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Abstract

Two task scheduling algorithms for distributed hard real-time
computer systems are presented. Both scheduling algorithms are
based on a heuristic approach since an exact solution is computa-
tionally intractable. The algorithms explicitly account for both
the deadlines and criticalness of tasks when making scheduling
decisions. In analyzing the new algorithms, a performance metric
called the Weighted Guarantee Ratio is defined. This metric
reflects both the percertage of tasks which make their deadlines
as well as their relative worth to the system. The performance
analysis is done by simulating the behavior of the algorithms as
well as that of several other pertinent baseline algorithms under
a wide range of system conditions including a non-homogeneous
task arrival rate. The results show that the algorithms outper-
form all the baseline algorithms - except for the ideal but imprac-
tical, centralized baseline - under the range of system conditions
studied, and that in many cases they perform close to the ideal.

1 Introduction

Hard real-time systems are those systems in which the correctness
of the system depends on both the logical result of the compu-
tation as well as the fime at which such a result is produced.
In many hard real-time systems it is crucial for the tasks in the
system to meet their specified deadlines, otherwise the tasks are
worthless, or worse, cause catastrophic results. This strictness
in meeting deadlines makes scheduling an important issue in the
correctness and reliability of the system.

In the past, many static task scheduling algorithms have been
developed for hard real-time systems, where the calculation of
schedules has been done off-line using complete knowledge about
the tasks' characteristics and arrival times. These algorithms
have low run-time costs but they often fail to adequately adapt
to changes in the environment (especially overloads), they are
expensive to modify as the system evolves, and they seem to be
most suitable to relatively small systerns. Complex real-time sys-
tems require more adaptive solutions based on dynamic schedul-
ing algorithms. Such algorithms plan task schedules at run-time
and can therefore hetter respond to changes in the environment
and better evolve over time, but with increased run-time costs
and with the possibility of missing some deadlines. Since some
deadlines might be missed, e.g., due to overloads, unexpected

"This work was partly supparted by the Office of Naval Hesearch under
contract M48-716/3.22-85.

“This paper was produced before this nuthor joined Digital Equipment
Corp. The views expressed ate exclusively those of the anthor and do not
reflect the opinions or future product plans of Digital.

combination of events, or failures, we require algorithms that
guarantee that the more critical tasks will make their deadlines.
This paper is concerned only with such dynamic hard real-time
scheduling algorithms.

A characteristic of most previous real-time scheduling algo-
rithms is the use of priority based scheduling. Here tasks are
assigned ‘priorities’, which are implicit or explicit functions of
their deadlines or criticalness or both. (The criticalness of a task
is an indication of its level of importance.) However, in actuality,
these twn requirer *~nts sometimes conflict with each other. That
is. tusks wich very short deadlines might not be very critical, and
vice versa. This causes a dilemma in choosing the appropriate
priority (i.e., in choosing the appropriate single value to represent
two separate concerns). We propose and analyze two distributed,
dynamic scheduling algorithms, ALG1 and ALG2. They avoid
the dilemma of priority scheduling, yet integrate criticalness and
deadline such that, not only do the more critical tasks meet their
deadlines, but many other less critical tasks also meet their dead-
lines. Overall, their goal is to maximize the net worth of the
executed tasks to the system.

Note that a dynamic scheduling algorithm cannot ensure that
all tasks will meet their deadlines. Thus, they may not be ap-
plicable to a specific type of task known as a safety critical task.
If any safety critical task misses its deadline, catastrophic conse-
quences may result. These tasks should be dealt with via schemes
such as preallocation of resources. Dynamic scheduling algo-
rithms such as those discussed in this paper, are applicable to
essential and non-essential tasks. Missing deadlines of tial
tasks will seriously degrade the functioning of the system, but
not cause any catastrophes. Non essential tasks are of less value
than essential tasks to the system, yet under most conditions
should also execute by their deadline. It is necessary to meet the
deadlines of as many essential and non-essential tasks as pussible.

Section 2 examines related work. In Section 3, we describe the
characteristics of the assumed hard real-time distributed system.
The details of the algorithms, ALG1 and ALG2, are outlined
in Section 4, followed by an evaluation of the performance of the
algorithms in Sections 5 and 6. The performance analysis is done
by simulating the behavior of the algorithms as well as that of
several other pertinent baseline algorithms under a wide range
of system conditions including a non-homogeneous task arrival
rate. Section 7 discusses and summarizes the results.

