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Abstract

Next generation real-time systems will require greater flexibility and pre-
dictability than is commonly found in today’s systems. These future systems
include the space station, integrated vision/robotics/Al systems, collections of
humans/robots coordinating to achieve common objectives (usually in hazardous
environments such as undersea exploration or chemical plants), and various com-
mand and control applications. The Spring kernel is a research oriented kernel
designed to form the basis of a flexible, hard real-time operating system for such
applications. Our approach provides a method for on-line dynamic guarantees
of deadlines. This provides manv henefits. The main contributions in our ap-
proach are the scheduling algorithms themselves, the design of the kernel thal
enables predictability of execution time, and the synergism between the schedul-
ing algorithm and the kernel design. The Spring kernel is being implemented on
a network of (68020 based) multiprocessors called SpringNet.

“This work was supported by ONR under contracts NOOO14-85-K-0389 and NSF under grant
DCR-8500332. A short version of this paper appeared in Proceedings of the Real-Time Systems
Symposium, 1987.



1 Introduction

Recently, there has been an increased interest in hard real-time systems and such
systems are becoming more and more sophisticated. We define Hard Real-time sys-
tems as those systems in which the correciness of the system depends not only on
the logical result of computation, but also on the time at which the results are pro-
duced. Further, if these real-time constraints are not met there may potentially be
catastrophic consequences. Examples of this type of real-time system are command
and control systems, nuclear power plants [1], process control systems, flight control
systems, and the space shuttle avionics system [7]. In the future, such systems are
expected to become more and more complex, have long lifetimes, and exhibit very
dynamic, adaptive and even intelligent behavior. These future systems include the
space station, integrated vision/robotics/Al systems, collections of humans/robots
coordinating to achieve common objectives (usually in hazardous environments such
as undersea exploration or chemical plants), and various command and control ap-
plications.

The most critical part of supporting such new systems is the ability to guarantee
that real-time constraints can be met. Because of the large number of combinations of
tasks that might be active at the same time and because of the continually changing
demands on the system, it will generally be impossible to pre-calculate all possible
schedules off-line to statically guarantee real-time constraints. Our approach is to
perform research on providing a method for on-line dynamic guarantee of deadlines.
This approach allows the unique abstraction that at any point in time the operating
system knows exactly what set of tasks are guaranteed to make their deadlines, what,
where and when spare resources exist or will exist, and which tasks are running under
non-guaranteed assumptions. The keys to our approach are the scheduling algorithm,
the operating system, and their synergism.

Real-time systems usually include a real-time kernel [9] [24]. However, most
existing real-time kernels [28] are simply stripped down and optimized versions of
timesharing operating systems. More specifically, the general characteristics of most
current real-time kernels typically include:

a fast context switch,

a small size (with its associated minimal functionality),

the ability to respond to external interrupts quickly,

o multi-tasking with task coordination being supported by features such as ports,
events, signals, and semaphores,



o fixed or variable sized partitions for memory management (no virtual memory),
o the presence of special sequential files that can accumulate data at a fast rate,
e priority scheduling,

o the minimization of intervals during which interrupts are disabled,

e support of a real-time clock,

e primitives to delay tasks for a fixed amount of time and to pause/resume tasks,
and

¢ special alarms and timeouts.

These features provide a basis for a good set of primitives upon which to build
real-time systems. These features are also designed to be fast which is a laudable
goal. However, fast is a relative term and not sufficient when dealing with real-time
constraints. The main problems with these primitives are that they do not ezplic-
itly address real-time constraints, nor does their use (without extensive simulations)
provide system designers with a high degree of confidence that the system will in-
deed meet its real-time constraints. Even though such kernels are successfully used
in today’s real-time embedded systems, it is only at extremely high cost and inflex-
ibility. For example, when using the above primitives it is difficult to predict how
tasks invoked dynamically interact with other active tasks, where blocking over re-
sources will occur, and what the subsequent effect of this interaction and blocking
is on the timing constraints of all the tasks. The current technology burdens the
designer with the unenviable task of mapping a set of specified real-time constraints
into a priority order in such a manner that all tasks will meet their deadlines. It is
common practice to attempt to verify real-time constraints under such conditions by
extensive and costly simulations and testing on the actual system [10]. One round of
changes is subject to another eztensive round of testing. As the next generation hard
real-time systems become more sophisticated, it will be necessary to develop cheaper
ways to guarantee real-time constraints and to meet the flexibility requirements [30]
[29]. The main characteristics of nezt generation hard real-time systems are:

e new operating system and task designs to support predictability,
e a high degree of adaptability (short term and long term),
e physical distribution (of multiprocessors) with a high degree of cooperation,

e incorporation of integrated solutions to deal with real-time, fault tolerance, and
large systemn requirements,

e an interface to Al programs,



e the ability to handle complex applications,
o the ability to integrate cpu scheduling with resource allocation, and

e the ability to determine end-to-end timing performance, e.g., if task A sends a
message to task B under timing constraints then all aspects of the communica-
tion must be accounted for including context switching, message transmission
and reception, and remote site scheduling delay.

The Spring project at the University of Massachusetts is conducting research into
next generation hard real-time systems. The project has many thrusts [21]. The
three main thrusts that directly relate to the Spring kernel are:

1. The development of dynamic, distributed, on-line real-time scheduling algo-
rithms. This work is well underway with many such algorithms already devel-
oped and evaluated, each based on a different set of assumptions. The plan is
that any of these algorithms can plug into the kernel depending on the require-
ments and policies of the application.

2. The development and implementation of the Spring kernel which supports a
network of multiprocessors. The design of the kernel is now complete and a
plan for rapid prototyping the kernel has been established. The purpose of this
paper is to describe the main ideas in the design of the Spring kernel. The
major innovations exhibited in the Spring kernel are the scheduling algorithm
itself which can dynamically guarantee real-time constraints, and the way in
which the rest of the kernel supports the scheduling algorithm. For example,
one major feature is that the scheduling algorithm and other primitives of
the kernel cooperate to avoid blocking, thereby making it possible to attain
predictability.

3. The development of multiprocessor nodes in order to directly support the ker-
nel and the scheduling algorithm. The multiprocessor systems are Motorola
Systems 1131s and 1132s based on the 68020 processors and the VME bus.

