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Abstract

In allocating files of a workstation (user) to file servers in a network, there
exist optimal policies that place all files for a given user on a single file server
[19]. Such policies, however, are only optimal if no file can be shared by more
than one user. In most realistic cases, however, file sharing is common. In
this paper, we show that a modified vertez allocation theorem provides optimal
performance when shared files are preallocated. ‘The paper presents heuristics
to determine the workload for cach of the file servers. ‘The behavior of the

heuristics is studied through numerous examples,

1 Introduction:

Local Area Networks (LAN’s) are one of the major recent developments in computer

systems. They allow resonrces such as print servers and file servers to be shared by
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many workstations. In this paper, we consider the allocation of workslations to file
servers so as Lo maximize the total utilization of these file servers.

Workstations access both private files and files that are shared among, many work
stations. We consider the problem of allocating private files of varions workstations
among file servers so as to maximize system throughput. We assume that the shared
files have heen preallocated. In order to solve the allocation problem we model the
combined workstation lile server system as a multiple class quencing network with
only one customer (workstation) in each class. The model assumes that the cornmum
cation medium is lightly loaded and ignores the queucing effects in the communication
medium.

Optimal allocation in queneing networks has been studied by several authors [3],
[16], [10], [12], [13], [4], [18], [19], [14]. The routing probabilities that give the min-
imum delay for an open network have been studied in [7]. Whittle [18] has charac
terized routing probabilities which maximize the input rate that saturates an open
network. ‘Lrivedi, ef al. [16] applied a numerical search technique to provide a unique
optimum for closed networks with a single customer class. 5. de Souza and Gerla
[4] found an optimal load distribution of the open class for mixed open and closed
networks using numerical methods. Tantawi and Towsley [12], [13] developed algo-
rithmic techniques for obtaining the optimal load distribution policy in distributed
computer systems and star conligurations with different Poisson streams of requests
arriving at various workstations. Woodside and Tripathi [19] gave an optimal allo-
cation for multiple class quencing networks with statistically identical workstations
and file servers. A Vertex-Allocation Theorem for file servers for queucing networks
was proved in [14].

The model in this paper can be considered an extension to the model consid-
ered in [19]. The earlier model assumed that there were no files shared among the
workstations. We prove that when the performance metric is throughput, an optimal

allocation is in the vertex subset of the search space. Thus, the search space for



Lhe optimal allocation of file servers is reduced to just a vertex set. However as the
nuinber of vertices is an exponential function of the number of workstations, it is
still difficult to obtain the best workload for each file server by an exhaustive search.
Heuristics for choosing an optimal workload for each file server are presented and
evaluated by comparing results obtained by searching the set of all feasible solutions.
In those cases where we are unable to obtain the optimum allocation, we compare
the heuristics to an unachievable upper bound.

Section 2 describes the model, introduces notation and presents the modified
Vertex-Allocation Theoreni. Section 3 presents three heuristics to determine near
optimal allocations for file servers. These heuristics are compared to cach other and

to the numerical results obtained by scarching the entire vertex set in section 4.

2 The Model

We consider a local area network with R workstations and M (ile servers as shown
in Figure 1. Usually, R is much larger than M. Each workstation stores information
on the file servers, and executes a two-phase cycle when requesting the information.
First, it executes locally for an average duration of Z seconds (including cpu and local
disk operations). Second, it accesses a file server requiring. on the average, X seconds
of service. The demands at both the workstations and the file servers are statistically
identical and independent for all workstations. ‘The communication time is included
in the model as part of Z. The contention delays of the communication medinm are
ignored under the assumption that the network is lightly loaded.