2 Related Work

Many real-titne scheduling algorithms have been studied in the
past few decades, and most have been shown to be computation-
ally intractable, e.g., |GJ, 75]. An exhaustive cataloging of all
real time schednling algorithms proposed for eentreal and mnlti-



processor systems is bevond the scope of this paper. |Cheng, 87)
contains an extensive survey of scheduling algorithms in this do-
main. We will present only a briel overview of some of the major
scheduling algorithms propased in the past for systems with hard
real-time constraints. We note that some of the earlier work
done on scheduling in central and multiprocessor systems has
greatly influenced scheduling in current distributed systems. Bx-
amples include [GJ, 76}, [LL, 73|, [JLT, 85], [MD, 78], [Mok, 83),
|Chu, 83|, |Stan, 85|, and [SLR, 86|. Some of this referenced work
applies to static scheduling and some to dynamic scheduling. As
mentioned above, dynamic scheduling schemes tend to have more
flexibility and adaptibility than the static ones, since the deci-
sions as to whether to execute a task and when to execute are
made at run time. Studies on dvnamic scheduling in distributed
systems also involve issues of load balancing. Many algorithms
for load balancing in non-hard real time systems have been re-
ported. but they do not explicitly take into account task dead-
lines. However, the work on dynamic scheduling in distributed
hard real-time systems that has been carried out under the Spring
Project has considered deadlines (RS, 84|, |Z1LS, 87], |ZRS, 87a|,
and [SRC, 85a]). The algorithms described here are an extension
of this work.

The real-time literature shows that most previous scheduling,
work has been primarily concerned with eitiver strictly deadline
driven or priority based schemes. Very little work has been done
in the area of scheduling tasks with hard real-time constraints,
and different levels of criticalness. One study that has attempted
to combine the deadline based and priority based approaches
is [CL.85]. The concepts in this study are good abstractions,
It heuristics are needed before they can be applied in practice.
Also, the study assumes that tasks may miss their deadlines, but
that such tasks continue to execute. This makes the algorithm
applicable to soft real-time systems.

Other real-time scheduling schemes translate deadlines into
‘priorities’ and then use the task's priority as the criterion to
determine schedulability. This assumes that the higher the crit-
icalness of a task, the earlier its deadline. Further, the only way
lo give one pracess a higher priority than another is to give it a
shorter deadline. However, in reality, some low criticalness tasks
may have earlier deadlines and sume high criticalness tasks, larger
deadlines. The problem is to formulate a real-time task model
which allows a distinction between these two attributes. This is
what our algorithms do.

3 The System Model

In this section, we briefly discuss the various parameters of the
distributed system and the tasks that are to be scheduled. Sec-
tion 3.1 concentrates on the characteristics of the application
tasks in the svstem. Section 3.2 discusses the semantics of the
guarantee. Section 3.3 discusses the system architecture.

3.1 The Characteristics of An Application Task

Our assumptions regarding the application tasks are as follows.
All application tasks are known. Their invocation order is not
known. That is, tasks arrive dynamically and independently. At
run-time there is no a priori knowledge of which tasks will arrive
and when they will arrive. There are no precedence constraints
on the tasks; they can be run in any order relative to each other
as long as their deadlines are met. All tasks are aperiodic and
there are no stipulations about their earliest start time; a Lask is
readv to execute as soon as it arrives in the system.

Fach task has the following characteristics ©

an arrival time: the time at which the task is invoked,

o a worst-case computation time: the maximum time needed
for it to complete execution,

e a criticalness: one of the n possible levels of importance of
the task (in this study, n = 10), and

o a deadline: the time by which the task has to complete
execution,

These are the static attributes of a task and are known at the time
of arrival of the task. It should be noted that in the evaluation
reported lhere, the characteristics of the task are time invariant;
for example. if a task has criticalness 9 when it arrives in the svs-
et al time, 1y, tien its eriticalness is not dynamically changed.
However, such a change can easily be handled by our approach.

3.2 Semantics of the Guarantee

When all tasks have equal criticalness values, a task is said to
he guaranteed if the scheduling algorithm can certify that the
task will complete execution before its deadline in spite of future
arrivals. This implies that newly invoked tasks can be guaranteed
provided previously guaranteed tasks are not jeopardized.