The remainder of 1his paper is organized as follows. Section 2 introduces our
model of a hard real-time system. Section 3 describes one scheduling algorithm.
This scheduling algorithm avoids unpredictable waiting and accounts for the use of
exclusive and shared resources. Other versions of the algorithm are briefly discussed.
Section 4 describes the main primitives found in the Spring kernel. This includes the
task management primitives, the memory management primitives, the IPC primi-
tives, and a discussion of the I/O subsystem and interrupt handling. The Spring
kernel does not contain support for security, multiple address spaces, general time-
sharing (although it does support the concurrent existence of hard- and soft- and



non- real-time tasks), nor is it intended for development into a production operating
system with all of the incumbent overheads and size. It is a research vehicle into
developing flexible, predictable, next generation hard real-time systems. Section 5
discusses a number of miscellaneous issues with respect to the kernel design and
implementation. Finally, a summary is presented in Section 6.

2 System Model

This section presents the basic structure of a distributed real-time system that we are
assuming. It is based on the notion of a flexible on-line scheduler that can guarantee
that tasks make their deadlines [18]. While the details of our scheduling algorithm
and the analysis of them have appeared elsewhere [18], [26], [31), we will repeat the
basic ideas of the algorithm in this paper with the intent of showing how it interfaces
to the rest of the Spring kernel, and why it is different than today’s real-time kernels.
This scheduling algorithm is, in fact, a major component of the kernel.

We assume that the Spring system is physically distributed and composed of a
network of multiprocessors. See Figure 1. Each multiprocessor contains one (or more)
application processors, one (or more) system processors, and an I/O subsystem. All
processors are 68020s and all processors have their own local memory. All processors
and memories are attached to a VME bus, forming a single global memory space per
node. System processors! offload the scheduling algorithm and other OS overhead
from the application tasks both for speed, and so that this overhead does not
cause uncertainty in executing guaranteed tasks. All system tasks are resident
in the memory of the system processors. The 1/O subsystem is a separate entity
from the Spring kernel and it handles non-critical I/0, slow 1/O devices, and fast
sensors. The I/O subsystem can be controlled by some current real-time kernel such
as VRTX [22], or by completely dedicating processors or cycles on processors to these
devices. The I/O subsystem interface to the Spring kernel is best explained after the
scheduling algorithm is described so we defer any more discussion of I/O until section
4.4.

It is important to note that although system fasks run on system processors,
application tasks can run on both application processors and system processors by
explicitly reserving time on the system processors. This only becomes necessary if
the surplus processing power of the application processor(s) is (are) not sufficient
at a given point in time. If both the application processors and a portion of the
systemn processors are still not sufficient to handle the current load, then we invoke

1Ultimately, system processors could be specifically designed to offer harware sppport to our system
activities such as guaranteeing tasks.
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the distributed scheduling portion? of our algorithm. Some modifications to our
previously reported work have been made for implementing distributed scheduling
on SpringNet. Most notably, the code for tasks is now replicated at various nodes, so
that only signals, partial state information, or input to the tasks need be transmitted
when distributed scheduling occurs, rather than transmitting the task code itself.

To be more specific, the system processors run most of the operating system, as
well as application specific tasks that do not have deadlines. The scheduling algorithm
separates policy from mechanism and is composed of 4 modules, one of which can be
used in two different ways. At the lowest level multiple dispatchers exist, one running
on each of the application processors. The dispatcher simply removes the next (ready)
task from a system task table (STT) that contains all guaranteed tasks arranged in
the proper order for each application processor. The rest of the scheduling modules
are executed on the system processor. The second module is a local scheduler. The
local scheduler can be used in two ways. First, the local scheduler is responsible for
locally guaranteeing that a new task can make its deadline, and for ordering the tasks
properly in the STT. The logic involved in this algorithm is a major inovation of our
work. Second, the local scheduler can also be invoked as a time planner — valuable for
real-time Al applications. This important idea means that it is possible to consider
the impact of system level allocations and resource conflicts on the execution time
properties of application tasks and that this information can then be used by the
application to more accurately accomplish goals on time. Using the local scheduler
as a planner is considered a high level OS activity and therefore will not be discussed
any further in this paper. The third scheduling module is the global (distributed)
scheduler which attempts to find a site for execution for any task that cannot be
locally guaranteed. The final module is a Meta Level Controller (MLC) which has the
responsibility of adapting various parameters by noticing significant changes in the
environment and serving as the user interface. The distributed scheduling component
and the MLC are not discussed any further in this paper since they can be considered
upper levels of the OS and are not part of the Spring kernel itself.

2.1 Tasks

At the kernel level there exists an executable and guaranteeable entity called a task.
A task consists of reentrant code, local data, dynamic data segments, a stack, a task
descriptor and a task control block. Multiple instances of a task may be invoked. In
this case the reentrant code and task descriptor are shared.

Tasks are characterized by:

2See [18] [19] [20] for details on distributed scheduling.



o ID

e Group ID, if any (tasks may be part of a task group or a dependent task group
- these are more fully explained below)

e C (a worse case execution time) (may be a formula that depends on various
input data and/or state information)

o Deadline (D) or period or other real-time constraints
o criticalness (this is an indication of the importance of this task)
e preemptive or non-preemptive property

o maximum number and type of resources (this includes memory segments, ports,
etc.) needed '

e type: non RT, soft RT, or hard RT

o incremental task or not (incremental tasks compute an answer immediately
and then continue to refine the answer for the rest of its requested computation
time)

o precedence graph (describes the required precedence among tasks in a task
group or a dependent task group)

e communication graph (list of tasks with which a task communicates), and type
of communication (asyn or syn)

location of task copies

All the above information concerning a task is maintained in the task descriptor.
Much of the information is also maintained in the task control block with the differ-
ence being that the information in the task control block is specific to a particular
instance of the task. For example, a task descriptor might indicate that the worst
case execution time for TASK A is 5z milliseconds where z is the number of input
data items at the time the task is invoked. At invocation time a short procedure is
executed to compute the actual worst case time for this module and this value is then
inserted into the TCB. The guarantee is then performed against this specific task in-
stance. All the other fields dealing with time, computation, resources or criticalness
are handled in a similar way.

While the kernel supports tasks, the local scheduler not only guarantees with
respect to tasks, but also supports the abstractions of task groups and dependent task
groups. A task group is a collection of simple tasks that have precedence constraints
among themselves, but have a single deadline. Each task acquires resources before



it begins and can release the resources upon its completion. For task groups, it is
assumed that when the task group is invoked, all tasks in the group can be sized
(this means that the worst case computation time and resource requirements of each
task can be determined at invocation time). A dependent task group is the same as a
task group except that only those tasks with no precedence constraints can be sized
at invocation time. The remaining tasks of the dependent group can only be sized
when all preceding tasks are completed. The dependent task group requires some
special handling with respect to guarantees. Our work in this area is tentative and
hence is not discussed further in this paper.

