Abstract

The concepts of inheritance and subtyping are adding new dimensions to
programming language design and use, but they are not as well understood as
longer established ideas such as data abstraction and modularity. Confusion
about these concepts leads to language-design problems, such as designs that
are deficient with respect to either or both concepts, that result in overlap
or interference between the implementations of the two concepts, or that are
poorly understood or described. Language-design problems in turn lead to
language-usage problems, such as uncertainty about how to use inheritance
and subtyping, uncertainty about which mechanism to use, and conflicting
styles of use within a software system.

In this paper we attempt to clarify the issues surrounding inheritance and
subtyping in programming languages. Our approach to this task is based on
a belief that inheritance and subtyping must be treated as separate, although
not independent, aspects of language design. We begin by offering definitions
of inheritance and subtyping that help in characterizing the relationship be-
tween these concepts. In light of these definitions, we briefly review the variety
of inheritance and subtyping mechanisms found in modern programming lan-
guages. We then advance a notion that we call behavioral abstraction. Based
upon that notion, we propose and discuss a number of pragmatic principles of
programming-language design regarding inheritance and subtyping. We exam-
ine the extent to which a number of existing programming languages adhere
to these principles and, finally, speculate on how the principles, and the no-
tion of behavioral abstraction in general, might affect future languages and the
language-design process.
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1 Introduction

Inheritance, as a programming language mechanism, has its origins in SIMULA [Dahl
and Nygaard, 1966], where it was intended to aid in hierarchical system decomposition.
A SIMULA system typically is composed of several classes, which are simply encapsulators
of program-entity declarations such as those for variables and procedures. A class serves
as a template from which particular instances, called objects, are created. Indeed, a class
bears a resemblance to type constructors found in more recent programming languages.

In SIMULA, a class can be defined independently of other classes or it can be defined
as a subclass of another, so-called superclass. In the latter case, the subclass “inherits”
all the program-entity declarations of the superclass, implicitly encapsulating a set of
declarations identical to those of its superclass. Inheritance is in fact transitive, so that
a subclass inherits declarations not only from its immediate superclass, but also from the
superclass of its superclass, and so on. A subclass may also include additional declarations
of its own, which distinguish objects of the subclass from objects of the superclass.

Consider, for example, the development of a sequence abstraction in SIMULA. We
can define a class for sequence elements that embodies the notion of “next element” by
encapsulating in that class a declaration for a pointer to a sequence element together with
the declarations of procedures representing an appropriate set of abstract operations on
sequence elements. Every instance of the class, i.e., every sequence element, will thus have
a pointer to the next element and can be operated on by the procedures. Notice, however,
that we have made no mention of the kind of data that can be put into sequence. The
reason is that any kind of data can be put into sequence as long as the class defining
that kind is a subclass of the class for sequence elements. For instance, if we want a
sequence of objects that store employee information, then we simply make the class for
employee information a subclass of the class for sequence elements; through inheritance,
employee-information objects would gain next-element pointers and procedures.

The hierarchical decomposition that results from the use of inheritance in a SIMULA
system is actually a tree or, more accurately, a forest of subclasses. The design method
engendered by such an approach to system decomposition encourages the identification
of common, general-purpose entity declarations and isolation of those declarations into

classes high in the hierarchy. This is what occurs with the notion of “next element” in the



sequence example.

The SIMULA inheritance mechanism has strongly influenced the designs of inheritance
mechanisms found in many other programming languages. The most familiar of these lan-
guages is probably Smalltalk [Goldberg and Robson, 1983], whose inheritance mechanism
is essentially the same as SIMULA’s. As experience with inheritance has grown, however,
various language designs have been developed that seek to find more powerful notions of
inheritance, particularly ones based on so-called multiple inheritance, which allows a sub-
class to have more than one immediate superclass. Languages that incorporate these newer
inheritance mechanisms include a number of object-oriented extensions to LIsP (e.g., Fla-
vors [Moon, 1986], CommonLoops [Bobrow et al., 1985], CommonOb jects [Snyder, 1985],
and CLOs [Bobrow et al., 1987]), C++ [Stroustrup, 1986; Stroustrup, 1987], Trellis/Owl!
[Schaffert et al., 1986], and Eiffel’[Meyer, 1988], as well as succeeding versions of SIMULA
and Smalltalk themselves (e.g., [Kristensen et al., 1983; Kristensen et al., 1987; Borning
and Ingalls, 1982]).

Subtyping is a recent development in programming languages and is another means
for organizing the components of a software system. In essence, subtype is a relation-
ship between components that are types. The exact meaning of that relationship varies
from language to language, but its purpose is generally universal: to aid in establishing,
documenting, and/or enforcing the type structure and type consistency of a system.

The comparable subtyping mechanisms of Emerald [Black et al., 1987] and Trellis/Owl
(Owl for short) are good examples. The subtyping mechanisms of these languages are
based on the principle that objects of a subtype should exhibit behavior similar to that of
objects of a supertype. For example, we would expect that the type Car would be a subtype
of the type Vehicle, since a car should be usable anywhere a (generalized) vehicle may be
used. This is not to say, however, that the behaviors must be equivalent. In particular,
given a type T and given a type S that is a subtype of T', an object of type S should be
usable anywhere an object of type T is usable, but the reverse need not be true.

The subtype relationship in Emerald and Owl, like inheritance in SIMULA, is transitive.
Moreover, a subtype can have more than one immediate supertype, which means that the

behavior of an object of a subtype might be similar to the behaviors of objects of quite

1Trellis is a trademark of Digital Equipment Corporation.
2Eiffel is a trademark of Interactive Software Engineering, Inc.



different supertypes. Thus, the subtype relationship defines a lattice, as compared to the
forest of trees of SIMULA’s inheritance mechanism.

Validation of subtype relationships is based on what is known as conformance, and is
limited by the extent to which we currently understand how to specify and reason about
behavior. In Emerald and Owl, for example, specification of behavior amounts to a list of
operation signatures, where a signature consists of a name for the operation together with
a list of the types of that operation’s arguments and results. “Similar behavior” in this
setting therefore reduces to signature conformance: for a type S to be a subtype of another
type T, the signatures of S must conform to those of T. Conformance rules are designed
so that treating an S object as a T object, from the standpoint of invoking operations, will
never cause an S operation to be invoked with arguments of illegal types nor permit the
S operation to return results incompatible with those of a corresponding T' operation. In
short, with the appropriate conformance rules and a requirement that subtypes conform
to supertypes, one can perform type checks using the definition of T' and guarantee type
correctness for all subtypes of T. In Owl, which provides a special construct for indicating
that one type is to be a subtype of another, signature conformance is (statically) checked
by comparing the type definitions themselves. Signature conformance in Emerald, on the
other hand, is (statically) checked at the site of uses of operations, since Emerald does not
provide a construct for explicitly indicating intended subtype relationships.