The model is assumed to belong to the separable class of queucing networks (1],
that is, the file servers are assumed Lo have either processor sharing or first-come-
first-served (FCF'S) discipline. If the FCFS discipline at a file server is assumed, then
the service time is assumed to be exponential and each file request has the same mean

service time. Last, successive transitions by a job are assumed to be independent.
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Figure 1: The system

We assume that there is ample storage capacity on the file servers and that the
shared files are preallocated to K (K < M) file servers, which are numbered 1 to K.
The remaining file servers are numbered from K + 1 to M. Workstation r requests
the shared files al lile server 7 with probability ;. Let py; denote the probability that

workstation 1 makes a request 1o server ¢ where the request can be cither to a shared

or a private file. Consequently,
0< pri S pni
pri = 0, K+1<i<M, 1<r<R
The system is modeled as a queueing network of M servers and R chains with
only one job in each chain (See Figure 2).

The allocation problem is to determine the best values for the probabilities pr;’s

that give the optimal performance (discussed later) and satisfy the constraints:

Vr, Bri <pri<1, and (1)
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Figure 2: Queuneing Network Model
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The performance measure that we wish to optimize is the total throughput in
file accesses per unit thme for the system. Maximizing this performance metric cor
responds to maximizing the total file server throughput. Since the service time of
cach file server is the same as others and the throughput of a file server is directly
proportional toits utilization, we are concerned with maximizing the total utilization

of all file servers. The total utilization is defined as

. A’ -
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where l/;(l"') is the utilization of the it* file server for the allocation n_'latrix P =
(s P2 Pty - ) Where iy = (P, Przy o PIM)-

We define P o be a feasible solution if it satisfics constraints (1) and (2). Let 7
denote the set of all feasible allocation vectors, i.e., T = {ﬁlﬁr,- <pi <1L,TM pi=
1}. We define the sct of vertex allocations to be V C T as:

. K
V = {PIP €T, pri € {ﬁrhl —Zﬁrl}v 1< < I\‘}
I#1
- K
U{PIP € 7-,7’1'1' € {ﬁrial - Zﬂrl}a K41 (, T AI}
=1

An allocation P € V is called a vertex allocation.

'he Tollowing theorem, which is called the Vertex Allocation I'heorem, is based
on the fact that the objective function (total utilization/throughput) is a monotonic
function (increasing or decreasing) of pri [15). Therefore, increasing (or decreasing)
the value of py; does not decrease the objective function. Consequently, the value of
pri can be either increased to its upper bound, 1 — 2,’;, i, or decreased Lo its lower

bound, fyi, without decreasing the objective function.

THEOREM 2.1 For the queucing network defined above, an optimal allocalion i € T

can be found in the verter set V.

T'he proof is similar to those used to prove Theorem 1in [15]. Tn fact, we can view
the shared files as preallocated service centers. This Theorem imnplies that one of the
optimal allocations places all allocatable files in one file server for cach chain in the
network. The next section describes several heuristics for allocating workstations to

file servers.



3 Algorithms for Allocations

If no file is shared (p;; = pr2 = -+ = prx = 0) and all file servers are identical, the

best workload for each file server is given by the following theoremn [19]:

THEOREM 3.1
If no file s sharved ( pyy = Pry = ... = prg = 0 ), an optitnum allocation for the
queneing model assigns s; workstations to the i** file server, where s; = J +1 for any

I° file servers and s; = J for the others, J and F satisfy the following relation:
R=JM+F.

In this case, the workload for cach file server is balanced. If there are shared files, the
problem is much more complicated. According to Theorein 2.1, all nonshared files of
a workstation should be allocated to one file server. Since there are M file servers
and I workstations in the system, there are M¥ possible allocations. We can find the
optimal allocation by computing the total utilization for cach allocation and choosing
the allocation with the largest utilization. If we do so, the time required for finding
an optimal allocation would be O(M¥x I,) where T, is the time required to solve
the multi-class queuing network model. Not only do the number of feasible vertex
allocations grow exponentially as a function of the number of workstations, 2, but
the time required to solve the model for cach allocation also grows exponentially as
a function of R |11].