Note that a simple task may be guaranteed to execute as a simple task, and also
as part of some group. Tasks in a task group can communicate via shared memory
or the IPC primitives.

2.2 Principle of Segmentation

The design of the kernel is based on the principle of segmentation as applied to
hard real-time systems. Due to space limitations we cannot fully discuss the use
of segmentation and its implications in this paper. Further details on segmentation
for hard real-time systems can be found in [27]. We present a brief description of
the segmentation principle here to provide some motivation for our kernel design
decisions. Segmentation is a key idea in being able to guarantee end-to-end timing
constraints and to integrate cpu scheduling and resource allocation.

Segmentation is the process of dividing resources of the system into units where
the size of the unit is based on various criteria particular to the resource under
consideration and to the application requirements. For example, dividing time on a
bus into fixed slots with fixed start times is an example of segmentation. Dividing
time on a bus into slots of two different sizes is also segmentation which might be more
suitable for application environments where there is roughly a bimodal distribution
of message sizes. Dividing time into bounded size packets, but allowing the start of
the packet to begin anywhere is yet another “more relaxed” example of segmentation
in that the packet size is segmented, but the bus time is not. Allowing variable
length messages which can begin at any time is not segmentation. The goals ol using
segmentation in hard real-time systems are to develop well defined units of each
resource, to increase understandability, and to allow an on-line algorithm to assemble
the units in a way that provides predictability with respect to timing constraints.

Segmentation is a powerful concept and is used in many circumstances. For ex-
ample, timesharing systems relate the size of a page in memory with block sizes on
disks. One can refer to this as spatial segmentation. Hardware designers strive to



balance the data flow cycle time and data path widths with the timing of the control
memory, local store, and main memory so that no one component is either overde-
signed or is a bottleneck to performance. Thus hardware designers are integrating
spatial (data path widths) and multiple timing segments with respect to the hard-
ware. While segmentation is used in some form in many systems, we are advocating
the need to elevate the notion of segmentation to a central principle of hard real-time
systems. That is, we must extend the integration of spatial and timing segmentation
to the system level, not just the hardware level.

For example, in a hard real-time system time is one of the most important re-
sources to segment. However, a system is composed of many different time segments,
e.g., time segments for the cpu, for the network bus, for the internal bus, for the disk
controller, etc. The system is being driven by multiple, coordinated drum beats (i.e.,
time segments) with small differences of time granularity being managed by various
techniques such as latches®. Device virtualization is used when timing differences are
greater. For example, memory might be used as a virtual disk, so that time to store
data on this virtual disk is fast and predictable, and the actual disk write is done in
background mode without a severe timing constraint. Again, one way of thinking of
time segmentation is as if the timing and control circuits of a cpu are being extended
to the entire system. But timing segmentation is not sufficient by itself. Other re-
sources such as data and memory are segmented with respect to functionality and
size, and programs are segmented with respect to functionality, size and time. For
example, the following types of segments exist: code, task control blocks (TCB), task
descriptors (TD), local data, data (including shared memory), ports, stacks, virtual
disks, and non segmented memory. TCBs, TDs, virtual disks, and stacks are of fixed
size while the other types of segments have variable size, but the size is fixed at
invocation time. By design, code segments are not large and have small variance in
execution time, if at all feasible. '

3 The Scheduling Algorithm

The scheduling algorithm has several primary contributions including: the ability to
perform a gnarantee on-line, the ahility to utilize all the nodes of a distributed svstem
for a hard real-time system, the ability to predict when a task or set of tasks cannot
meet their deadline, resulting in the feature of being able to predict timing faults
before they occur. The main ingredient of the scheduling algorithm is the guarantee
routine.

3Latches are flip-flops organized as a storage register used to hold signals for brief periods to
overcome small differences in timing between the cpu and other system components.

10



The basic notion and properties of guarantee have been developed elsewhere [18]
and have the following characteristics,

e it integrates cpu scheduling with resource allocation,

e conflicts over resources are avoided thereby eliminating the random nature of
waiting for resources found in timesharing operating systems (this same fea-
ture also tends to minimize context switches since tasks are not being context
switched to wait for resources),

o there is a separation of dispatching and guarantee allowing these system func-
tions to run in parallel; the dispatcher is always working with a set of tasks
which have been previously validated to make their deadlines and the guarantee
routine operates on the current set of guaranteed tasks plus any newly invoked
tasks,

e early notification: by performing the guarantee calculation when a task arrives
there may be time to reallocate the task on another host of the system via
the global module of the scheduling algorithm; early notification also has fault
tolerance implications in that it is now possible to run alternative error handling
tasks early, before a deadline is missed,

e the guarantee can employ different strategies for deciding if a task can meet its
deadline as a function of the deadline, resource requirements, criticalness, and
precedence constraints of the incoming task,

e using segments and precedence constraints it is possible to guarantee end-to-end
timing constraints,

e within this approach there is notion of still “possibly” making the deadline even
if the task is not guaranteed, that is, if a task is not guaranteed it receives any
idle cycles and in parallel there is an attempt to get the task guaranteed on
another host of the system subject to location dependent constraints,

e some real-time systems assign fixed size slots to tasks based on their worst case
execution times, we guarantee based on worst case times but any unused cpu
cveles are reclaimed when resource conflicts don’t prohihit this reclamation and
not lost,

e worst case execution time is computed for a specific invocation of a task and
hence will be less pessimistic than the absolute worst case execution time,

e the guarantee routine supports the co-existence of hard and soft real-time tasks,
and
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e the guarantee can be subject to computation time requirements, deadline or pe-
riodic time constraints, resource requirements where resources are segmented,
criticalness levels for tasks, precedence constraints, I/O requirements, etc. de-
pending on the specific guarantee algorithm in use in a given system. This is a
realistic set of requirements. Note that current real-time executives provide lit-
tle support with respect to handling tasks with deadlines and general resource
requirements, and no support for end-to-end scheduling.

The Segmentation principle applied to the kernel provides well defined resource
units. The guarantee algorithm maps the task requirements onto the resource seg-
ments. In general, this mapping is NP-hard, hence heuristics are required. We now
describe the scheduling algorithm and give an example to provide the reader a full
understanding of the problem.

The Spring kernel local scheduler considers the problem of scheduling a set of n
tasks 7, in a system with r resources R. To simplify the discussion, we first describe
the algorithm for independent tasks on nodes with a single application processor and
a single system processor. At the end of this section we then describe the exten-
sions needed to handle precedence constraints, periodic tasks, multiple application
processors and criticalness. We will also discuss the run time costs of the algorithm.