The semantics of guarantee poses a problem when taska with
differing criticalness values are present. Suppose a task has been
guaranteed and a task with a higher criticalness arrives. Also
suppose that the new task can be guaranteed only if the lower
criticalness task is removed from the gnaranteed list, 1e., the
guarantee is withdrawn. In this case the initial guarantee 1s not
absolute but conditional upon the non arrival of higher critical-
ness tasks which conflict with it. This is the semanties associnted
with the term guarantee used in this paper. In most applications
it is important to meet the deadlines of higher criticalness tasks
even if that implies the withdrawal of guarantees to other (lower
criticalness) tasks.

Note that the characteristics assumed for tasks in the system
are important in-performing the dynamic guarantee. For exam-
ple, with the assumptions concerning tasks given in Section 3.1,
a relatively simple guarantee algorithm can be used, as is found
in |HS, 84], [SRC, 85a]. We have also developed more sophis-
ticated guarantee algorithms that integrate cpu scheduling and
resource allocation [ZRS, 87|, |ZRS, 87al. That is, tasks can be
preemptive or non-preemptive and they may require additional
resources besides the ecpu. The algorithms described in this paper
could also be applied to these other more sophisticated guarantee
algorithms. However, in order to concentrate on the criticalness
issues, in this paper we study two algorithins that assume the
simpler task characteristics.

3.3 The System Architecture

In this work, we study two task scheduling algorithms for a dis-
tributed system consisting of N nodes, Each node contains m
processors divided into two types; system processors are dedi-
cated to executing system tasks and application processors ex-
ecute only application tasks®. The connection medium for the
nodes is assumed to be a shared (broadcast) bus. Hence, the

3 B
All the performance data presented in this paper assumes n single svstem
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distributed system under consideration is a collection of multi-
processors connected together in a loosely-coupled network.

The main system tasks of interest to the discussion in this
paper are the local scheduler and the global scheduler. The lo-
cal scheduler at each node maintains a data structure called the
System Task Table, STT. This table contains a list of applica-
tion tasks that have been dynamically guaranteed to make their
deadline at this local node. Entsies in the STT are arranged
in the order of execution and tasks are dispatched for execution
from this table. Each STT entry, corresponding to a guaranteed
task, has five attributes: the arrival time, the latest start time
(computed when the guarantee is issued), the criticalness, the
deadline, and the computation time. Except for the latest start
time, all the attributes are inputs. The latest start time is the
latest time in which the task can start executing and still meet
its deadline.

The Local Scheduler, which can re-order, insert or remove
any entries in the STT, is activated upon the arrival of a new
task at the node, or in response to the bidding which is initiated
by the global scheduler. The Local Scheduler, working on a copy
of the STT, determines if a new task can be inserted into the
current STT such that all previous tasks in the STT as well
as the new task ineet tueir deadlines. If «., <+ say that the
task is guaranteed. The 'atest start time of a task is determined
when it is guaranteed. The details of the local guarantee have
appeared elsewhere |{SRC, 85a), and due to space limitations are
not repeated here. If the new task cannot be guaranteed locally,
or can only be accomodated at the expense of some previously
guaranteed task/s, then the rejected task/s are handed over to,
the Global Scheduler.

The Global Scheduler then takes the necessary actions to
teansfer the task/s to anv alternative nodes that mav have the.
tesources to accept those tasks. Lhe Global Scheduler uses bid-
ding. Request-for-bids (RFB) are broadcast to the other nodes
when a local task has to be reallocated. When an ‘adequate’
number of remote nodes respond with bids reflecting their sur-
plus, the Global Scheduler evaluates those bids and transfers the
task to the node with the best bid. Also, there is a window of
time, the time-out period, during which the bids are accepted for
a given task. The Global Scheduler also makes bids in response to
RFB’s from other nodes. The bidding algorithm was proposed by
[RS, 84] and has been used by (ZRS, 87] and [Cheng, 87]. That
same bidding algorithm is also used here. Note that the over-
all cost of bidding and moving a task can be reduced by having
copies of the code for tasks at selected nodes, and in some cases
Jjust signalling an activation of the remote copy, or in other cases
transferring only state information for the task rather than the
task code itself.

4 The Algorithms

We determine the schedulability of an incoming task as quickly
as possible after its arrival®. Both of the new algorithms first
attempt to guarantee an incoming task according to its dead-
line, ignoring its criticalness. [f the task is guaranteed then the
scheduling is successful.