Various rules of conformance have been proposed [Schaffert et al., 1986; Black et al.,
1987; Horn, 1987]. For instance, a common rule is that for every operation of the supertype
there must be a corresponding operation of the subtype, the arities of the operations must
agree, and the argument and result types must themselves conform appropriately. We
would expect that as our ability to formulate mechanically analyzable behavioral specifi-
cations becomes more sophisticated, so too would we be able to increase the sophistication
of conformance rules.

Unfortunately, the concepts of inheritance and subtyping are easily confused. This leads
to a number of language-design problems, such as designs that are deficient with respect to
either or both concepts, that result in overlap or interference between the implementations
of the two concepts, or that are poorly understood or described. Language-design problems
in turn lead to language-usage problems, such as uncertainty about how to use inheritance

and subtyping, uncertainty about which mechanism to use, and conflicting styles of use



within a software system.

There appear to be several reasons for the confusion surrounding inheritance and sub-

typing, including the following, which are discussed in greater detail in subsequent sections

of this paper:

e both inheritance and subtyping can be viewed as relationships among “type-like”
system components;

¢ both inheritance and subtyping contribute to software reuse; and

e every inheritance mechanism implies some sort of subtyping mechanism.

The problems have been exacerbated by a conservatism in language design that tends to
preserve existing language frameworks. While such conservatism is justified in general
on the grounds of lowered intellectual and economic costs, in this case it has led, among
other things, to contortions in the designs and descriptions of the older concept of inher-
itance to fit the newer concept of subtyping. In particular, the two concepts are merged
into one mechanism in many programming languages and, partially as a result, the two
terms are used interchangeably, adding to the confusion. Another source of terminologi-
cal confusion is historical: As language designers have switched from the term class (e.g.,
in older languages, such as SIMULA) to the term type (e.g., in newer languages, such as
Owl), it is natural for some that they also switch from the term subclass to the term
subtype to refer to inheritors. The term subtype, therefore, can have different meanings
in different languages.® In sum, there has yet to arise any widely accepted set of defini-
tions and terminology for inheritance and subtyping. Moreover, there is yet to arise any
widely accepted understanding of how these concepts can be smoothly integrated into a
programming language.

In this paper we attempt to clarify the issues surrounding inheritance and subtyping
in programming languages. Our approach to this task is based on a belief that inheri-
tance and subtyping must be treated as separate, although not independent, aspects of
language design. We begin by offering definitions of inheritance and subtyping that help
in characterizing the relationship between these concepts, and give examples to illustrate.

This is followed by a brief review of the variety of inheritance and subtyping mechanisms

3In this paper we generally use the terms subclass and superclass in the context of inheritance,
and the terms subtype and supertype in the context of subtyping.



found in modern programming languages. We then advance a notion that we call behav-
ioral abstraction. Based upon that notion, we propose and discuss a number of pragmatic
principles of programming-language design regarding inheritance and subtyping and ex-
amine the extent to which a number of existing programming languages adhere to those
principles. We conclude by speculating on how the principles, and the notion of behavioral
abstraction in general, might affect future languages and the language-design process. As
a convenience to the reader and to avoid any possible misunderstanding, we include as an

appendix a glossary of terms used in this paper.

2 Defining and Characterizing Inheritance and Sub-
typing

A substantial portion of the confusion surrounding inheritance and subtyping can be
attributed to the lack of concise, language-independent definitions of these concepts. We
therefore offer the following definitions:

Inheritance: a means by which new system components can be constructed
from old system components such that changes to the definitions

of the old components can have an effect, subject to certain
constraints, on the definitions of the new components.

Subtyping: a means by which the behavior of one object can be established
or asserted as being similar to the behavior of another object
such that the first object can be used, subject to certain con-
straints, in place of the second object.

It should be clear from its definition that inheritance is quite different from other
techniques for constructing the components of a software system. In particular, the fact
that a change to a component can have an effect on other components that inherit from
the changed component implies that there must be language or environment support for
maintaining this structural relationship. Compare this to a technique based, say, on a
text editor. Using an editor, one would copy (portions of) a component’s definition for
use in the definition of another component. Copying suggests that no connection with the
original is maintained.

Consider the sequence example discussed in the previous section. Following are skele-

tons of C++ definitions for the two classes, where the declarations inherited from Se-



quenceElement by Employeelnformation are shown as comments:

class SequenceElement {
public:

void Insert (...){...}
SequenceElement* GetNext ( . .. ) {return NextElement};

private:
SequenceElement* NextElement;

|5

class Employeelnformation : public SequenceElement {

public:
/* void Insert (...){...}
* SequenceElement* GetNext ( . .. ) {return NextElement};

£ */
void SetStartDate (... ) {... }
private:
/* SequenceElement* NextElement; */
int StartDate;

};...

If we were to change the definition of SequenceElement so that it additionally supported
the notion of a “previous element” by having a declaration for another pointer, having a
declaration for a function to retrieve the previous element, and appropriately adjusting
the other functions to account for the new pointer, then any subclass of SequenceElement,
such as Employeelnformation, would “automatically” obtain this additional functionality
without itself requiring any changes.

Notice that there is a subtle difference between inheritance and the simple use, by
reference, of an existing definition in the definition of a component. Inheritance results in
the concatenation of declarations rather than reference to previously declared entities. For
example, since Employeelnformation inherits from SequenceElement, Employeelnformation
encapsulates declarations equivalent to the declarations encapsulated by SequenceElement

plus additional ones specific to employee information. The distinction we are trying to draw



is illustrated by the following version of Employeelnformation, which uses SequenceElement

by reference instead of by inheritance:

class Employeelnformation {
public:
void Insert (...){...}
SequenceElement* GetNext ( . .. ) {return Link.NextElement};

void SetStartDate (... ) {... };

private:
SequenceElement Link;
int StartDate;

};...

In this version, the sequence operations must be specially written for Employeelnformation
to operate on the variable (called a member in C++) Link. The point here is that an
instance of a subclass does not consist of an instance of a superclass plus additions. Rather,
an instance of a subclass is a new kind of entity that is associated with all the declarations
of the superclass and possibly more.*This does not prevent one from treating an instance
of a subclass as an instance of a superclass when it is convenient to do so (i.e., when the
subclass is also a subtype; see below). It is simply that it is inappropriate to consider an
instance of a superclass as a “part” or “piece” of an instance of a subclass. One effect of
this is that if we wish, for example, to have employee-information objects simultaneously
be elements of two sequences, then we cannot simply have its class inherit from the class

for sequence elements “twice”:

class Employeelnformation : public SequenceElement,
public SequenceElement { /* ERROR */

};...

4There is debate as to whether the mechanism of derived types in the programming language Ada
constitutes a genuine inheritance mechanism. We believe that it does, according to our definition.
Nonetheless, the mechanism is one that has a significant limitation: a subclass, called a “derived
type” in Ada, cannot add new (instance) variable declarations to the set of inherited declarations.



The result would give rise to ambiguities; which sequence are we referring to when we call
Insert? Eiffel provides a special syntactic mechanism to deal with this problem, but it is
one that essentially transforms inheritance into a reference mechanism.