We now begin the discussion by concentrating on the most difficult aspect of
scheduling, handling the resource requirements of tasks. It is this aspect of scheduling
that provides resource conflict avoidance and thereby predictability.

A resource can be used in two different modes: When in shared mode, several
tasks can use the resource simultaneously; when in ezclusive mode, only one task can
use it at a time. A file or data structure are examples of such resources: a file can
be read by multiple users simultaneously but can be written by a single user only. A
CPU, on the other hand, is a resource that can be used only in exclusive mode. Each

task T € 7, has

1. Processing time, Tp > 0,
2. Deadline, Tp,
3. Resource requirements, Tp = (Tr(1),Tr(2),..., Tr(r)), where

0 T does not require resource R;;
Tr(i)=¢ 1 T requires R; in shared mode;
2 T requires R; in exclusive mode,

and
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4. Scheduled start time, T,,, (determined from the processing time, deadline, and
resource requirements of all tasks).

A partial schedule is a subset of the tasks in 7 whose scheduled start times have
been assigned. A partial schedule S is feasible if the scheduled start times are such
that all the tasks in S will meet their deadlines, i.e., VT € S,(Tyt+Tp < Tp). For the
tasks in a feasible schedule, the resources required by each task are available in the
mode required by the task at its scheduled start time. A set of tasks is schedulable
if there exists a feasible schedule for it. Thus, the scheduler must determine if a
feasible schedule for a set of tasks exists. Also, it should be obvious from the above
description that we are interested in non-preemptive scheduling. Thus, once a task
begins execution, it will release its resources only after it has executed for Tp units
of time.

Suppose tasks in set I' have been previously scheduled and a new task arrives.
We attempt to schedule the set of tasks I1 = I'U {new task}. If this set of tasks is
found schedulable, the new task is scheduled, otherwise not. In either case, tasks in
I' remain scheduled.

For a given set of tasks, the problem of finding a feasible schedule is, in fact, a
search problem. The structure of the search space is a search tree. The root of the
search tree is the empty schedule. An intermediate vertez of the search tree is a
partial schedule. A leaf, a terminal vertex, is a complete schedule. Note that not all
leaves correspond to feasible schedules. The goal of the scheduling algorithm is to
search for a leaf that corresponds to a feasible schedule.

An optimal algorithm, in the worst case, may make an exhaustive search which
is computationally intractable. In order to make the algorithm computationally
tractable even in the worst case, we take a heuristic approach for this search. We
develop a heuristic function, H. That is, on each level of the search, function H is
applied to each of the tasks that remain to be scheduled. The task with the minimum
value of function H is selected to extend the current (partial) schedule. As a result
of the above directed search, even in the worst case, our scheduling algorithm is not
exponential. Fortunately. onr simulation studies, described in [31]. [32], and [33] show
that algorithms using linear combinations of simple heuristics perform very well —
very close to the optimal algorithm that uses exhaustive search.

The pseudo code for our scheduling algorithm is given in Figure 2. The algorithm
maintains two vectors EAT® and EAT®, each element of the vector corresponding
to a resource. EAT? and EAT®, respectively, indicate the earliest available times of
resources in shared and exclusive mode, given that the tasks in schedule have been
scheduled and tasks in the task_set remain to be scheduled. At each level of search,

13



Procedure Scheduler(task_set: task_set_type; var schedule: schedule_type; var
schedulable: boolean);

(*parameter task.set is the given set of tasks to he scheduled*)
VAR EAT?, EAT®: vector.type; (* Earliest Available Times of Resources *)

BEGIN

schedule := empty;

schedulable := true;

EAT® := 0; (* a zero vector®)

EAT® := 0O;

WHILE (NOT empty(task.set)) AND (schedulable) DO

BEGIN

calculate T, for each task T € task.set;
IF NOT strongly-feasible(task set, schedule) THEN
schedulable := false;

ELSE
BEGIN

apply function H to each task in task_set;
let T be the task with the minimum value of function H;
Tost = Teat;
task_set := taskset — T ;
schedule := append(schedule, T); (* append T to schedule *)
calculate new values of EAT* and EAT®;
END;
END;
END;

Figure 2: Heuristic §gheduling Algorithm



according to the earliest available times of resources EAT’ and EAT®, the algorithm
calculates the earliest start time T, for each task which remains to be scheduled.
The detailed computation methods for EAT*, EAT*, and T,,, are not discussed here

(see [28]).

The algorithm invokes a boolean function called strongly-feasible. A feasible par-
tial schedule is said to be strongly-feasible if all schedules obtained by extending this
schedule one more level with any one of the remaining tasks are also feasible. If
extending a feasible partial schedule by any one of the remaining tasks makes the
extended schedule infeasible, then in none of the possible future extensions will this
task meet its deadline. Hence it is appropriate to stop the search when a partial
schedule is not strongly-feasible.

From the pseudo-code, we see that beginning with the empty schedule, the algo-
rithm searches the next level by expanding the current vertex (a partial schedule)
to only one of its immediate descendants. If the new partial schedule is strongly-
feasible, the search continues until a full feasible schedule is met. At this point, the

searching process (i.e., the scheduling process) succeeds and the task set is known to
be schedulable.

If at any level, a schedule that is not strongly-feasible is met, the algorithm
stops the searching (scheduling) process and announces that this set of tasks is not
schedulable and typically either an error message is sent, an error handler is executed,
or distributed scheduling is invoked. On the other hand it is also possible to extend
the algorithm to continue the search even after a failure, for example, by limited
backtracking. While we do not discuss backtracking in detail, we will later present
some performance results where we allow some limited amount of backtracking.

Let us now consider some scheduling examples to clarify both the algorithm and
the above terminology. Assume that we are attempting to schedule a set of 5 tasks
having parameters as shown in Table 1.

If the scheduling algorithm uses an H function defined as H(T) = Tp, where Tp
is the processing time, we have

H(Ty) < I(T.)

for alli =1, 3, 4, and 5. Hence, the algorithm will select T; to to be scheduled first.
This new schedule is strongly-feasible and hence the scheduling process will continue
with the selection of T3. This partial schedule is not strongly-feasible since T; will
miss its deadline. Hence the scheduling process stops immediately.

If the scheduling algorithm uses H(1') = Tp, then
H(T)) < H(T)

15



Processing Time | Deadline | Resource Requirements
__.Tasks ~ R, R, R;
T 2() 30 2 2 1
T, 10 90 2 0 2
T3 15 40 2 1 0
Ty 20 55 0 2 2
T 20 65 0 0 1

Table 1: Parameters of 5 Tasks

for all i = 2, 3, 4, and 5. Hence, T} will be selected, followed by T3 and T, at
subsequent levels. However, at this point the partial schedule is not strongly-feasible
since Ts will miss the deadline. A smarter scheduler, after selecting T, would schedule
Ty next, because T} and T can run in parallel. Then by scheduling T3, T; and T3 in
this order, every task will finish before its deadline.