However, if this first attempt at scheduling fails, then there is
an attempt to guarantee Lhe new task at the expense of previously
puaranteed, but less critical tasks. I enough less eritical tasks
can be found then the new task is guaranteed at this site and the

“This approach has many advantages aa detailed in (RS, 84| and [Stan,87].

removed tasks are transferred to ilternative sites. If there are
not enough less critical tasks, or the deadline of the new task is
such that the removal of any such tasks does not allow the new
task to meet its deadline, then the new task is transferred to an
alternative site. The process.is repeated at the next node until
the task either meets its deadline or its deadline expires.

The two algorithms differ only in how they remove low crit-
icalness tasks from the STT. In algorithm ALGI, lower critical-
nees tasks are removed nne at a time and in striet nrder from lnw
to high criticalness. Algurithm ALG2 alsu only removes tasks of
lower criticalness, but does not follow the strict order found in
the first algorithm. Rather, it removes any task with lower criti-
calness, starting from tasks with the largest deadline. Since the
algorithms are so similar we present the two algorithms, noting
the differences.

4.1 The Algorithms

In this subsection, we describe the two algorithms as viewed from
the perspective of a new task, Tiew.

Step 1 Determine the schedulability of a task, T, based on
its deadline and the deadlines of tasks in the STT. Guar-
antee the task if it can be inserted into the STT such that
Thew and all previously guaranteed tasks can all meet their
deadlines. A\gain, refer to [SRC, 85a} for details on the
guarantee algorithm.

Step 2 If Step 1 fails, attempt to guarantee the new task by
removing a sufficient number of previously guaranteed tasks
in this manner:

e Define the Window of T,.,, to be that portion of the
STT from the deadline of T, forward to time zero.
That is, all tasks in the STT scheduled after the dead-
line of the new task are excluded from consideration
because their removal cannot help.in scheduling the
new task.

ALG1 Temporarily remove the task with the lowest critical-
ness level, i, within the Window of T.,,, and if there
is more than one task with this criticalness, the task
with the largest deadline.

ALG2 Temporarily remove the first task within the Window
of Thew such that its criticalness is less than T, and
its deadline is the largest among all the tasks in the
Window.

o If any task is removed then try to puarantee T,
again, based on deadlines as outlined in Step 1. Re-
peat the removal process until either Ty, is guaran-
teed or no lower criticaluess tasks remain in the win-
dow.

o If T,y is not guaranteed reallocate it to another node.
Note, in this case, any task that might have been tem-
porarily removed is restored. If Ty, is guaranteed,
reallocate the removed task(s) to another node.

In the abuve algorithins, re-guaranteeing on vach task removal
may be expensive. Various heuristics are possible here. For ex-
ample, for the results presented in this paper, we use a very sin.
ple heunistic as follows: 17 the sum of the computation time(s) of
the task(s) removed so far is equal to or greater than the compu-
tation time of Ty, then at that time T, is re-guarauteed. This



scheme is inexpensive and works because of the task assumptions
made in this paper. On the other hand, it is pessimistic because
it may preempt more tasks than is necessary by not accounting
for already available free time. Since we are testing overloads
{and nodes have very high utilizations) there is little free time
so this approximation works well. In general, when tasks require
more resources than the cpu and have future arrival times (eB.s
periodic tasks), one would have to use a full re-guarantee proce-
dure after each task removal.

In summary, both tasks try to guarantee a new task without
removing previously guaranteed tasks. If this is not possible,
ALGI removes the least critical tasks whereas ALG2 removes
any lower criticalness tasks with long deadlines. This difference
in the algorithms results in the deadlines of tasks reallocated by
ALG2, on the average being lunger than the tasks reallocated by
ALGI. Hence, it can he said that, un an average, ALG1 attempts
to reallocate more low criticalness tasks with tighter deadline:
than ALG2. This could then cause the reallocated tasks to have
a lower probability of being guaranteed under ALG1 than under
ALG2. But, ALG2, on the average, attempts to reallocate higher
criticalness tasks. So if it is not successful, then there is more
impact on the value to the system.

5 Evaluation of the Algorithms

We evaluate our algorithms via simulation. The system modeled
consists of 5 nodes attached to a common bus. In this paper,
we report on how the averall system load, the laxity, and the
distribution of the system load among the nodes, affect the per-
formance of the algorithms. The lazity of a task is defined as
(Deadline - Computation time). Due to space considerations,
only representative performance results are shown for cach of
the above areas. The elfects of variations in the task-dependent
parameters, of variations in weighting schemes, and of varying
arrival distributions of tasks at different criticalness levels were
also studied and are reported in |Biya, 88}.