As the computational requirements for obtaining an optimal solution to the prob-
lem are high, we will focus on heuristics for obtaining good subopiimal solutions to
the problem. As a first step to the development of these heuristics, we focus on the

following new optimization problem:

NL It R
Minimize Y D pri - —
i=1 Ir=1 M
stibject to
peV.
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In the context of this new problem we can visualize the file servers as bins into
which we are placing Inid (probability). A solution to this new problem attempts to
equalize the total amount of fluid in cach bin subject to constraint that the allocation
be a vertex allocation. One observes that the solution to this problem no longer
requires the solution Lo a mulli-class product form queucing nelwork.

The new optimization problem is NP complete [9]. The first heuristic for solving
this problem is an algorithm that exhaustively searches the set of all [easible vertex
allocations V. We shall refer to this as heuristic 1. The complexity of this heuristic
is still O(M™). However, as mentioned earlier, for each allocation we compute the
value of SM |ISF  pri - %| which takes much less time than computing the total
utilization of the system. Hence, the time required for finding an allocation using this
heuristic is reduced.

The following heuristic is more efficient than heuristic 1:

Heuristic 2

1. Iniialize sung for o= 1,--- M,

Zf:[ﬁri’ t = la"')h”
0, i= K41, M

SU; =

2. Forr:=11lo R do
(a) Let sumy be the minimum of sum;, 1=1 to M.
(b) sum, := sum, + p, (allocate workstation r to server t)

where p, is equal to | — M p,;.

In heuristic 2, all nonshared files of a workstation are allocated to the server with
the smallest sum at cach step. The complexity of this heuristic is O(RM), which is

considerably less than the complexity of heuristic 1. This complexity can be further



reduced to O(K log, K+ Rlog, M) if an ordered list of file servers according to sum;’s
is kept.

For heuristic 3, we first allocate the nonshared files of a workstation to servers K +1
to M until the sums of the probabilities exceeds a predefined value, threshold. Then,
we allocate the remaining nonshared files to servers 1 to M in a sequential manner.
The choice of the threshold value certainly affects the results of the heuristic 3. In the
extreme case if threshold = 0, heuristic 3 is exact the same as the baseline algorithm.
On the other hand if we choose a very large threshold, no files will be allocated to

shared file servers. To avoid the extreme cases, we let threshold be the average of

. 7"‘ ZH P
sums of p,;'s, that is, threshold = il or=l

Heuristic 3

~

. halialize sumng forao=1,--- M,

—~1 s .
_41‘::-'])1'1.) 2':"...?["

sum; =
0, t=N+1,--- M.
" .
2. threshold := Zﬁ-};ﬂ

3. counl := M — K; (number of file servers without shared files)

(a) WHILE (count > 0) AND (r < R) DO
(It there is a sumy for K41 <t < M which is smaller than the threshold,
this step allocates all nonshared files of a workstation to it)

BI;GIN

o choose a server, t, from servers K 41 lo M

whose swing ts smaller than threshold.

o suwinyg i sumy -l opy;

9



o [If sumn, > threshold, count := count -1;
I'ND
(b) | :=1;
(¢) WHILE » < 1R DO
(If all sumy’s for s = K +1,..., M are greater than the threshold, allocate
the rest workstations to servers 1+, M in turn)
BIEGIN
o sumny 1= sung -+ Py
o 1 := r+1; (for allocating next workstation)
o l:=141;Ifl>Mthenl:=1;

IND

,‘
1

The choice of a server ¢ in the first step of (a) can be hased either on the NEXT-1TT
algorithm, that is, we allocate files of workstations sequentially to a server whose sum
is less than the threshold; or on the WORST-FIT algorithm, that is, we allocate liles
to the server with the minimum value of sum. The worst case complexity of heuristic
3is O(R(M — K)). I an ordered list of sum’s for ¢ = K+ 1, -+, M is kept when
we use the WORST-FIT algorithm, the worst case complexity can be reduced to
O(Rlog,(M — K)).

Tt is difficult to theoretically cvaluate the quality of these heuristics. In the next

section, we will evaluate them empirically.