Clearly, at each level of search, effectively and correctly selecting the immediate
descendant is difficult, but very important for the success of the algorithm. The
heuristic function H becomes the core of the algorithm.

.y .

From extensive simulations reported in [33] we have determined that a combina-

tion of two factors is an excellent heuristic function H. Consider:

e Min.D + Min_S:
H(T)=Tp 4 W * Teu;

In the above formula, W is a weight, and may be adjusted for different application
environments. We have shown that no single heuristic performs satisfactorily and that
the above combination of factors does perform well. These two factors address the
deadline, the worst case computation time and resource contention — three important
issues.

One important aspect of this study, different from previous work, is that we specif-
ically consider resource requirements and model resource use in two modes: exclusive
mode and shared mode. We have shown that by modeling two access modes, more
task sets are schedulable than if only exclusive mode were used. Further, this al-
gorithm takes realistic resource requirements into account, and it has the appealing
property that it avoids conflicts (thereby avoiding waits) over resources. It is impor-
tant to note that resource conflicts are solved by scheduling at different times tasks
which contend for a given resource. This avoids locking and its consequent unknown
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delays. If task A is composed of multiple task segments, and task A needs to hold a
serially shareable resource across multiple task segments, then that resource is ded-
icated to task A during that entire period, call it X, and other tasks which need
that resource cannot be scheduled to overlap with task A during period X*. Other
tasks can overlap with task A. This strategy also minimizes context switches, since
tasks are not subject to arbitrary interrupts generated by tasks arbitrarily waiting
for resources. As an aside, if a particular hard real-time system has no conflict over
resources except the CPU then it is possible to assume that resources are always
available to ready tasks and one may use our preemptive algorithm [32], instead of
the non-preemptive algorithm presented in this paper.

Run time cost of the non-preemptive scheduling algorithm is an important factor
to consider. We measured the execution time cost for our algorithm on a VAX 11/780
for task sets of different sizes and for 7 critical resources® at each site. The cost of
the algorithm depends on the number of backtracks allowed. (In applying the H
function, we have capped the number of backtracks.) For example, for 10 tasks and
no backtracks the algorithm runs in 22.5 ms. For 10 tasks with with a maximum of n®
backtracks, the algorithm runs in 51.6 ms. For 30 tasks with backtrack we measured
the algorithm as needing 160 ms. These figures are presented to give the reader
a feeling for the cost of the algorithm if implemented in software. Hence, without
further optimizations nor specialized hardware support for the scheduling algorithm,
we expect that the Spring kernel is usually dealing with tasks with laxities of 200
ms or greater. However, we believe that significant optimizations on the algorithm
are possible, and have preliminary results in this area. For example, suppose that
there are hundreds of active tasks at a given site. In this case we can cap the cost
of the algorithm by taking a slice of, say at most 30 tasks, from the STT and trying
to reorder just those 30, rather than the entire table. Other optimizations are also
possible.

It is also important to note that the execution time cost of the algorithm is a
function of the average number of resources that each task requires, and not the
total number of resources. Consequently, even if there are 100’s of critical resources
defined per site, as long as each task requires some small number of them (e.g., less
than 10), then the impact of the number of resources on the execution time of the
algorithm is negligible. '

Many extensions to the algorithm described above are possible: First of all, it is
easy to immediately extend the algorithm to handle the case where each resource may
have multiple instances and a task may request one or more instances of a resource.

iGeneral real-time system design rules encourage a programming style in which no task holds a
resource for a long period of time (over many segments).

5Many other resources may exist, but if they are not shared in some way then they need not be
addressed by the guarantee routine.
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For this case, the vectors EAT® and EAT® will be matrices, each row corresponding
to a resource, and cach matrix clement corresponding to an instance of a resonrce.
llence, handling multiple applicalion processors is simple, and is accomplished by
making the exclusive resource entry for the processor, a vector.

Second, the algorithm can be extended to handle the case where tasks can be
started only after some time in the future. For example, this occurs for periodic
tasks, and for non-periodic tasks with future start times. Conceptually, the only
modification that needs to be made to our scheme is in the definition of tasks’ sched-

uled start time:
T.,. = Maz(T’s start time, EAT}")

where u = s or e if T needs R; in shared or exclusive mode, respectively. However,
more efficient techniques to handle periodic tasks are being investigated. These
techniques are based on a guaranteed template so that each instance of a periodic
task need not be guaranteed separately.

Third, in order to handle precedence constraints we simply add another factor to
the heuristic function that biases those eligible tasks with long critical paths to be
chosen next. A task becomes eligible to execute only when all of its ancestors are
scheduled. Precedence constraints are used to model end-to-end timing constraints
[8]. Again, various optimizations are being investigated here.

Fourth, a major advantage of our approach is that we can separate deadlines
from criticalness. However, for ease of explanation and to emphasize the avoidance
and resource requirements aspects of our scheduling approach, the above algorithm
is described using deadlines only. In actuality, in the first phase the guarantee is
performed as described above using deadlines and resource constraints. If the task
is guaranteed then the criticalness value plays no part. On the other hand, when a
task is not guaranteed, then the guarantee routine will remove tasks from the system
task table of lower criticalness than the new task if those preemptions contribute to
the subsequent guarantee of the new task. The lowest criticalness tasks which were
preempted, or the original task, if none, are then subject to distributed scheduling.
Various algorithms for this combination of deadlines and criticalness, and local and
distributed scheduling have been developed and analyzed [2].

Still open are the issues of combining preemptive and non-preemptive tasks and
scheduling dependent task groups. We have preliminary ideas for these problems,
but they have not been tested.
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4 Other Kernel Features

The Spring kernel design has some features similar to current real-time operating sys-
tems such as the VRTX kernel [28] or the Hawk kernel {13}, but extends these features
in many ways including support for multiprocessors, support for a distributed sys-
tem, a new scheduling algorithm, and careful rework of some features to make them
integrate with our new scheduling algorithm. System primitives have capped exe-
cution times, and some primitives execute as iterative algorithms where the number
of iterations it will currently make depends on state information including available
time.