Turning now to the definition of subtyping, it is interesting to notice that the definition
is stated exclusively in terms of objects rather than types, especially since the discussion
of subtyping in Section 1 centers primarily on types. As we discuss more fully below, we
consider a type to be a behavioral abstraction of the objects that are its instances. For
example, Owl definitions of a type for vehicles and a type for cars might look like the

following:

typemodule Vehicle;

operation GetlLoad (me) returns (Integer) is . . .;
operation Changeload (me, Delta: Integer) returns (Integer) is . . .;
operation GetNumberOfAxles (me) returns (Integer) is . . .;
operation ForcePerAxle (me) returns (Real) is . . .;

end typemodule Vehicle;

typemodule Car;

subtypeof (Vehicle);

operation GetlLoad (me) returns (Integer) is . . .;
operation Changeload (me, Delta: Integer) returns (Integer) is . . .;
operation GetNumberOfAxles (me) returns (Integer) is . . ;
operation ForcePerAxle (me) returns (Real) is . . .;
operation GetMaxPassengers (me) returns (Integer) is . . .;
operation GetPassengers (me) returns (Integer) is . . .;

operation ChangePassengers (me, Delta: Integer) returns (Integer) is . . .;
end typemodule Car;

As mentioned in the previous section, specification of behavior in Owl amounts to a list of
operation signatures. The definition of type Car contains the assertion that Caris a subtype
of Vehicle. The Owl compiler can verify that this is indeed true with respect to the confor-
mance of the operation signatures; notice that the operations of Car are the operations of

Vehicle plus the operations GetMaxPassengers, GetPassengers, and ChangePassengers.*Thus,

50wl is a language that supports both inheritance and subtyping. For purposes of this example,
however, we did not take advantage of its inheritance mechanism, which would have allowed us to
avoid duplicating the definitions of the Vehicle operations within Car.



objects of type Car can be used anywhere objects of type Vehicle can be used, since the
operations (i.e., behavior) of Vehicle are subsumed by the operations of Car. This is true
even though the implementation of Car (e.g., the code of the conforming operations) might
be quite different.

Because “subtypeness” is a legitimate aspect of the specification of behavior, languages
that support subtyping and explicit type declaration, such as Owl, typically also support
the expression of the subtype relationship as part of type definitions, as seen above. There
are exceptions, however, such as Emerald, which has a type-declaration facility but no
subtype-indication construct; the Emerald subtype relationship is implicit and is in some
sense dependent upon how objects are actually used in a system. Moreover, although we
know of no examples, it is conceivable for a language to support subtyping but not have
an explicit type-declaration facility. (The preliminary work on enhancing the ML language
with features for object-oriented programming, such as that reported in [Jategaonkar and
Mitchell, 1988), is perhaps pointing in this direction.) Thus, to account for all these cases,
our definition is cast in the more general terms of objects.

In the remainder this section, we use our definitions of inheritance and subtyping to
help characterize the relationship between these concepts and demonstrate both their in-
dependent and interdependent application. In addition, we examine how inheritance and
subtyping bear on the effectiveness of abstraction. In the next section, we explore the va-
riety of actual inheritance and subtyping mechanisms — that is, the various ways program
entities can be inherited and the various subtype relationships that can be established or
asserted among objects. In the course of that exploration, we solidify what we mean by

“similar behavior”.

2.1 The Relationship Between Inheritance and Subtyping

The definitions given above reflect a very basic difference in the domains to which
these concepts pertain. In particular, inheritance is concerned with the construction of a
system, while subtyping is concerned with the behavior of a system. Clearly, the behavior
of a system is related to how that system is constructed. This relationship, however,
is analogous to that between implementation and specification. In other words, a given
construction implies a particular behavior just as a given implementation possesses an

implicit specification, but a given behavior can be constructed in a number of ways just



as a given specification can have a variety of implementations. Inheritance is only one
method that can be employed to construct a software system, and subtype is only one
relationship that can possibly result from the use of inheritance.

Because inheritance is primarily concerned with construction and subtyping with be-
havior, another useful analogy can be drawn: inheritance is to subtyping as syntax is to
semantics. A syntactic description of a system captures how that system is constructed,
while a semantic description captures behavior. And while two syntactically identical con-
structions (should) exhibit the same behavior, two syntactically different ones might also
exhibit the same behavior. The point is that knowledge of how entities are constructed
is not necessarily sufficient or relevant when reasoning about the behavioral relationships
among those entities.

Thus we can see that inheritance and subtyping are related, but that subtyping does

not necessarily imply the use of inheritance. Following are several examples that illustrate

this point.
Example 1: Achieving similar behavior without using inheritance.

Consider two types, one for general sets and the other for ordered sets. The
type for ordered sets is a subtype of the type for general sets, since ordered
sets can be used, from the point of view of functionality, anywhere that general
sets can be used. (Note that the converse is not true.) The two types need
not achieve their similar behavior by having ordered sets be a subclass of (i.e.,
inherit from) general sets. In fact, one would expect that ordered sets would
have an implementation very different from general sets because of incompatible
efficiency concerns.

Example 2: Achieving similar behavior using inheritance.

Consider a class Queue with operations Append and Remove. A subclass of
Queue, call it DEQueue, can be constructed by having it inherit the declarations
of Queue and define the additional operations InsertAtFront and RemoveFrom-
Rear. This subclass realizes a double-ended queue, which is a queue that can
be manipulated at both ends. It turns out that the subclass DEQueue is also a
subtype of Queue, since it exhibits similar behavior: a double-ended queue can
be used anywhere a standard queue can be used because it provides at least the
functionality of a standard queue. In fact, the use of inheritance guarantees
this relationship.

Example 3: Achieving “reverse” similar behavior using inheritance.

10



A variation on the previous example is to consider constructing Queue from
DEQueue. This would be done by having Queue inherit from DEQueue and
disregarding some of the inherited operations, specifically InsertAtFront and
RemoveFromRear. (Disregarding inherited declarations is formalized in some
languages and is discussed in the next section.) What we now have is sub-
typing that runs in the opposite direction to inheritance; Queue inherits from
DEQueue, but DEQueue is a subtype of Queue. Notice that we can also con-
struct a stack using declarations inherited from DEQueue. While the result is
syntactically awkward because operation names are not the standard Push and
Pop, it nonetheless is semantically (i.e., behaviorally) sensible. The syntactic
problem can be corrected by a simple renaming facility.®

These examples demonstrate the danger in equating inheritance and subtyping. In
particular, it cannot be assumed that the inheritance hierarchy of a system is the same
as the subtype hierarchy;"the two hierarchies are independent in the first example and
are counter in the third example. If a language provides an inheritance mechanism but
no separate subtyping mechanism (e.g., Smalltalk and Flavors), then a subtype cannot
be defined that is implemented differently from its supertypes. Some languages (e.g.,
CommonOb jects) do indeed provide ways of specifying the inheritance hierarchy separately
from the subtype hierarchy. Still other languages (e.g., Owl) provide a hybrid approach in
which inherited entities can be selectively reimplemented. The hybrid approach, however,
cannot adequately address situations such as that of the third example.

