given by a
geometric r.v. This model is of particular use in data communications in the case that
the service time is always a single time unit. It forms the basis of most models of
statistical multiplexers.

Theorem 5 The STE policy is optimal for the discrete time G/M/c+G queue.

Proof: The proof is similar to the one given for Theorem 4 and is omitted here.
QED

Remark. In the case that customers require a single time unit of service, there is no
distinction between preemptive and non-preemptive systems. Furthermore, there is no
distinction between systems in which customers must meet their deadlines either by
the time service begins or by the time service completes.

We conclude this section with a generalization of Theorem 4 to include systems in which
servers take vacations. This is of interest for at least two reasons. First, processors in
any multiprocessor system are prone to failures. Second, systems in which servers take

vacations can be used to model real-time systems with two classes of customers. For
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example, one class of tasks may be unable to tolerate missed deadlines. The second
class of jobs may be able to tolerate some missed deadlines. If the tasks in the first class
are well understood (i.e., known service times, arrival times), they can be given higher
priority than the second class of tasks and scheduled independently of the second class.
The second class of tasks are like the customers that we have considered in our model
for which the object is to develop policies that will minimize the fraction of tasks that

miss their deadlines. Thus tasks in the second class see a system where servers take
vacations.

Let {Ui;, Wi;}i=1,., § = 1,2,---,c be families of r.v.’s such that U;; is the length of
the i-th time interval during which the j-th server is available for service and W; ; is the
length of the i-th time interval during which the j-th server is on vacation (unavailable
for service). We allow these sequences of r.v.’s to have arbitrary statistics so long as
they are independent of A, B, D. In this case we state the following result.

Theorem 6 STE is the optimum policy for both the continuous and discrete time
G/M/c+G queue with vacations when the deadlines are to the end of service, i.e.,

Vn(STE) > Vn(n), NO, V(STE) > V(r), and V,(STE) > V,(n), 0 < t.

Proof. The proof is similar to that given for Theorem 4 and is omitted here.

5 Non-Preemptive Systems with Deadline to End
of Service

In this section we show that STE is the best policy from the class of non-idling policies
for the non-preemptive G/M/c+G queue when deadlines are to the end of service.
Furthermore, we show that there exists an STEI policy that provides performance
better or equal to that of any non- STEI policy for the G/M/c+G queue. In both cases,
we will use the “>” relation. In addition to using the properties found in Lemma 2 we

will also require the following result.

Lemma 3 Let R and S be a sel of non-negative real numbers such that R > S. Let R
and S be expressed as R = Ri + Ry and S = S; + S, such that Ry > S1 and |Ry| =n,
|So| = n' with n > n'. If we express Ry and S, as Ry = (z1,%2,- +,Za) and S =
(Y1,Y2s- -y Ynt) where T; > Tipy and i > yiya, i = 1,---n—1, then R—{z;} = S —{u:}

fori=1,---,n".
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Proof: The argument is by induction on n, the cardinality of R,. We first observe
that the case n > n' can be reduced to the case n = n’ by simply inserting n — n' zero
elements into R, S, R;, and S;. Thus we assume that n = n'.

Basis Step. When n = 1 and S, = 0, the Lemma is trivially true. When S» = {y1},
then R— {z:;} = R1 > 51 =5 — {w}.

Inductive step. Assume that the Lemma is true for |R,| < n. We now establish it for
|R2| = n + 1.There are three subcases according to the number of elements z; in R,
such that z; > y; € S,. If the number is zero, then according to property 4 of Lemma 2
R—{z;} = S —{y:} for 1 <: < n'. Consider the case that the number is two or more.
Let z; and y; be elements such that z; > y;. Define R} = R; + {z;}, S} = S1 + {v:},
R, = R, — {z;}, and S; = S, — {y;}. Wehave R= R| + R,, S = S + 5;. Since
~ ©; > yi, we also have R} > S;. Thus we can apply the inductive hypothesis to show
that R — {z;} > S — {y;} for 7 # ¢. Since there are two elements for which z; > y;, we
can extend it to j = .