The kernel supports the abstractions of tasks, task groups, dependent task groups,
various resource segments such as code, T'CBs, TDs, local data, data, ports, virtual
disks, non segmented memory, and IPC among tasks. It is possible to share memory
(one or more data segments) between tasks. Scheduling is an integral part of the
kernel and the abstraction provided is one of a guaranteed task set. The scheduling
algorithm handles resource allocation, avoids blocking, and guarantees tasks; the
scheduling algorithm is the single most distinguishing feature of the kernel. I/O and
1/0 interrupts are primarily handled by the front end I/O subsystem. It is important
to note that the Spring kernel could be considered a back-end hard real-time kernel
that deals with deadlines of high level tasks. Because of this, interrupts handled by
the Spring kernel itself are well controlled and accounted for in timing constraints.
A brief overview of these additional aspects of the Spring kernel is now given.

4.1 Task Management

The Spring kernel contains task management primitives that utilize the notion of
preallocation where possible to improve speed and to eliminate unpredictable delays.
For example, all tasks with hard real-time requirements are core resident, or are made
core resident before they can be invoked with hard deadlines. In addition, a system
initialization program loads code, set up TCBs, TDs, local data, data, ports, virtual
disks and non segmented memory using the kernel primitives. Multiple instances
of a task may be created at initialization time and multiple free TCBs, I'Ds, ports
and virtual disks may also be created at initialization time. Subsequently, dynamic
operation of the system only needs to free and allocate these segments rather than
creating them. Facilities also exist for dynamically creating new segments of any type,
but with proper design such facilities should be used sparingly and not under hard
real-time constraints. Using this approach, the system can be fast and predictable,
yet still be flexible enough to accomodate change.
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The primary task management primitives include:

o CREATE - gets memory for the code segment, loads the code, gets a TD
and initializes the TD, and then invokes CREATE-INSTANCE. Again, this
command is invoked at system initialization time, or possibly after failures, or
when new code must be loaded from disk (a rare occurrence).

o CREATE-INSTANCE - this primitive gets a stack, local data area, TCB (and
initializes it), ports, data, and virtual disks for this instance of the task. Mul-
tiple instances might be required, in which case the primitive loops to create
multiple copies of the required segments, but all the instances share the code

and TD.

e DELETE - task and all its associated segments are cleared from memory and
the memory space for the code, local data, and data is returned to the non
segmented memory segment while all other segments are returned to their re-
spective free lists. Note that all instances of this task are deleted.

o DELETE-INSTANCE - same as delete except code and TD are not deleted.

e SUSPEND - a task is placed on a wait queue; only a task without a hard real-
time deadline can SUSPEND. Such non real-time tasks use either idle cycles
or cycles dedicated to non real-time tasks, if any. In addition, a SUSPENDed
task must release its resources.

e RESUME - this is the mechanism for pulling a SUSPENDed non hard real-time
task off the suspend wait list. Any resources it needs have to be reacquired.

o DELAY - a hard real-time task can DELAY itself only if it is willing to be reeval-
uated for guarantee again and with a new deadline, i.e., a task DELAYING itself
is treated as a future arrival of a non-periodic task (it will be reevaluated at
that future arrival time or earlier if spare cycles exist).

e ASK - inquires as to the criticalness, the real-time constraint, and/or any other
properties of this task. That is, this primitive can read the TD or TCB.

o SET - sets any property of a task or task instance; for example, it can change
the real-time constraint description or its value, or it can set the criticalness;
as an example, it is possible that the MT.C', ar a human operatar, or the tack
itself, might be permitted to dynamically modify criticalness.

4.2 Memory Management

Memory management techniques must not introduce erratic delays into the execution
time of a task. Since page faults and page replacements in demand paging schemes
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create large and unpredictable delays, these memory management techniques are
not suitable to real-time applications with a need to gnarantee timing constraints.
Instead, the Spring Operating System memory management adheres to a memory
segmentation rule with a fixed memory management scheme. Let us now provide an
example. We require that there be a reasonable amount of memory at each host®, and
that memory be considered a single virtual address space (see Figure 3). Memory
segments include code, local data, data (including shared data), ports, stacks, virtual
disks, TCBs, TDs and non segmented memory (See Figure 4). Tasks require a
maximum number of memory segments of each type, but at invocation time a task
might dynamically require different amounts of segments. The maximum is known a
priori. Tasks can communicate using shared memory or ports. However, recall that
the scheduling algorithm will automatically handle synchronization over this shared
memory or ports. Tasks may be replicated at one or more sites. The Configurator,
calling the kernel primitives, initially loads the primary memory of each site with the
entire collection of predetermined memory segments. Changes occur dynamically to
this core resident set, but it is done under strict timing requirements or in background
mode.

To support predictability, a fixed partition memory management scheme is used.
The primary memory management primitives are:

GETMEM - creates a new memory segment of a certain type and size

RELMEM - releases this memory segment to non segmented memory

ALLOC - chooses the first free segment of a given type, if none, returns an
error

FREE - segment is returned to its associated free list

Let us now tie together memory management primitives, task primitives, the
scheduling algorithm and the fact that we have a multiprocessor. In the Spring kernel,
the OS is core resident. The majority of it exists on the system processor with a small
piece duplicated on each application processor. A set of M task descriptors and N task
cantrol blacks (TCRe) are CREATED at svstem initialization time and thereafter
ALLOCATed dynamically to activated and guaranteed tasks. These segments are on
the system processor. A control region for each task that includes code, a user stack,
local data, data, ports, virtual disks, is maintained on the application processor.
Stack sizes are capped; if a task attempts to push onto a full stack, an error occurs
(treated similarly as an attempt to divide by zero).

“Many rt;.vi‘l-vtinruvs systéms are cénnposexl of disjoint phases, c.g., in the Space Shuttle [7] there are
pre-flight processing, liftoff, space cruising, and descent phases. In this type of non-distributed system,
the amount of memory needed is enough to contain the largest phase, not the entire system.
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When a task is aclivated, any dynamic information about its resource require-
ments or timing constraints are computed and SET into the TCB; the gnarantee
routine then determines if it will be able to make its deadline using the algorithm
described in section 4. Note that the execution of the guarantee algorithm ensures
that the task will obtain the necessary segments such as the ports, data segments,
etc. and at the right time. (Again, tasks always identify their maximum resource
requirements; this is feasible in a real-time system). If a task is guaranteed it is
placed in the system task table (part of memory in the system processor) for use by
the application processor dispatcher. A separate dispatcher exists for system tasks
which are executing on the system processor. Note that a fixed partition memory
management scheme (of multiple sizes) is very effective when the sizes of tasks tend
to cluster around certain common values, and this is precisely what our system expe-
riences. Also, pre-allocating as much as possible increases the speed of the OS with
a loss in generality. One of the main engineering issues of hard real-time systems
is where to make this tradeoff between pre-allocating resources and flexibility. Our
approach makes this tradeoff by dedicating front-end processors to both I/O and
tasks with short time constraints. As functionality and laxity of tasks increase, we
employ on-line, dynamic techniques to acquire flexibility.