5.1 Performance Mectric

One metric used in real-time scheduling is to determine the per-
centage of tasks which make their deadline. Call this the guar-
antee ratio, GR. We do state the GR metric in a few places in
the paper. lowever, a more relevant metric in a system that
has tasks of unequal criticalness is to guage the percentage of
tasks of each criticalness level that are guaranteed. This value
is dependent on the weights attached to the tasks at each level
of importance. The determination of which tasks should be at-
tached what specific weights is highly dependent on the particular
application environment. We did test a few weighting schemes,
such as linearly or exponentially increasing weights.
Define: Weighted Guarantee Ratio, WGR =Y, WGR;

Yilei * Tg)

WGR = 100 « S2——r—t
Tilei+Tc)

where
i = criticalness level.
¢i is the weight of the criticalness level, the default is

. il
=€

I'2 1o the tatal number of tacks cruaranterd at that eriticalness
lesvel.

T is the total number of tasks created (generated) at that
criticalness level.

5.2 DBaselines

In order to understand the performance of our new algorithms.
we need to compare and contrast them with algorithms that are
often used or, are upper and lower bounds. We are especially
interested in comparing our algorithms with those using only
deadlines or criticalness. Comparison with these should demon-
strate advantages, if any, of combining deadline and criticalness
in determining the schedulability of hard real-time tasks.

We compare the performance of our 2 new algorithms with
each other and with that of four ather baseline algorithms under
identical conditions. Two of these baselines schedule based on
deadlines, one schedules based on criticalness, and vet another
schedules based on a combined (deadline and criticaluess) crite-
rion that assumes perfect state knowledge. The basclines are:

¢ DDLN, tasks are guaranteed based on deadline only, and
if not guaranteed locally a distributed algorithm is run (the
same one as for ALGL and ALG2). This algorithm is ex-
actlv like ALG1 and ALG2 except that a task that has been
inserted into the STT is not removed - irrespective of the
criticalness of the task.

e NC.CR, tasks are scheduled “highest criticalness first”
but without any node cooperation. There is no notion ofa
guarantee in this algorithm.

¢ NC.DD, tasks are scheduled “carliest deadline first,” but
without any node cooperation. There is no notion of a
guarantee in this algorithm.

e C.CRDD, this is a centralized non-preemptive resume al-
gorithm. It assumes that all the tasks in the system arrive
at a single queue ordered according to criticalness. ‘T'asks
with the same criticalness are ordered based on their dead-
lines. Tasks are assigned to processors on a FOFS hasis.
‘I'here is no guarantee and this algorithm simply serves as
an upper bound on weighted success ratio.

Except for the case of DDLN, we assume that the time re-
quired to schedule tasks in all the baseline algorithms is zero, i.c.,
the overheads due to scheduling time are nil. Hence, the results
obtained for the last three baseline algorithms represent their re-
spective ideal cases. It should be noted that we do simulate the
scheduling (and remote node re-scheduling) time overheads for
the algorithms, ALG1 and ALG2, as a function of the number
of tasks at a node when the algorithms are invoked. Specifically,
we account for the time taken to manipulate the various linked
lists, including the STT, maintained by the scheduler. The as-
sumned overheads are: 5 microsecs for traversing a link, and 10
microsecs for deleting ur inserting an element. Ilence, the results
obtained for these proposed algorithms are more realistic under
the given system conditions than are the ideal ones for the last
three baselines.

6 Experimental Parameters

We now discuss the results. Since there are five nodes in the



svstem, the total system load is the sum of the load un each of
the five nodes. The simulation parameters, R and r,, denote the
total system load and the lvad on node n, respectively, i.c.,

S
R = Z Pa.
n=l

For a given system load, the external arrival load on each of
the nodes could be distributed in quite different ways. All the
nodes could have exactly the same load, or totally uncorrelated
Inads, or a linearly, or even expunentially, increasing load rela-
tive to each other, but always summing to the same total system
load. The effects of varying the network load distribution indi-
cate the adaptiveness of the glubal component of our algorithms
to different network load patterns and hence, are important to

study in evaluating their performance.

We define a simulation parameter, b, the balance factor {ZRS, 87|
to denote the balance of load - with respect to arrival of tasks
- across the nodes. A high value of b implies a more balanced
system, whereas a low value of b implies a less balanced system.

The 2o 1e, 1.0, signifies a completely balanced system; the arrival
rate is the same at cach of the five nodes. On the other hand, a
value of b = 0.3 significs an unbalanced system where the busi-
est node has a load of rg and the next most busy has a lvad of
(0.3 » rp) and the next most busy, (0.3 (0.3 + rg)) and so on.