4 Numerical Validation

In this section we describe the results of a number of tests to evaluate the heuristics
presented in the previous section. Thesc tests compare the allocations obtained by the

heuristics with each other and with the optimal allocations. The optimal allocations

10



are obtained using a numerical search procedure to-search the entire vertex set. This
numerical search involves solving the queueing model for all possible parameters using
the solution packet QNAP2 [17]. We also perform several experiments where we were
unable to obtain the optimal allocation for comparison with the heuristics. In these
cases, we obtain an unachicvable upper bound on performance by assuming that all
liles are private and applying the algorithin presented in Theorern 3.1.

We perform two sets of experiments that differ according to the average terminal
service time. In one Z=1 and in the other Z=3. In these experiments, the service
times of file servers are all assuned to be exponentially distributed with an average of
1 time unit, X = I. The values of shared probabilities, p.;’s, are randomly assigned
in cach experiment. By applying heuaristics 1, 2 and 3 (using both NEXT-IIT and
WORST-FIT), we get four allocations. In addition to comparing the three heuristics

to the optimal solution, we also compare it to the following bascline algorithn:

Baseline Algorithm:
Randomly assign workstations to file servers so thal the tolal number assigued (o cach

Jile server differs by al most one.

Table 1 shows the experiments for 7 = 1. These experiments include models of
3, 1, 5 and 6 workstations with 3 file servers. Only file server 1 has the shared files.
From this table, we find that heuristic | gives the best results in most experiments.
The results from heuristic 2 are the same as or slightly better than those using the
lwo variations of heuristic 3. We also observe that the heuristic 3 using WORS'T-
FI'T" performs a little bit better than that using NEXT-FIT in some cases. Bt the
differences are very small. All of them are much better than the results obtaiued by
the baseline algorithm,

‘Tables 2 shows the experiments for Z = 3. These tables include three models.

The first one is a model of 15 workstations with 4 file servers. The second model



s for 4 workstations and 3 file servers. For these two models, there is only one lile
server with shared files. The third model is for 6 workstations and 3 file servers. In
this model, file servers 1 and 2 have shared fles. From these tables, henristic | still
gives the best results. Heuristic 2 yiclds slightly better results than both variations
of heuristic 3. The performance of all the heuristic allocations is much better than
that of the allocation produced by the baseline algorithin.

‘Tables 3 and 4 show the experiments for a larger number of workstations. Since the
size of the vertex allocation set (O(M™)) is quite large, we omit the experiments for
mnmerical search and hewristic 1 and instead provide an upper hound on performance.
In table 3 we present results from four experiments for 18 workstations and 3 or 4
(ile servers. File servers 1 and 2 have shared files with shared probabilities shown in
the lable. Table 4 also presents results from four experiments. The first one is for
18 workstations and 3 file servers (server 1 has shared files). The second and third
are for the 15 workstations and 18 workstations with 3 file servers (two of them have
shared files). ‘The last one is for 18 workstations and 4 file servers (two of them have
shared files). From these experiments, we observe that the results using the heuristies
are all mieh better than those using the baseline algorithm. Furthermore, heuristic
2 provides performance that is within 4% of the unachievable upper hound in all of