Since predictability is of utmost importance, a possible problem is what happens
when memory is full. Are predictability and the guarantee violated in this case?
The answer is no. The reason is that our scheduling algorithm handles this directly
because it takes resource requirements into account when guaranteeing. That is, the
task is guaranteed if there is a slot of time in which the task can obtain all its required
resources (including memory) and finish executing before its deadline. Hence, the
new task attempting to obtain memory is not guaranteed, and other strategies then
come into play.

Let’s conclude this section with a brief description of the layout of primary mem-
ory. The system processor main memory (See Figure 5) contains trap and interrupt
vectors and their handlers, two STT collections of pointers for each application pro-
cessor (this enables the guarantee routine to be working on one set of pointers in
parallel with the dispatcher using the second set), the application task TCBs, de-
lay queue pointers, system TCBs, the bidder, the MLC, the Configurator, the local
scheduler and guarantee rontine. the swapper. the svstems processor dispatcher. the
page lables (which are used for relocation ease but page faults do not vccur since
essentially everything is core resident), areas for communication to the I/0 and file
subsystems, and the rest of the kernel. The application processor’s memory (Figure
6) contains the code, local data, shared data, stacks, and ports of application tasks,
and a dispatcher which goes to the system memory to ascertain which task to run
next, IPC primitives, memory management code, and page tables. The I/0 pro-
cessors memory (Figure 7) contain trap and interrupt vectors and their associated
handlers, I/O data structures, device drivers, IPC support to the other processors at
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this node (signals and moving data in and out of the other memories), and the file

system.

4.3 IPC and Ports

The kernel also supports synchronization and communication with 8 interprocess
communication (IPC) primitives. The IPC primitives are:

SEND - send a message to a port and don’t wait; the message may have a dead-
line and this primitive can be seen as implementing a TIMED-DATAGRAM

e RECYV - receive a message from a port and don’t wait
e SENDW(B) - send a message to a port and wait a time B
e RECVW(B) - receive a message from a port and wait a time B

e ALARM - a most important message; transmit immediately regardless of con-
sequences to all other messages.

e BROADCAST - send to all or to a group of nodes (multicast); this feature is
not supported as a time constrained message so it will transmit with lowest
importance.

¢ TIMED-VIRTUAL-CIRCUIT - sets up a one way end-to-end communication

channel with guaranteed worst case delivery time

Ports may be local or remote. Receives may only be done from local ports. The
kernel to kernel protocol takes care of sending a message to a remote port. The LAN
controller implements a time constrained window protocol [34] with special features
for alarms, timed virtual circuits and broadcasts, and does DMA into application
processor memory to directly extract the message. The higher layers of the protocols
are implemented in a bidder module that is running on the system processor. The
kernel to kernel protacal is a high performance. minimum copying TPC pratacal.
There are no automatic acknowledgments on the messages, messages are of fixed
maximum size, and responsibility for reliable transmission is left to the application
layer. The assignment of a timing constraint to a message transmission is done on

the IPC call itself.

Real-time tasks should be programmed with the SEND and RECV primitives
whenever possible. In many cases a little thought will enable the programmer to
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implement real-time tasks with such primitives. In certain cases it may not be pos-
sible or desirable to have a task continue without first waiting for a message. A
real-time programmer is permitted to wait for a bounded time B in this case. This
bounded time is taken into account in guaranteeing a task. When the bound expires
the task must still have some logic to decide what to do in this case. This set of
primitives along with the guarantee algorithm prevent a process from waiting past
its deadline. That is, scheduling must take an integrated approach and therefore take
communication into account.

In timesharing systems semaphores and monitors are typical solutions for guar-
anteeing mutual exclusion. While it is possible to implement semaphores and their
associated P and V operations using the SENDW and RECVW primitives, our full
scheduling approach specifically avoids the need for semaphores by implementing mu-
tual exclusion directly in the schedule. '

Currently, any task that needs to wait for an event or a combination of events must
be programmed to do that with the above bounded SENDW and RECVW primitives,
or provide enough information to the scheduler so that it is handled by the scheduler.
Because of the features of the .the Spring kernel including the scheduling algorithm,
the preallocation strategy, the dedication of resources, and the programming strategy
of not waiting, we expect the system to be largely free of blocking. Synchronization
is achieved largely by the scheduler, and if not in this manner, then by bounded
waits and polling. The time for the bounded waits is already accounted for in the
guarantee process.

For example, if a sensor is producing data, that data is processed and filtered by
a dedicated processor in the I/O subsystem. When the data is ready it is passed to
a higher level task whose job it is to take action on that data. Hence, a precedence
relation exists. Passing the data to a higher level task means that the data is left
for the higher level task, which has been guaranteed to run periodically. Now it may
happen that when the higher level task runs the data is not actually ready (i.e., the
precedence constraint is not met). The higher level task might then do a bounded
wait if it were already accounted for in the guarantee, or if the application semantics
permits, it just goes on and performs some action such as letting the next periodic
instance of the higher level task operate on the data if it hecomes available by that
time, or performs yet some other action such as using an estimation made [rom the
old data. Again this depends on the application.

Note that the above primitives can also be used to implement a TIMED MON-

ITOR. A timed monitor provides mutual exclusion with a bounded delay and is a

useful primitive for real-time applications.
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4.4 1/0

Many of the real-time constraints in a system arise due to 1/O devices including
sensors. The set of 1/0 devices that exist for a given application will be quite
static in most systems. Even if the set of 1/O devices changes since they can be
partit'iohed from the main system and changes to them are isolated these changes
have minimal impact on the rest of the kernel. Special independent driver processes
must be designed to handle the special timing needs of these devices. In Spring we
separate slow and fast 1/0 devices. Slow I/O devices are multiplexed through a front
end dedicated I/O processor. System support for this is preallocated and not part of
the dynamic on-line guarantee. However, the slow I/O devices might invoke a task
which does have a deadline and is subject to the guarantee. Fast I/0 devices such as
sensors are handled with a dedicated processor, or have dedicated cycles on a given
processor or bus. The fast 1/O devices are critical since they more closely interact
with the real-time application and have tight time constraints. They might invoke
subsequent real-time higher level tasks. However, it is precisely because of the tight
" timing constraints and the relatively static nature of the collection of sensors that we
pre-allocate resources for the fast I/O sensors. In summary, our strategy suggests that
many tasks which have real-time constraints can be dealt with statically, leaving a
smaller number of tasks which typically have higher levels of functionality and higher
- laxity for the dynamic, on-line guarantee routine.