The third example demonstrates another point that has not yet been discussed. If
a language allows a subset of the inherited declarations to be disregarded, then having a
class inherit declarations from a superclass does not necessarily imply that the subclass will
exhibit similar behavior. This is the case for Queue, which inherits from DEQueue but is not
a subtype of DEQueue. Actually, the issue is more complicated than would appear because
it is based on the meaning of “similar behavior”. We therefore defer further discussion of
this issue to Section 3. We do point out here, however, that researchers have recognized
that there is something intuitively unsatisfying about a component that inherits (i.e., is
constructed) from widely different components, and yet is said to be similar to every one of

those components. This intuition reflects the fact that current views of “similar behavior”

8Proposals are beginning to appear that attempt to address some of these awkward syntactic

problems, such as the notion of “upward inheritance” described in [Schrefl and Neuhold, 1988].
"Snyder [Snyder, 1986] attributes this observation to Peter Canning.
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are too narrow.

To summarize, we can relate back to the three sources of confusion between inheritance
and subtyping mentioned in Section 1. First there is the issue of inheritance and subtyping
both being viewed as relationships among “type-like” system components. This source of
confusion can be avoided by recognizing that the relationships implied by inheritance and
subtyping operate at very different levels. The inheritance relationship can be characterized
as “a is constructed from b”, while the subtype relationship can be characterized as “a
behaves like b”. Moreover, as the examples given above demonstrate, these relationships
can run independently within the same system.

Second is the issue of inheritance and subtyping both contributing to software reuse.
This source of confusion is similar to the previous one in that it also involves a single concept
operating at two very different levels. The reuse associated with inheritance is a low-level,
implementation-oriented effect that details what, how, and where actual declarations are
used. The reuse associated with subtyping, on the other hand, is a high-level, specification-
oriented effect. When a type S is established as a subtype of a type T, then this means
that any portion of a system designed to work on objects of type T should also work on
objects of type S, independent of how S and T are actually implemented.

Finally, the third source of confusion mentioned in Section 1 is that every inheritance
mechanism implies some sort of subtyping mechanism. While this is generally true, the
implied subtyping mechanism may not be a very useful one or, at least, may not be useful

in all situations. Given this, language designers can exercise one of three options:
1. rely on the inheritance mechanism to define the subtyping mechanism;
2. provide an additional, explicit subtyping mechanism; or

3. disallow the implied subtyping mechanism and in its stead provided an explicit one.

The first option is equivalent to letting semantics be driven by syntax or specification be
driven by implementation. It is typical of (older) languages where an attempt is made to
retrofit subtyping concepts and, partially as a result, has served to cloud the distinction
between inheritance and subtyping. The second option leads to the widely acknowledged
language defect of having more than one way to express the same thing, in this case
in situations where the implied subtyping is appropriate. Such a defect is confusing to

system developers, since they do not know which mechanism to use, and confusing to
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system maintainers, since they do not know what to infer from seeing the use of one
mechanism or the other. The third option is probably superior to the first two, but can

prove inconvenient or redundant when implied subtyping would suffice. In Sections 4 and 5

we argue for a new approach:

4. first decide on an appropriate subtyping mechanism and then design an inheritance
mechanism to support that subtyping mechanism.

In a sense we are just advocating the language-design maxim that syntax should be de-

signed to reflect semantics and the system-design maxim that implementation should follow

specification.

2.2 Impact on Abstraction

Abstraction is a means for managing complexity through selective suppression of detail
[Shaw, 1984]. Probably the two foremost abstraction techniques used to manage complexity
in software systems today are information hiding and specification. Information hiding is a
technique for distinguishing those details of a system component that should be of interest
to another component from those details that should not be of interest. Specification is a
technique for describing the essential characteristics of a component independent of how
that component actually realizes those characteristics.

An important question to ask is how the effectiveness of abstraction, particularly infor-
mation hiding and specification, are affected by the presence in a language of inheritance
and subtyping mechanisms. As it turns out, inheritance can have a negative impact on
information hiding, while subtyping can enhance specification.

It has been observed (notably by Snyder [Snyder, 1986]) that the typical inheritance
mechanism found in programming languages violates the basic information hiding mecha-
nism of those languages. Indeed, in most cases, this was the intended effect. In Smalltalk,
for example, the variables declared in a class are hidden from ordinary clients of the class.
Subclasses of a class, on the other hand, are afforded access to the declarations of those
variables so that the programmer of a subclass can develop additional functionality for ma-
nipulating the variables. The problem that this can cause is not so much technical as it is
methodological. The purpose of hiding the variables is to allow a programmer the freedom

to change the (low-level) details of a class without having to be concerned that the change
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might affect the clients of the class. A special kind of client, however, can be affected by
a change, namely subclasses of a class. Thus, the programmer of a class is in fact not free
to make changes; the value of the information hiding mechanism is significantly reduced.

A concrete example should clarify this point. Recall the sequence example, where
we have a class providing the notions of next and previous element and a subclass for a
sequence of employee information objects. Assume that we are programming in Smalltalk
and that a method in the subclass for some reason directly retrieves the value of the
variable for holding the previous-element pointer, which is inherited from the superclass,
instead of using the retrieval method, which is also inherited from the superclass. If we
wish to change the implementation of the notion of previous element, say, to save space
by eliminating the pointer and instead doing traversals of the sequence, then we have a
problem. In particular, we must also change the subclass. More generally, we must examine
the transitive closure of the subclasses of the class to be changed in order to determine the
possible effects of that change; this can be a major undertaking in a large system. Clearly,
having the otherwise hidden details available undermines the intended abstraction.

In Section 4 we argue for inheritance mechanisms that avoid this problem. But it is
still interesting to review how some languages have addressed the problem. Smalltalk and
CLOS reveal all to inheritors. C++ and Owl allow explicit control of what is visible to all
(public), what is hidden from all (private), and what is revealed to inheritors (protected
in C++, subtype visible in Owl). CommonOb jects provides similar controls. C++ addi-
tionally allows definitions to be made visible to specific other components, which must be
named explicitly. The PIC family of languages [Wolf, 1985; Wolf et al., 1988] support the
ultimate in precise control over visibility, such that visibility of individual declarations can
be determined from the perspective of a provider, an inheritor, or an ordinary client of a
declaration.

The effect that subtyping has on abstraction is also significant, but in this case the effect
is a positive one. The main point is that subtyping enhances specification by allowing one
to manipulate and relate specifications in more powerful ways. Further, one reasons about
these relationships in a fundamentally semantic and abstract manner. Therefore, the
positive effect is that subtyping encourages one to think in terms of abstractions rather
than implementations, since subtyping permits, and actually requires, programming in

terms of abstractions. We further conjecture that building subtype structures encourages
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the design of “better” (more reusable, at least) abstractions.