Therefore, for a given load, R and a given value of balance
factor, b, there is unique load pattern for the nodes in the system.
The following gives the relationship between system load, R, the
balance factor, b, total number of nodes in the system, N, and
the load on the busiest node, rp :

N
R=Y (""" «rp)

n=1

Throughout all studies, the task computation time was sam-
pled from an exponential distribution with a mean of 100ms.
The laxity was also sampled from an exponential distribution,
but with mcans that were multiples of the mean of the compu-
tation time. Thus, for average laxities of 3 and 6 the laxity was
derived from exponential distributions with means of 300ms and
600ms, respectively.

As for the relative number of tasks in each of the 10 eriti-
calness classes allowed, the distribution was uniform. That is,
at each nude there were equal percentage (roughly 10%) of tasks
generated in each of the 10 criticaluess classes. ‘This uniform
distribution of tasks in different criticalness classes is to be dis-
tinguished from the distribution of load across the five nodes in
the svstem.

6.1 System Load and Laxity

In this section we present the results of varying the svstem load
and the laxity. The other system parameters are held constant.
The performance of onr alegorithms and that of the haselines is
compreagedd Do s W 2R 0 10 and 10, when the mean Taxity
of all tasks in the system is 3 times the mean execution time of
the tasks. This range of values was chosen to cover conditions
from light to heavy loads. ‘To test the load balancing aspects of
our algorithms and the baseline algorithms, we set b - 0.5. In

other words the system luad is not balanced: each node has haif
the load of the previous node.

Observations and Discussion:

In Figure 1 the WGR's for our two algorithms as well as for
those of the baseline algorithms, DDLN, NC.CR, NC_DD and
C.CRDD, are plotted against the system load for b = 0.5 and
average laxity 3.

From Figure | we see that all algorithms deteriorate in per-
formance with respect to WGIL with an increase in load. The
highest values for WGR are given by the centralized, C.CRDD
algorithm. ‘This is expected since C.CRDD orders all tasks in
the system in a single queue and gives preference to tasks of high
criticalness - all at zero cost.

Except for the case of the highest load, R = 13, the worst
performance is given by the non-couperative deadline based al-
gorithin, NC_DD, which disregards the criticalness of tasks when
scheduling and also does not share the load across nodes. Hence,
at low loads, this algorithm fails to take advantage of other free
nodes in the system when it cannot guarantee a task locally. At
high loads it does not maximize the collective WGR by selecting
only the higher criticalness tasks when the load is such that not
all tasks can be guaranteed.

‘The sharpest decline of WGR with an increase in lvad is
shown by the DDLN algorithm which incorporates the uncon-
ditional guarantee. As the load increases, this algorithm does
not adapt to the changing system conditions: it dves not maxi-
mize the WGR by biasing toward the more critical tasks, instead,
it persists in guaranteeing tasks based solely on their deadlines.

‘The fact that criticalness becomes more important than dead-
line as the criterion for determining the schedulability of a task
at high loads is further corroborated by the high performance of
NC .CR at high loads. NC CR sulfers from a lack of load sharing
at law lnade,  [However, deapite its non-cnoperative aature, e
performance is very close to that of ALGL and ALG2 at high
loads, indicating that its policy of giving preference to high crit-
icalness tasks pays off under high load conditions.

Among the cooperative algorithms, ALG1 and ALG2 give
the best performance. At low loads, the algorithms that share
load, ALG1, ALG2 and DIDLN outperform the nun-cooperative
algorithms, NC.DD) and NC_.CR. This relative performance can
be attributed to the fact that the non-cooperative algorithms
do not take advantage of the free processor time at other more
lightly loaded nodes in the system when the load at the local
node exceeds the node’s capacity to service tasks.

ALG1 and ALG2 perform well above all the (cooperative)
baseline algorithms across the range of loads because of their
adaptiveness and seusitivitv to changing system conditions. At
low loads, ALGL and ALG2 maintain a high WGR by sharing
load by reallocating tasks that cannot be gnaranteed locally to
other more lightly loaded nodes. And, at high loads, they are
biased towards tasks with high criticaluess, thus improving the
overall WGR. This results in superior pecformance across the
range of loads.

We also find that the values of WGR for ALGL and ALG2 are
very similar under most light loads. There is, however, a siall
improvement (of about 2%) in ALGEs WGR over ALG2's at
system load of 15. Under the system conditions considered, our
simpler deadline-criticalness based algorithm, ALG2, generally
performs just as well as the more complex ALGL. This might
be attributed 1o the fact that there is an underiving trade-off



hetween maximizing WGR and the (time) cost of running the
algorithm.