We now consider the case where there is only one element in R, such that z; > y;.
Let ry,72,---,7» denote the elements in R in non-increasing order and s;,82,+*, Sm/
denote the elements in S also in non-increasing order. Here m = |R| and m' = |§|. Let
{k1, ka2, -+, ka} and {71,752, -+, 7n} be sets of integers such that r,, = z; and s;, = yi,
l =1,---n. Note that z; > y; implies that k;_; +1 < 7; < m' — (n —1). If j; > ki,
then property 5 of Lemma 2 can be applied to yield R — {z;} > S — {y;}. Let us now
consider the case k;_; + 1 < j; < k;. The sets R — {z;} and S — {y:} can be expressed

as {r],75, - +,7_1} and {s},s5,---sl,_,} where
T, — 7'(, 1 S l < ki,
: Tit1, ki <1< m,
s = Si, 1 S l< ji)
: siv1, Ji Sl<ml.

Since R > S, it follows that ] > s) when 1 <[ < j;—1 and when k; <I<m/—11In
addition v} > s} when k; + 1 <! < j; because R, > S; and 7; > k;_; + 1. Therefore, we
have shown that R — {z;} > S — {y:} for this case. The relation R — {z;} > S — {y;},

7 # 1 follows from z; < y; and property 5 of Lemma 2.
QED

Consider a policy 7 that is allowed to preempt a customer solely to move him to another
server. We refer to this as a limited preemplion policy and claim that the performance

22



of this policy does not differ from a policy that uses the same scheduling rules except
that it does not allow preemptions. We will find it easier to work with these limited

preemption policies. Specifically, we consider limited preemption policies that enforce
the following rules:

o If the number of customers in service, n is less than the number of servers, then
they are placed on the first n servers.

e Customers are placed on servers such that the deadline associated with the cus-
tomer on the i-th server is greater than or equal to that associated with the
customer on the (¢ + 1)-th server.

Customers are assigned service times according to the same rule used in analyzing the

system that allows preemptions (see section 4).

Before we introduce our results, we find it useful to introduce the notation R,(t) to be
the set of deadlines associated with all customers in the system. The set of deadlines
associated with the customers in service can be expressed as R.(t) — E(t).

Theorem 7 STE provides the best performance of all non-preemptive, non-idling poli-
cies for the G/M/c+G queue when the deadlines are to the end of service, i.e., VN(STE) >
Vn(r) (L < N), V(STE) > V(r), and V,(STE) > V() (0 < t).

Proof: The proof of our theorem is similar to that of earlier theorems and consists of
showing that Egsrg(t) > E.(t) and Rsre(t) > R.(t) for every sample path S = s by
induction on the times of important events. We define the following events

o & - arrival to both systems,
e &, - completion of a job in either or both systems,
o &, - job missing deadline under one or both policies,

Let (%0,00),(¢1,01), -+ be the sequence of times and events that occur at those times,

i.e., event o; occurs at time t; where o; € {&, &1, 8, }.

We note as in Theorem 1 that if Esrg(t;) = E.(t;) and Rerg(t:) = Ra(t:) and ¢; < ti44,
then Esrp(t) > E,,(t) and RSTE(t) = R.(t) for t; <t < tiys.
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We proceed with our inductive argument.
Basis Step: The hypothesis is trivially true for ¢ = ;.

Inductive step: Assume that ESTE(tl) — E,r(tz) and RSTE(tl) - R,,-(tl) for | <1i. We
now show that it also holds for 7 + 1. There are three cases according to the type of
event.

Case 1 (0i11 = &): The relationship can be shown to hold as a consequence of property
1 of Lemma 2.