3 Varieties of Inheritance and Subtyping

Taking the view that inheritance is language supported reuse of an essentially syntactic
nature, we conclude that there might be many different kinds of inheritance in the sense
that there are different language structures one might wish to reuse. There are also several
different proposed notions of subtype that fall within the scope of our definition, as well as
different approaches to rules for determining type conformance. In this section we explore
the varieties of inheritance and subtyping, including conformance rules. Qur aim is not so

much to provide an exhaustive survey as to illustrate the range of possibilities.

3.1 Varieties of Inheritance

Working from the thesis that inheritance is syntactic, let us consider the various syntac-
tic components of a class definition in a programming language.®The primary components
are the interface, the code, and the representation of the class. The interface is the spec-
ification of the class. It is typically some kind of list of operation signatures, where a
signature gives the name of the operation and possibly types for the arguments and re-
sults. The code is the (statement) bodies of the operations. Operations are known in some
languages as procedures, functions, or methods. The representation is simply the data
structure part of the class definition. Just as the interface and code of a class break down
into a set of operations, the representation usually breaks down into a set of slots, which
have also been called variables®and fields. The code together with the representation form

what is usually referred to as the implementation of the class.

3.1.1 Code and Representation Inheritance

The kind of inheritance most frequently discussed and implemented is inheritance of

code for operations of a class. Since code tends to rely and depend upon the representation,

8We are not considering delegation (see [Lieberman, 1986], for example), which is inheritance

at the object level, as opposed to the class level.
9More precisely, they are called instance variables in Smalltalk (and some other languages),

primarily to distinguish them from other kinds of variables, e.g., global variables.
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representation inheritance and code inheritance are frequently done together. This form
of inheritance is provided by SIMULA and Smalltalk, for example.

As discussed in Section 2 and in [Snyder, 1986], it is both possible, and preferable for
reasons of abstraction, to provide an abstract interface to the representation, thus defining
what might be called an “abstract representation”. It might also be preferable to base
inheritance on this interface rather than on the concrete representation and code of the
class. This would allow code for all operations except those that define the abstract rep-
resentation to be inherited and used with any other concrete representation that provides
the same abstract interface. To clarify, consider a class Point, which has a concrete rep-
resentation consisting of x and y slots. Suppose we define operations to fetch and store
abstract slots x, y, r, and theta. If we define all other Point operations in terms of these,
then those other operations will work correctly on both the usual Cartesian coordinate
(x-y) representation as well as a polar coordinate (r-8) representation.

Taking the abstract representation approach in Smalltalk would imply that a subclass
would not directly access the slots defined by its superclass. Rather, operations would be
provided to access real or virtual slots, and the subclass would invoke these operations as
necessary. Similar techniques could be, and have been, developed for other languages.

The point is that judicious application of abstraction allows representation inheritance
to be decoupled from code inheritance, and hence that code and representation inheritance
are distinct. The distinction is brought out reasonably well in Owl, where a slot is always
treated as a pair of operations that implement fetching and storing the value of the slot.
The code for these operations may be inherited, in which case the slot will appear in
the subclass. Alternatively, the operations can be reimplemented in terms of other slots,
and the representation is not inherited. In either case the same abstract interface — the
fetching and storing operations — is maintained. This can be illustrated by extending an

example of the previous section:
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typemodule Car;

component me.Passengers: Integer is field;

operation ChangePassengers (me, Delta: Integer) is
begin

me.Passengers := me.Passengers + Delta;
end ChangeP assengers;

end typemodule Car;

In this example, the declaration component me.Passengers: Integer implicitly creates oper-

ation signatures that are indistinguishable from these:

operation GetPassengers (me) returns (Integer) is ...;
operation PutPassengers (me, Value: Integer) returns (Integer) is ...;!°

The is field part of the component declaration tells the Owl compiler to implement Pas-
sengers as a slot and to generate code for GetPassengers and PutPassengers in terms of
that slot. It is possible, however, to write one’s own implementations for the operations.
In that fashion a virtual slot, implemented by a pair of “get” and “put” procedures, is
indistinguishable in Owl from a real slot created by an is field declaration. As a (slightly
contrived) example, suppose that we wish to implement cars so that passengers means the
number of people in addition to the driver. We can provide a TotalPeople component as
follows:
component me. TotalPeople: Integer

get is (me.Passengers + 1)
put is (me.Passengers := value - 1);

The implied signatures for GetTotalPeople and PutTotalPeople are similar to those for
GetPassengers and PutPassengers, including the name Value for the argument to PutTo-

talPeople.

10pytPassengers returns an integer because Owl has a convention that all assignment-like forms
return the value assigned, which can then be used in larger expressions.
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3.1.2 Interface Inheritance

In addition to code and representation, the interface of a class can be inherited. The
code and signature of an operation are usually bound together syntactically, so that when
code is inherited, signature is too. This is the normal case in C++, Owl, and Eiffel:
a subclass inherits the operation signatures of its superclasses. In Smalltalk, subclasses
also inherit signatures, to the extent that Smalltalk can be said to provide signatures.!In
fact, Smalltalk inherits interfaces quite strictly: a subclass always has all the operations
of its superclass, though the subclass may add more operations and is free to change the
implementation of any operation.

Still, are there any cases in which code is inherited without inheriting interface? We
have not been able to determine any. What about the converse question: is it possible to
inherit the interface without inheriting code? This question is difficult to answer because
of the way code and signature are bound together syntactically — it all hinges on exactly
what is admitted as inheritance. The problem is that if a subclass supplies new code for
an operation, it always supplies a signature as well.

It appears necessary to supply at least part of the signature so that one can tell if an
operation declaration is overriding one that would be inherited or if it is defining a new
operation. Let us call those aspects of the signature that serve to distinguish it from other
signatures as the identifying part of the signature. The identifying part always includes the
operation name, but may also include the number of arguments, their types, and possibly
further information, all depending on the whether the language permits overloading and
how it resolves any overloading that occurs.

Suppose that operation O is defined in both classes S and T', with S inheriting from T.
By saying O is defined in both places, we are indicating that the identifying parts of the
two definitions are the same. We will say the signature of O is inherited if S is constrained
in some way by the definition in T. Such a constraint demonstrates the connection or
dependency that our definition of inheritance requires. In languages where the identifying
part is the whole signature, this says that there is no interface inheritance separate from

code inheritance; Smalltalk and C++ have no separate interface inheritance under this

11Smalltalk signatures consist only of the names and arity of operations, but convey no informa-
tion as to the expected types of arguments or results.
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definition. It is tempting to say that the virtual functions of C++ define pure signatures
that are inherited, but virtual functions really just permit dynamic binding of operation
calls to operation code. In Owl, though, there is separate interface inheritance because the
identifying part is just the operation name and the type of the (implicit) first argument.
Thus, inheritors are constrained regarding the types of the other arguments. In Eiffel,
inheritors are constrained in a more interesting way. In particular, Eiffel supports the
specification of preconditions and postconditions whose correctness must be maintained
by inheritors.