Comparing the distributed and non-cor wperative deadline based
algorithms, DDLN and NC.DD, we note that

o both the deadline based algorithms have worse performance
than our deadline-criticalness combination algorithms.

e at low loads, DDLN outperforms NC.DD by 17.6% be-
cause of load sharing; however, the performance of the
non-cooparative, NC.DD), declines slower than that of the
DDLN.

From a comparison of the upper bound C.CRDD and the
non-cooperative, NC.CR, we observe that

o the centralized C.CRDD is the best algorithm (in terms of
WGR), giving far better results at the high loads than any
other algorithm

however, except for very low loads, the number of tasks
it guarantees are much lower than our algorithms since
it maximizes WGR at the expense of meeting the dead-
lines of more tasks. For example, at a load of R = 15, its
WGR value is 89.07%, whereas its GR value is only 36%
(¢f. WGR of 68.85% and a GR of 53.87% for ALG1 under
the same conditions).

o NC CR loses more than 20% of the tasks even under very
Jow loads. Since it is also tailored to maximize the number
of critical tasks, its WG R value is very close to ours at high
loads; at R = 15, it is 65.84% and that of ALG2 is 66.80%.

Figure 2 shows the performance of the various algorithms as
average laxity is varied from 1.0 to 10.0. Here we see that over all
laxities, ALG! and ALG2 perform better than all the baselines
{except the ideal) and perform similarly to each other.

In summary, the main conclusions are:

o Our algorithms outperform all the other haseline algorithms
(with the exception of the upper bound given by C.CRDD)
for both the metrics, WGR and GR, under the range of sys-
tem loads considered.

o Despite their different degrees of complexity, both ALG1
and ALG2, yield comparable performance.

e Our algorithms combine the advantages of both the critical‘-
ness, and deadline based schemes.

¢ The simple deadline based algorithm, DDLN, is a sufii-
ciently good heuristic under low overload situations. How-
ever, its performance deteriorates very quickly as the load
is further increased.

Note that we can better understand the mechanics underlying
our algorithms versus the often-studied dcadline based scheme
il we separate the notions of schedulability and seruviceability as
applied to guarantee. The schedulability of a task depends on
the conditions in the system when the task arrives at the node;
the serviceability is a function of how the conditions in the sys-
tem change during the life-time of the scheduled but not-yet-
executed task. (If we allow tasks to be removed from the guar-
anteed list, then serviceability would depend on how conditions
change between the time when the task is scheduled and when
it completed). In the case of an uncondional guarantiee, a task’s

schedulability is the same as its serviceability. In the case of a
conditional guarantee, a task might be schedulable, at first but
become unserviceable as conditions in the system change.

8.2 System Load Distribution

We now study the effects of load imbalance across i range of
system loads, with the laxity of a task again held constant at
3. Due to space constraints, we will only consider in detail the
system performance under two loads of # = 5 and at R = 15,
respectively, for three values of b = 0.3, 0.5 and 1.0. We then
study the breakdown of all tasks guaranteed into those that are
generated locally and those that arrive from remote nodes as a
result of load sharing activities.

In Figures 3 and 4, we plot WGR against the balance factor,
b, for R = 5 R = 15, respectively. In Figures 5 and 6, for ALGI
we plot the GR & WG, with respect to only the locally generatea
tasks, against the balance factor, b for loads 2.5, 3, 10 and 15.
That is, in Figure 5 we plot the ratio of the number of local tasks
guaranteed to the number locally generated. In Figure 6, we plot
the weighted ratios of the same quantities as found in Figure 5.

Observations and Discussion

Our algorithms perform better than the non-cooperative crit-
icalness based baseline, NC.CR, across the range of balance con-
ditions in terms of the percentage of tasks guaranteed (GR)
although the weighted values (WGR) for ALGI & ALG2, and
NC CR are eomparable at high leads (since the Intter schedules
tasks solely un the basis ol their criticalness level).

The NC.DD also yields much poorer performance than ALG1
and ALG2 across the range of balance factors, improving slightly
under conditions of high balance of load across the nodes. Hence,
the generally poor performance of the non-cooperative algorithms
points to the need for load distribution in any distributed system
where the system load might be unevenly distributed.