Case 2 (0;41 = & ): There are two subcases according to whether the completion is
under STE or both policies. (Note: according to the inductive hypothesis and the
server assignment rule, a completion under 7 implies a completion under STE.) If the
completion is under STE only, then E.(¢;+1) = 0 which implies that Egrg(tis1) >
E,(t:y1). Because of the way that customers are assigned to servers, the deadline
of the completed customer cannot reside in Large(Rsrge(t] ), |R<(t;)|). Consequently
Rsre(tit1) > Re(tiy1). If the completion is under both policies, then Lemma 3 and the
inductive hypothesis ensure that Rsrg(ti+1) > Rr(ti+1). The inductive hypothesis and
the fact that STE will schedule the customer with the smallest deadline from Csrg(t])
ensures that property 5 of Lemma 2 can be applied to show that Esrg(tiy1) > Ex(tis1)-

Case 3 (0i41 = &,): Again there are three subcases according to whether the customer
misses his deadline under 7, STE, or both policies. If under 7, property 3 of Lemma 2 is
applicable. If under STE, property 2 of Lemma 2 is applicable. If under both STE and
7, then we have further subcases according to whether the customers were in service
or in the queue. In all of these cases, the result is obtained by using either property 4
or 5 from Lemma 2.

It follows that E[Vy(STE)|S
N = 1,2,.-- and V(STE) >

theorems can be made to show

= 5] > E[Vy(7)|S = 8] and Vn(STE) > Vy(x) for
V(r). Arguments similar to those given in previous
Vv

((STE) > Vy(r), for 0 < t.
QED

Let us consider now policies that may permit idle processors. We state and prove the
following result. |

Theorem 8 For any arbitrary policy w, there ezists an STEI polz;cy a~ such that
Vn(m) > Vn(r), V(x*) > V(x), and Vi(n*) > Vi(x), t > 0 for the G/M/c+G
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queue with no preemptions when the deadline is to end of service.

Proof. Consider any policy 7 not in the class of STEI policies. We construct an
STEI policy =~ that exhibits equal or better performance as that of =. The rules for
constructing 7 differ from the rules given in Theorem 1 in the following way.

¢ In addition to maintaining an ordered list of customers at time ¢, .A(t), that would

be eligible under 7, policy 7" also maintains an ordered list R(t) of all customers
in the system at time ¢ under =.

e Rule 3(a) is modified to read: If at time ¢ |R(t)| — |A(t)| = |Rx-(t)] — |Cx-(t)| then
7 schedules the customer closest to its deadline with probability 1 — po(n,t, H}).

o Add a new rule to account for changes to R(t). It is

6. 7 modifies R(t) as follows,

(a) customer c is removed from R(t) either when its deadline expires or it

corresponds to a customer in R,.(t) that completes service.

(b) customer c is added to R(t) when it arrives to the system.

We focus on the behavior of 7 and 7~ given § = 5. We can show that E-(t) > Ex(t)
and R..(t) > R.(t) for 0 <t using the same method of proof as used in Theorem 7.
This has as its consequence that Vy(7r*) > V(7)) for N > 0 and V(x~) > V().
QED |

Similar results can be proven for discrete time counterparts. They are

Theorem 9 STE provides the best performance of all non-preemptive, non-idling poli-
cies for the discrete time G/M/c+G queue when the deadlines are to the end of service,

i.e., VN(STE) > Vn(n) (1 < N), V(STE) > V(x), and V{(STE) > V(=) (¢t =
1,2,--).

Theorem 10 For any arbitrary policy w, there exists an STEI policy =~ such that
Vn(r*) > Va(r), V(r) > V(ﬂ') and VL(W‘) >Vi(7), t =1,2,--- for the discrete time

G/M/c+G queue with no preemptions when the deadline is to end of service.

o
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6 Summary

We have shown that the best scheduling policies for minimizing the fraction of cus-
tomers missing a deadline in many multiple server queues belong to the class of STEI
policies. Furthermore, STE is the optimal policy out of the class of policies that do not
allow inserted idle times for the nonpreemptive G/M/c queue. Last, if deadlines are
to the end of service and preemptions are allowed, then the best policy for the G/M/c
queue is STE. This result hold in the case that servers take vacations.
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