In sum, interface inheritance can be distinguished from code (and representation) in-
heritance. On the other hand, because of the way most programming languages bind
together the signature and code of an operation, interface and code are usually inherited
together. It is only when the signature goes beyond what is used to identify operations
that separate interface inheritance can be seen at work. It operates by constraining the
legal signatures, or preconditions and postconditions in the case of Eiffel, for the same

operation in a subclass.

3.1.3 Abstract Classes and Exemplars

At this point it is useful to consider how abstract classes relate to inheritance of in-
terface, code, and representation. An abstract class is one that has no instances — its
only role is to be a source for inheritance. An example abstract class is SequenceElement,
described in Section 2. The class is abstract in the sense that it is not useful to have a
sequence by itself; it must be a sequence of something, such as the data defined by the
subclass Employeelnformation. Note that the concept of an abstract class differs from that
of a parameterized class. A parameterized class is effectively a shorthand definition for a
whole family of classes, while an abstract class is a repository of pieces of interface, code,
or representation to be inherited and incorporated into other classes.

Sometimes an abstract class defines representation that can be inherited. For the
representation to be most useful, however, the abstract class generally needs to supply
some operations as well. This is the case for SequenceElement. In Smalltalk, a class for
doubly-linked lists is used as an abstract class for the data structure representing the saved

state of Smalltalk pseudo-processes, which are typically linked into lists such as the list
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of processes ready to execute or the list of processes waiting on a particular semaphore.
The class defines forward and backward links, as well as operations to insert and remove
elements from a doubly-linked list. It would appear that the purpose of embedding the
links in the process-state vectors is for time and space efficiency, since processes do not act
much like linked lists. The situation also indicates a possible confusion between part-of
and inheritance: we may grant that for efficiency it is useful to have list information as
part of a process-state vector, but that does not imply that the process-state-vector class
should inherit from the doubly-linked-list class.

It is perhaps more interesting to note that abstract classes can define useful behaviors,
in terms of interfaces, in a fairly abstract way. For example, Smalltalk systems have an
abstract class called SequenceableCollection, which supplies a large number of operations
for examining, modifying, and searching a collection of objects that can be named by the
integers 1,...,n where n is the size of the collection. Subclasses of SequenceableCollec-
tion include OrderedCollection, which is a doubly-ended queue with the sequential order
determined by queue position, LinkedList, which is a singly-linked list with the order being
that defined by the links, and Interval, which provides a finite arithmetic progression in
terms of a starting number, limit, and increment. These subclasses have quite different
representations, but all support the SequenceableCollection operations.

Some of the SequenceableCollection operations, such as accessing the nth element of a
sequence, are implemented only in the subclasses, since they need access to the represen-
tation. Other operations can be defined in terms of these, and can in fact be implemented
only in the abstract class. This is effectively an application of representation abstraction
without a specific representation. It is clear that what is being defined by the abstract
class is behavior, and that the abstract class is also relying on the subclasses to provide
additional behavior.

In Owl and Eiffel one can actually supply an operation signature without a code body.
This is useful in building abstract classes since it allows one to describe the operations that
the subclass must implement — that is, what the abstract class is assuming of its concrete
subclasses. The same kind of thing is done in Smalltalk by giving an implementation in
the superclass that always “blows up” when called, thus forcing the subclass implementor
to supply a working definition. The name for this is suggestive: subclassResponsibility.

The virtual functions of C++ can be used to build such abstract classes. As in Smalltalk,
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if the operation is to be supplied by the subclasses only, the superclass must supply an
implementation that “blows up” when used.

Exemplars [LaLonde et al., 1986; LaLonde, 1987] carry the abstract class idea even
further. Not only does one define abstract classes, but each implementation may itself
consist of multiple representations, each of which implements the abstract class operations.
An example is provided by singly-linked lists, in which the EmptyList and ListCell exemplars
cooperate to implement SinglyLinkedList, which is itself an implementation of the abstract
class List. In essence, exemplars use the dynamic binding mechanism of the language to
implement an automatic case statement on an implicit variant record. In a sense, the true
and false objects of Smalltalk do the same kind of thing, except that they are instances of
the classes True and False, which are subclasses of Boolean. Exemplars avoid the extraneous
subclass structure.

With abstract classes we see code inherited without representation (through applica-
tion of the abstract-representation approach), and interfaces inherited without code or
representation. Thus, abstract classes further illustrate that inheritance of interface, code,

and representation are indeed distinct.

3.1.4 Relationships Among Inherited Items

We have seen that inheritance of interface, of code, and of representation are at times
coincident and at other times independent. Let us summarize the exact relationships.
Allow z and y to stand for any of interface, code, or representation. We will say that
inheriting ¢ implies inheriting y if the usefulness of inheriting « is substantially impaired
when y is not inherited also. The strength of the implication can vary, depending on the
importance of situations in which the usefulness of inheriting z depends on whether y is

inherited.

o Representation inheritance strongly implies code inheritance, because a representa-
tion is virtually meaningless without operations on it.

e Code inheritance weakly implies representation inheritance, because code relies upon
and assumes a representation. The implication is weak because the abstract-represen-
tation approach can significantly reduce code that depends on representation details.
Abstract classes further illustrate the weakness of the implication.
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e Code inheritance strongly implies interface inheritance. All code has an interface, and
inherited code’s interface cannot be very different in its original and new locations.

o Representation inheritance strongly implies interface inheritance. This is true be-
cause representation inheritance strongly implies code inheritance, which in turn
strongly implies interface inheritance.

o Interface inheritance implies neither representation nor code inheritance — a class
can inherit all the interface of a superclass but implement the behavior in a com-
pletely different way (both representation and code). Abstract classes illustrate this
situation: they can be used to define a behavior that is then implemented in many
different ways.

These relationships are depicted below:

Representation Inheritance

|

Code Inheritance

|

Interface Inheritance

3.1.5 Issues of Multiple Inheritance

To our knowledge, interface, code, and representation are the only syntactic components
of class definitions for which inheritance has been provided in programming languages.
Beyond how those kinds of components can be inherited, the greatest variety in inheritance
comes from whether or not the components can be inherited from multiple sources and, if
so, what happens if there is a conflict. Possible conflicts include two superclasses providing
an operation having the same signature, two superclasses providing a slot having the same
name and type, and the same superclass serving as a multiple source (e.g., if 4 is a
superclass of both B and C, and B and C are superclasses of D, then from the perspective
of D, A serves as a source twice).

Clearly, the root of such conflicts is the possibility that two components inherited from

multiple sources may be indistinguishable according to the visibility /overloading rules of

22



the language. In fact, the main issue in devising a multiple-inheritance scheme is in dealing
with such situations, which we call inheritance ambiguity, or ambiguity for short. Following

is a range of methods that can be employed to address this problem:

o Disallow ambiguity — disallow inheritance of indistinguishable components.