these experiments.
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Model Probality Utsil Uil Uil Util util
3.3 Py = 0.1 0.1 0.5 0.4 0.2
= 0.2 0.2 0.3 0.6 02
Py = 0.3 0.2 0.8 0.1 0.4
opt 1.419 1.419 1.286 1.369 1.359
heul 1.419 1.419 1.286 1.366 1.348
heu? 1.419 1.419 1.286 1.344 1.348
heud(W) 1.419 1.419 1.286 1.344 1.248
heud(N) 1.419 1.419 1.286 1.313 1237
base 1.359 1.388 1.19% 1.324 1.298
1.3 ny = 0.1 0.7 0.1 0.5% 0.1
Iy = 0.2 0.8 0.1% 0.75 0.2
Iy = 0.2 [PRA 0.2 0.66 v.2
i = _] e 06 0.2% 0.7% 0.a
opt 1.7a2 1.374 1.74¢ 1044
heat | 1eo | 1.374 1.746 1.244
heu? T 1.694 1.374 1.740 1.344
Thena(w) |7 Lea | 1,274 RZ) 1.334
hend(N) veo2 | 1413 1.731 1.334
hase | a2z | 2m 1.546 1.143
’-Tn-;_‘-"—' R T T _Tl (_l,”n:, 0.1
0.2% On 0s
.18 o7 02
02 0.9 0.25
0.3 0.7% 0.3
2.031 2.034 1,235 207 |
2.0 2.0084 1.235 2.0
2.031 2.034 1.235 2.0
2.031 2.014 1.23% 2.084
2.031 2.001 TS 2000
base 1.546 1.793 1816 e | 1m
. i.',.,:‘ 01 01 0.1 0.h 0 T
iy = 0.2 0 0.1y 0.9 09
Iy o= 0. 0.2 0.2 Q.7 02
gy = 0.4 o2 0.2 0.5 0
(RN ol 0 0.05 0.6% [V 31
Py = 0.6 0.1 0.25 0.85 0.25
opt 2.136 2.226 2.262 1.291 2.215
heul 2.136 2.226 2.240 1.291 2.215
heu2 2.135 2.213 2.213 1.291 2,208
heud(W) 2.13% 2.213 2.224 1.29) 2.205
heu3(N) 2131 2.207 2.224 1.290 2.191
base 1642 | 1.971 2.176 1.226 207

Table 1 Experiments for X=1, 7=




prob Util prob Uil prob ) vl

P11=0.1 Pr1=0.1 pr1=0.1  jp=0.1
P21=0.1 P21=0.2 P21 =0.5 P2=0.4

Pay =0.3 p3; =01 Pap=0.1
s, =) Pg1=0.4 Pa1 =01 P42 =0.0

fr1=0.6  juop=0.1

Poyz0l Bzt

opl 2.980 0.960% e L ’1—314__
—»hrul 2.980 0.9561 1.36¢6
heu2 2.980 0.9561 e 1363
heud(W) 2.080 0.9561 Al—,il"l_'a__.
heud(N) 2.980 0.9558 - ’ l.34-1-
- base 2.90) 0.9118 e
Py1=0.2 P11 =01 P11 =0.1 fryp=0.6
fr21=0.2 21 =0.15 21=02 =05
Py =02 Py =03 pgp=04
g, =02 Pq1=0.25 a1 =04 Pgp=0

P51 =05 =02
gy =0.8 Pp2=0.1

opt 2.910 0.963% 1.331
henl 2.910 0.9635 1.332
heu2 2.910 0.9627 1.832 |

heud(W) 2.910 0.9616 1.332
heud(N) 2.910 0.9616 1.332
base 2.626 0.9337 e
i1=0.3 P11 =07 Pry=0.1 =02
jrpy=0.3 P21=0.8 P =00 frp=0.4
$31=0.5 P31=0.2  pag=04
Piy,1 =0.3 Pg1=0.3 Pqy =0.3 Pa2=0.3

P51 =0.1 =01
Pgy =0.2 g2 =02

optl 2.742 0.9037
heut 2.782 0.9037
_._Ineu'z o 2.782 0.9037 -
—heu.'s(W) j;‘.‘ 0.9037
hend(N) 2.7R2 0.9034 T A |
hase o 2.'2(;; 0.87%
rr1=0.5 P11 =0.1 11 =0.1 iz =0.0
fr21=0.5 fig1=0.2 P21=0.1 p22=0.1
P31=0.2 P31=0.2  P32=02
P15,1=0.5 Pg1=0.3 $41=0.1  Pg2=0.0
151 =0.2 P52=0.2
Pg1=0.1  pg2=0.1
opt 1.988 0.9625 1.382
heut 1.988 0.9625 1.381
heu2 1.988 0.9605 1.381
heud(W) 1.988 0.9584 1.381
heul(N) 1.988 0.9625 1.381
base 1.665 0.9296 1.3685