Note that VLSI techniques (in particular, application specific integrated circuits
(ASIC)) have provided the capability for the peripheral subsystem (in all computer
* systems) to attain a much higher level of intelligence, autonomy and processing power

‘than in the past. For this reason, peripheral functions are becoming more of a factor
" in overall system design.

4.5 Interrupts

Another important issue is interrupts. Interrupts are an environment consideration
‘which causes problems because they can create unpredictable delays, if treated as a
random pracess, as is done in most timesharing operating systems. Further, in most
timesharing systems, the operating system often gives higher priority to interrupt
handling routines than that given to application tasks, because interrupt handling
routines usually deal with I/O devices that have real-time constraints, whereas most
application programs in timesharing systems don’t. In the context of a real-time
system, this assumption is certainly invalid because the application task delayed by
interrupt handling routines could in fact be more urgent. Therefore, interrupts are
a form of event driven scheduling, and, in fact, the Spring system can be viewed as
having three schedulers: one that schedules interrupts (usually immediately) on the
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front end processors in the I/O subsystem (what was discussed above), another that is
part of the Spring kernel proper that guarantees and schedules high level application
tasks that have hard deadlines, and a third which schedules the OS tasks that execute
on the system processor. Interrupts from the front ends I/O subsystem to the Spring
kernel are handled by the system processors so this doesn’t affect application tasks. In
other words, I/0 interrupts are treated as instantiating a new task which is subject to
the guarantee routine just like any other task. The system processor fields interrupts
(when turned on) from the I/O front end subsystem and shields the application tasks,
running on the application processors from the interrupts. All OS tasks that run on
the system processor have a minimum periodic rate which is guaranteed, but can also
be invoked asynchronously due to events such as the arrival of a new task, if that
asynchronous invocation would not violate the periodic execution constraint of other
system tasks. Asynchronous events are ordered by importance, e.g., a guarantee task
is of higher importance than running the meta level controller.

If deadlines for a high level task are very short, if this task must run on an
application processor, and if this task is invoked from the I/O subsystem, then time
for this task is preallocated. Our scheduling algorithm is flexible enough to handle
this variation.

Intraprocessor interrupts like zero divide, overflow, accessing restricted memory,
execution of a priviledged instruction, machine failure, and parity errors are consid-
ered errors. The current task is in error (maybe through no fault of its own) and may
miss its deadline. If an error is recoverable and the executing task can still execute
within its worst case time, then our system would still permit it to execute by its
deadline and this would not affect other tasks because all of the tasks have been
guaranteed with respect to worst case times’. If a task needs to execute longer than
its anticipated worst case time, say to handle error recovery, then it is possible that
it may still execute by using idle cycles up to its deadline, but it is treated as a task
without hard real-time constraints. If it does not finish in time, this is considered an
error, just like a divide by zero.

5 Miscellaneous Comments about the Spring Ker-
nel

To further clarify some of the points made above, and to address some issues normally
discussed when describing kernels, this section contains a miscellaneous collection of
comments about the Spring kernel.

7In general, real-time system designers and programuners need to prevent long worst case times for
tasks.
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o One goal of the Spring kernel is to allow various scheduling algorithms to be
substituted for each other, depending on the requirements of a particular sys-
tem. This approach adheres to the open system philosophy found in Smalltalk
and Cedar. We have designed a standard scheduling algorithm interface so
that different scheduling algorithms are easily inserted into different versions of
Spring. This will enable the meta level controller (MLC) to easily substitute
one algorithm for another; or if a version of Spring does not contain the MLC,
then the designer can choose the most appropriate algorithm for his application.

e A strict programming discipline must be followed both for the Spring Kernel
and for the applications that use it. For example, extremely large tasks which
have a very large variance in computation time requirements must be avoided,
and placing abritrary delay statements throughout a hard real- time task is
not permitted. Other rules and constraints are being devised as we proceed
through the design and implementation of Spring [27).

e In Spring, mutual exclusion is handled essentially “by avoidance” of conflict
through the scheduling algorithm. For some tasks, a programmer may be will-
ing to wait for time delta T for a resource. This amount of time could then
be accounted for as part of the task’s worst case computation time. For the
task which executes the wait, there is no problem. However, should it get the
resource then, this might affect other tasks which were scheduled for that re-
source. Hence, we do not permit the delay statement inside application tasks
except as the final statement.

¢ The Spring Kernel also minimizes the need for special signals that inform tasks
of start times when those tasks are part of a precedence structure. The reason
for this is that the start times are already accounted for in the schedule. This
does not preclude the use of signals altogether— signals are used to invoke non-
periodic tasks, or new periodic tasks, each of which is subject to the guarantee.
A delay statement issued at the conclusion of a task execution is treated as a
delayed signal.

¢ The system design is based on a collection of homogeneous nodes.

¢ Naming and Protection: The system name space is divided into user space and
system space. All system space names are globally unique and do not carry
any information about location (transparency). System names are given as
follows node.uniquenumber. User name space is hierarchical and a name server
exists to map user names into system names. A name server at each site also
knows where replicas of tasks exist. A cache is maintained at each node that
includes information on current locations of tasks. Little run—time protection
is provided at this time.

¢ Global system-wide resource management is accomplished by decentralized fa-
cilities. Each facility is composed of up to 4 modules (the dispatchers, local
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scheduler, global scheduler and meta level controller (MLC)). Active tasks are
located in main memory and are possibly replicated at other sites (in memory
or on disk). The global scheduler decides the location of execution for a task
if it cannot be executed locally. At times new copies or new tasks might have
to be made. MLC is responsible for actually moving tasks to other sites (say
for fault tolerance), or for moving tasks into or out of memory. Deadlines are
given with respect to the task being in memory. If a task is invoked and it is
not in memory, then it is composed of two phases: move into memory and then
once in memory it can accept activations that require that it make its timing
constraint.

The kernel also includes real-time clock features such as set-timer, sync-clock,
and time-of-day.

Summary

The Spring project has a number of major thrusts. One is the development and
implementation of the Spring kernel. The first level of design of the kernel is now
complete and a plan for rapid prototyping the kernel has been established. As im-
plementation begins we can expect changes, e.g., it may prove better to implement
GETMEM as multiple primitives, one for each segment type, rather than having a
single primitive for all segment types. As described in this paper, we believe that the
Spring kernel contains a number of innovative features that are being investigated as
research topics for next generation hard real-time systems.
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