® Resolve ambiguity at definition time — allow indistinguishable components to be
available from multiple sources, but somehow actually inherit only one of them.

o Resolve ambiguity on use — allow inheritance of indistinguishable components, but
somehow disambiguate upon each use.

o Combine— allow inheritance of indistinguishable components, but somehow combine
them into a single, new component.

These methods can be further refined to apply differently when the ambiguity involves
multiply-inherited components originating from different sources and multiply-inherited
components originating from the same source.

SIMULA and Smalltalk disallow multiple inheritance altogether. Some extended Small-
talk systems support a weak kind of multiple inheritance that is really just a slightly
automated form of copying and may not track changes made to each superclass [Borning
and Ingalls, 1982]. Owl requires the user to resolve ambiguity at definition time (by desig-
nating the desired source for a given operation); a component is not considered ambiguous
if its ultimate source is unique and it is simply being inherited via multiple paths.!CLOS
also disambiguates at definition time by applying a standard rule (“depth first, left to
right, up to join”). This works by defining a standard ordering of all direct and indirect
superclasses of a class, and inheriting from the source that occurs first according to this
ordering. Stroustrup [Stroustrup, 1987] has proposed a multiple inheritance scheme for
C++ in which ambiguity is resolved on use by requiring the user to state which inherited
component is being referred to in each case. The proposal also includes a mechanism,
called virtual classes, for situations involving multiply-inherited components originating
from the same source; the user can indicate that the inheritance should give rise to only

one set of such components.

12Qwl’s rules are probably less interesting than they sound, since all the signatures for an am-
biguous operation must be the same — only the code can vary.
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The Flavors system supports combination of operation code. The basic idea is that
the final code body consists of a concatenation of the inherited code bodies. Classes
called mixins are built specifically to be combined with other classes, acting as abstract
classes. Flavors provides considerable flexibility in the order in which the code bodies are
concatenated. For example, one can define a “wrapper” mixin to do special things both
before and after the basic code body with which the wrapper is being mixed. Interesting
wrappers include locking protocols (lock before, unlock after) and graphic-display artists.
MELD [Kaiser and Garlan, 1987a; Kaiser and Garlan, 1987b)] illustrates another way of
combining code, based on data flow.

In the discussion above we have mainly concentrated on inheritance of code. Multiple
inheritance of representation affords the same options for dealing with ambiguity, except
that combination does not seem to make any sense unless the sources provide slots having
the same type, or the language does not have type declarations for slots. We are not aware
of languages that combine individual operation signatures in any way; this is probably

because there are not any sensible and useful ways to combine signatures.

3.2 Varieties of Subtyping

We now consider some of the ways two types may be related so that one is called a
subtype of the other. Recall that our definition of subtyping is in terms of behavior: § is
a subtype of T if the behavior of type S is related to the behavior of type T such that,
under any applicable constraints, objects of type S can be substituted for objects of type
T without ill effect.

It is perhaps interesting to note that this substitutability condition immediately implies
that the subtype relation is transitive: if S is a subtype of T and T a subtype of U, then
S will be a subtype of U under any reasonable interpretation of “without ill effect”. The
relation is also (trivially) reflexive: since § may be substituted for S, S is a subtype of S.
It should be clear also that subtypeness is not symmetric, and is generally anti-symmetric.
That is, if S is a subtype of T, then T is probably not a subtype of S. In fact, if the
subtype relationship holds both ways, § and T are clearly equivalent.

Another useful observation is that, while it is quite possible for a type to have mul-

tiple supertypes, this does not imply any particular relationship between the supertypes
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themselves. For example, DEQueue as defined in Section 2 is a subtype of both Stack and
Queue, but neither is Stack a subtype of Queue nor vice versa.

Although we have been able to describe some properties that the subtype relationship
must have, there is still much room for variation, which we now consider. These variations
can be broadly grouped into those that resemble subset relationships and those that are

based on behavior.

3.2.1 Subset Subtyping

The varieties of subtyping that resemble subsets are all quite similar in that the in-
stances of a subtype are always also instances of the supertype. They also share the
property that, to the extent that the operations of the supertype remain defined on the
subtype, the behavior of the operations is the same on both types.

Subranges and Embedded Subtypes The subranges of Pascal and Ada have been
called subtypes. An example is 1..100 in Pascal, which defines an integer subrange type.
Such types possess the same operations as their parent types, and can be considered as
being defined via inheritance. Clearly, 1..100 is a subtype of Integer according to our
definition. The “applicable constraints” in this case are that we stay within the range of
1 through 100.

A more subtle form of subtype relationship is that of Integer as a subtype of Real in
Pascal. Following [Bruce and Wegner, 1987], Integer would be called an isomorphic subset
subtype of Real; we use the term embedded subtype for the same relationship. Integer is a
subtype of Real because invocations of Integer operations that have defined Integer results
act the same as the corresponding operations on Real when presented with corresponding
arguments; for example, 1 + 2 = 3 and 1.0 + 2.0 = 3.0. Addition, subtraction, and
multiplication indeed act the same. Division presents a bit of a problem, but if we define
Integer division so that the result is defined only when it is an exact integer (e.g., 4 / 2 = 2)
and undefined otherwise (e.g., 3 / 2), then Integer operation results still correspond to Real -
results whenever both are defined. Thus, under this definition of division, Integer is a
subtype of Real.

The primary difficulty with subranges and embedded subtypes is addressing the issues

of closure and boundedness. For example, some languages (most LisP dialects, Smalltalk,
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Owl) provide unbounded integers, also called bignums. These are closed over addition,
subtraction, multiplication, and other operations. Division requires some decision to be
made — whether or not to retain closure, thus producing rational or real results, or to offer
multiple division operations with different behaviors. Bounded integers, such as 1..100, are
not closed even under addition, and thus have subtly different behavior.

The real issue is the complexity of the “applicable constraints” that must be satisfied
to obtain the same behavior of the subtype and supertype. Subranges and embedded
subtypes frequently have constraints that depend in complicated ways on multiple argu-
ments. Considering Integer and Real with the exact division rule suggested above, we find
an example of this: Integer is a subtype of Real provided one does not attempt inexact
integer division, a constraint that depends strongly on the values of both operands to the
division operation. Similarly, addition on 1..100 presents a complex constraint: the sum
of the arguments must not exceed 100. Such constraints cannot be expressed in terms of

the arguments individually, and thus generally cannot be checked statically.

Classification Classification is another example of subtyping, deriving from taxonomy,
and frequently discussed in set-theoretic terms. The traditional example of classification is
taxonomy of things or animals, such as the set E, representing the set of all elephants, being
a subset of M, the set of all mammals. If we devise types Elephant and Mammal to represent
elephants and mammals in a computer program, we have an intuitive expectation that
Elephant is a subtype of Mammal, since elephants are indeed mammals, and all operations
on mammals, so to speak, should apply to them.