Table 2: Experiments for X=1, Z=3

14



18-3 18-3 18- 18-41

=02  Pr2=0.1 | $1;=05  P12=04 | p1y=0.2  H12=0.1 | pn=0.1  $12=0.0
P21=0.2 p22=0.1 p21=0.2 p22=0.1 p21=0.2 P22=0.1 P21 =0.1 P22=0.0
Pa1=0.2 Pa2=0.1 P =0.1 paz=0.1 pay=0.2 Pu2=0.1 Py =01 Paa=0.0
p41=0.2 P12=0.1 Pa1=0.1 paz=0.1 Pay =04 Pan--0.1 Pa1 =00 ra2=0.1
Pei1=0.2 Pre=0.1 po1=0.1 Pe2:=0.1 P =0.1 Pre=0.1 Py =00 Pr2=0.1
Par1=0.2 P62=0.0 | pg1=0.05  ps2=0.0 Pey=0.1 Per=0.0 pe1 =0.0 Poa=0.1
pr1=0.2 pr2=0.0 p71=0.2 P72=0.0 pn1=0.2 P72=0.0 pr1=0.1 pr2=0.1
pr1 =0.2 Pr2=0.0 Pry1=0.0 Pag=0.1 Ps1=0.2 Pae=0.0 Py =0.1 Pr2=0.1
shared | g 02 foz==00 | for=00 ap=thl | Poy=03 par=0.0 | foy=00 Pyy=0.1
proh. Pro1=02  proz=0.0 | 101=0.2 P00 [ Proy =03 props0 | o =000 prop=0.2
P02 Pre=00 | P00 prg=08 | pr =08 e 00 | Py sl Py =0s
Pr=02 P =00 | pr2i=0.2 e 00 | =02 e =00 | =00 Pryg=d
Prar=02  Pprae=0.0 | pra=00 P00 | pra =02 =000 | pra =00 Prag=s
=02 Pra2=00 | pra1=00 Prae=05 | fra =04 =00 | pra=01 =06
Pro1 =02 Pr1s2=0.0 | Praa=00 Pre=00 | s =04 praz=0.0 | pgy =00 Pra2=0.5
Per=02  Prez=00 | ie1=0.2  $1g2=0.0 | Pre1=04  pier =00 | pra=0.0 pree=0.5
Pn=0.2  Pr72=00 | fin=02 5172=03 | =02 gz 00 | =00 prz=0.8

Pa1=0.2  prg2=04 | p181=0.2  Prg2=0.4 | g1 =02 pag2=0.4 mar=0.1  prgz=0.5

- 4 — -

ub 2.908 2.998 2.908 3.963

N heu? - 2.949 2.967 2.!)15?; R —--‘_.—:';-.;‘;)T T
heud(W) 2.831 2.931 2.770 3.610
heu3(N) 2.831 2.931 2.770 3.610
base 2.771 2.860 2.750 2.592

Table 3: Experiments for X =1, Z=1




If the probabilities of shared files for all workstations in a file server are cqual
(pri = pi for all 7’s), heuristic 2 gives the same results as those using heuristic I as

the result of the following theoren:

THEOREM 4.1
If ppi = pi Jor all 7’s, heuristic 2 and heuristic | are identical, i.c., both achieve the
manimum value of

AL R R
L | Z Pri — 'M‘

=1 r=1
Proo¥: The prool is based on converting this problem to an integer convex prograin-
ming problem. Note that heuristic 2 1s a variation of Fox’s algorithim. We want Lo
know that how many workstations should be allocated to the ith file server [6]. Since
all workstations are indistinguishable, let
| f),.,' for r= 1,,“
K
P = I—Zf),- for r=1,.---, It
=1
where py; is the probability of shared files in server ¢ {or workstation .