At low loads, DDLN and our algorithms do equally well acruss
all balance conditions. At high loads, our algorithms are substan-
tially superior to this baseline. Further, we note that the WGR
values for DDLN decrease when b = 1.0.

We now look at the characteristics of the guaranteed tasks
for ALG1. Specifically, we compare the percentages of local and
remote tasks that make up all the tasks that are guaranteed.
From Figures 5 and 6, we observe that as the balance increases,
for all loads, more of the tasks guaranteed are local because of
the high arrival rate of local tasks. For instance, at a load of
10, with laxity 3, a breakdown of all tasks guaranteed into lucal
and remote reveals that as b is increased from 0.3 to 1.0, (71.66
- 49.64 = 22.02%) more (guaranteed) tasks are local:

b =03 b =1.0
% Local | % Remote || % Local { % Remote
49.64 50.36 71.66 28.34

Furthermore, the corresponding WGR values show the col-
lective worth of the remote tasks accepted is much less (15.07%
at b=1.0 vs. 23.20% at b=0.3) than that of the lucal ones:

b =03 b = 1.0
% Local | % Remote || % Local | % Remote
76.80 23.20 84.93 15.07




When we compare the performance of non-cooperative al-
gorithms with that of distributed algorithms that incorporate
load sharing, we find that load sharing is a desirable feature of a
scheduling algorithm in a distributed system environment. The
need for Inad sharing is especially felt under low lnad situations.
In these situations, tasks that are rejected from a busy site could
be reallocated to the lightly loaded alternative nodes which exist
in the system. Under high system load situations however, all
nodes have an abundance of task arrivals and alternative sites
for rejected tasks are not readily available.

The performance of our algorithms remains constant across
the two extreme conditions of total balance and high imbalance
under low loads. Even at high loads, the percentage of tasks guar-
anteed is constant across the extremes of load balance. However,
in this heavy load case, there is an improvement in WGR values
with increasing balance due to Lhe greater availablity of (local)
tasks from which to maximize WGR.

In summary, there is a general consistency in performance of
ALGI! and ALG2 across a wide range of system balances. Due
to their load sharing policy, these algorithins take advantage of
lightly loaded nodes in conditions of uneven load across the sys-
tem. Conversely, in conditions of high load evenly distributed
across all nodes, the algorithms reduce the degree of load shar-
ing and instead, maximize the percentage of lncal tasks guaran-
teed. This concentration on the local tasks leads to fewer tasks
being transferred, thus reducing the amount of processing cach
node carries out in order to determine the schedulablity of remote
tasks as a result of bidding.

7 Conclusions

We presented two algorithms that explicitly account for deadlines
and criticalness. Under the range of system conditions studied,
the algorithms outperformed all the cooperative baseline algo-
rithms. We noted that ALG2 and ALG1 have the same perfor-
mance for almost all system conditions and task parameters; the
difference in WGR values for the two new algorithms is within 2%
of each other.

From the results presented here and in [Biya, 88|, we vbserved
that at low loads deadline based algorithms tend to perform bet-
ter than criticalness based algorithms. At high loads, the sit-
uation is reversed and criticalness based algorithms outperform
deadline based algorithms. Also, we show that the algorithms,
ALGTH and ALG2, outperfarm the deadline and criticalness hased
basclines. Hence, our proposed algorithins combine the advan-
tages of both the deadline and criticalness based algorithms.

The concept of ‘guarantee’ as condilional rather than absolute
is found to be superior in terms of adaptiveness and responsive-
ness to changing system conditions. Separating the notion of the
schedulability of a task from its serviceability is very important
when considering conditional guarantee. It is this distinction
that leads to a better adaptation to varying system conditions.
A scheduled task may become unserviceable as a result of changes
in the svstem. Examples of these changes could be an increased
svstem load, a burst or influx of tasks with a particular combina-
tion of attributes (such as high criticalness and tight deadlines)
or a high imbalance in system load across the various nodes.

ALG1 and ALG2 outperform even Lhe ideal, zero-cost, non-
cooperative algorithms of NC.CR and NC.DD, under almost
all system conditions studied. It is shown that load-sharing is
especially desirable under {ow load situations when the system

is unbalanced. Under such load conditions, tasks that are not
schedulable at a busy node could be reallocated to an alterna-
tive, lightly-loaded site instead of being discarded. However, in
conditions of heavy load, few such lighly-loaded alternative sites
exist since all nodes have an abundance of tasks. Hence, alterna-
tive sites might not be readily available for rejected tasks when
the system load is high.
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