The problem can be written as
M
- . ) .
Maximize ) [i(1:)
=1

where n; is the number of workstations assigned to file server 2, and

{
7(-: -~ Rpi — wipy, i < ﬁ— — RBpi), i <K
j( ) nipo + RBpi — %, n; > I_-[% - fl’.p,'J,’i <K
Ang) =
—,(7‘; — 1Py, n; < [7{1, , 1> I
L NPy — ‘Aﬁi, ng > I_%J, 1> K

Note that f; is convex. Thercfore, — f; is concave. We can apply Fox’s algorithm to
maximize — M, fi(n;). Since heuristic 2 is a variation of Fox’s algorithm, it yields

the optimal solution. O
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18-3 15-3 18-3 18-4
pni=05 | $11=05  $12=04 | =01 F12=0.0 | py=01  H2=0.0
$21=0.2 | P21=0.2  P22=0.1 | F21=0.1  P22=0.0 | p=0.1  22=0.0
P31=0.1 P31=0.1 Paz=0.1 Pa1=0.1 $32=0.0 P31 =0.1 Pa2=0.0
P41=0.1 P41=0.1 P42=0.1 P41=0.0 P42=0.0 141 =0.0 Pa2=0.1
IESE N Ps1=0.1 Ps2=0.1 P51=0.0  ps2=0.1 P51 =0.0 P1,2=0.1
Py 0.5 Pc1=0.5 Pe2=0.0 P61=0.0 e =0.1 a1 =0.0 Pe2=0.1
P =0.2 pr1=0.2 P72=0.0 p71=0.1 pr2=0.11 P =01 pr2=0.1
prrc 00 | psi=0.0  fike=0.1 | Pei=0.1  $g2=0.12 | pri=00 gLl

shared | por= 0.0 | jipy=00  foa=0.1 | fer=0.0 fup2=0.13 | py=00  pey=0.1

proh fror =00 | fror=0.2  pro2=0.0 | 1017200 Pro2=0.2 | fror=0.0  jro2=0.2

poc 02| pr=0 pre=05 | fin=0.1 Hre=05 | fa=0d pges0s

prors 02 | praris0.2 0 Pr2=0.0 | prai=00 Prze=0.0  Fia =00 =0

Prar =02 | prar=0.2 0 prae=0.0 | Pra1=0.1  Pra2=0.0 | P131=0.5  Prax=0.1

P =02 | P =02 prye=03 | p1y1=0.1  P142=0.0 | H11=0.6  pyr42=0.1

Pror 0.2 | Pror=0.2  pra2=04 | P151=0.1  Prs2=0.5 | fis1=0.1  prse=0.5

Pre1 =0.2 Pre1=0.1  p162=0.5 | p1g1=0.5  prg2=0.1

P17 =0.2 p1711=01  P172=0.5 | p171=0.1  P172=0.5

P181=0.2 P181=0.1  P182=0.5 | P151=0.5 P1s2=0.1
ub 2.998 2.991 2.998 3.963
heu?2 2.979 2.926 2.983 3.850
heu3(W) 2.4979 2.886 2.965 3.824
heu3(N) 2977 2.886 2.965 3.824

2.674 2.602

base L 2879

2.665
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Table 4: Experiments for X =1, /=1




We ran a serics of models of 4, 9 and 15 workstations with 3, 4 and 5 file servers
for both cascs of Z = | and 7 = 3 where we let pyy take values from 0.1 to 0.9 in
increments of 0.1 and p,; = 0 for i = 2,---, M. The heuristics and OP'l' deviated in

only four cases. The differences are all less than 1%.

5 Conclusion

The modified Vertez Allocation Theorem in the section 2 shows that if all shared files
are preallocated, all the nonshared files of a workstation should be allocated to one file
server. Using this theorem, the search space for an optimal allocation for file servers is
reduced to only their vertex space. In section 3, we propose three .henristics to allocate
the nonshared files of workstations to file servers. From the experiments shown in
the last section, we find that heuristic | gives the best results in most cases; heuristic
9 yields allocations that are identical to or slightly better than thosc using heuristic
3. The differences between the allocations produced by heuristics [, 2 and 3 and the
optimal allocations are very small so as to be insignificant. The allocations using
these three heuristics are all mich better than those using the baseline algorithm. If
the probabilities of shared files in a file server are cqual, it can be proved that heuristic
2 is as good as heuristic 1. [n this case, the results by heuristic 2 and heuristic 3

coincide with those by numerical search in almost all experiments.
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