To the extent that classification corresponds to set theory, and to the extent that
it is based on immutable properties of the objects classified (clarified in the discussion
on restriction, below), classification produces quite reasonable subtypes. Unfortunately,
natural (i.e., cognitive) classifications and categories do not always, or even generally,
follow these rules [Lakoff, 1987]. As with subranges and embedded subtypes, classification
subtypes can also give rise to additional complex constraints on when the objects can be
substituted. A good example is the relationship between the type Platypus and the type
Mammal, since platypuses do not possess all the attributes generally accorded to mammals.
On the other hand, if a classification really is set theoretic, as with elephants, which possess

all properties expected of mammals, there are no constraints on the substitutability, giving
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rise to a particularly clean subtype relationship. We call such classification pure.

Restriction If we take a set and consider its members that satisfy some additional
condition, which we call a restriction, we end up with a subset. Formally this is not
particularly different from classification. The difference appears when we consider the
nature of the subtypes formed by classification and restriction. In practice, classification
usually refers to subtypes based on inherent, unchanging (immutable) properties of the
items being classified, whereas restriction can be based on properties that might change.
An example is Minor: those objects of type Person that represent legal minors.
Restriction is a more general form of subtyping than pure classification. For example,
if Person has an IncrementAge operation, and we apply that operation to a Minor enough
times, then we will eventually get a result that is not a Minor. This is similar to the closure
problem exhibited by addition on 1..100, except that it now occurs with a unary operator
rather than a binary operator. In any case, we end up with constraints on subtyping that

depend on the current state (value) of the Minor object, which cannot usually be checked
statically.

3.2.2 Behavioral Subtyping

What about subtypes that are not based on subsets? Suppose that objects of type §
behave exactly like those of type T, as long as we attempt only operations defined on 7.
In that case we call S a strict behavioral subtype of T. One of the key properties of a
strict behavioral subtype is that its objects can be substituted for objects of any of its
supertypes without ill effect. Of course, a subtype can offer additional behavior, as long
as the additions do not conflict with the behavior of the supertype. One of our earlier
examples illustrates this: a DEQueue acts just like a Queue, as far as Queue operations are
concerned, but a DEQueue has additional useful semantics. The essential difference between
subset subtypes and behavioral subtypes is that subset subtypes are based more on state,
whereas behavioral subtypes are based on behavior and need not have similar (concrete)
states. Subset subtyping does take behavior into account, but does not emphasize it to

the extent that behavioral subtyping does.
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Type Extension One way of building a strict behavioral subtype is to take an existing
type and add representation and/or operations. Thus we could take Queue and build
DEQueue from it, as discussed in Section 2. We call this process type extension. Type
extension is not as general as behavioral subtyping since a behavioral subtype can be built
entirely independently of its supertype(s). That is, type extension builds a strict behavioral
subtype by using a particular form of inheritance, whereas behavioral subtypes need not

be built with inheritance at all.

Behavioral Similarity Consider the following modified form of the definition of strict
behavioral subtyping: if objects of type S behave exactly like those of type T, under
conditions C, then S is C-similar to T. This directly parallels our definition of subtyping,
and it is easy to see that behavioral similarity subsumes all other forms of subtyping we
have discussed.

A strict behavioral subtype’s conditions are the least restrictive of those that include
all of the supertype’s behavior. Since pure classification follows the same rules, we see
that it is a form of strict behavioral subtyping. That is, in both cases, S is similar to T'
under any conditions. If S is substitutable for T' only under more restrictive conditions,
we get a looser connection between the types, giving rise to what might be called a loose
or partial behavioral subtype. An example of a partial behavioral subtype is the bounded
integers as a subtype of the unbounded integers. The conditions are that the calculations
always stay within the bounds. We can also view the unbounded integers as a behavioral
extension, and thus a subtype, of the bounded integers.

At first it may seem inconsistent to say that bounded and unbounded integers are
subtypes of each other, since subtypeness is generally expected to be anti-symmetric. We
are discussing behavioral similarity, though, and its definition leaves room for different
types to be considered equivalent (each substitutable for the other), depending on the
conditions C and the items being considered. In fact, by adjusting the conditions C, we
can trivially make any type similar to any other type. In that sense, behavioral similarity
appears to be fully general. On the other hand, even though behavioral similarity may be
fully general, it may not always be the simplest way to explain the relationship between two
types. For example, comparing 1..100 and the Pascal Integer type, the precise similarity

conditions are not easy to formulate; in this case the notion of a subrange subtype seems
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more convenient.

3.2.3 Subtype Checking

An aspect of subtypes that we feel is important to review is how they affect type
checking in programming languages. Some object-oriented languages provide subtyping
mechanisms'#¥ithout recognizing or using the subtype relationship in type checking. Others
do integrate subtyping with type checking.

Type checking is the process of guaranteeing that an operator or operation is not
applied to inappropriate arguments. There are three basic approaches: do no checking,
check as operators are about to be applied (dynamic checking), and check in advance
of execution (static checking). Not checking is the most efficient, but clearly the most
dangerous approach. Dynamic checking is the most flexible, but least efficient approach.
Static checking sacrifices flexibility for improved efficiency, and many argue that it is most
effective in reducing programming errors resulting from type mismatches. On the other
hand, static checking requires the compiler (or some other pre-execution tool) to check
declarations and the programmer to provide those declarations. It is important to point
out, however, that the amount of type information the programmer needs to provide can
be substantially reduced by inferring types, as in done in languages such as ML [Gordon
et al., 1979]. It is also important to note that static checking does not preclude dynamic
binding of operation invocations to actual code, Owl being an example to which we will
return.

One aspect of type checking is resolution of overloaded operation invocations. In Ada,
and with C++ non-virtual functions, the compiler-determined types of the arguments are
used to resolve overloading.!In Smalltalk and Owl, and for C++ virtual functions, the
type of the first argument, which is by convention implicitly the object itself, is examined
at run time and used to find the right code to execute. In contrast, CLOS makes use of
the types of all the arguments rather than just the first one.

Subtyping relates to overload resolution in that subtyping results in the definition of

closely related types with overloaded operations. One consequence is that we end up with

13We must also consider languages that provide inheritance mechanisms that can be used to

build subtype relationships.
14 Ada actually uses result types in overload resolution as well.
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circumstances in which the same operation code can be applied to objects of many types.
This can occur, for example, when subtypes inherit an operation without reimplementing
it. In Smalltalk, the representations are designed so that the same exact compiled code will
work when inherited; in Owl the source code is recompiled in the context of the subtype,
and a code body shared if the resulting code is identical. The point is that type checking
is more subtle since the same operation can apply to multiple types.

When operations are reimplemented in subtypes, we end up with a significant amount
of overloading to be resolved. Further, it can be argued that there are considerable benefits
to deferring that particular kind of overload resolution to run time. A typical example is
any kind of container type, such as Set. It would be nice to be able to print the contents
of a set simply by requesting each item in the set to print itself. Doing this by requiring
sets to be homogeneous (i.e., contain objects of just one type) is overly restrictive. It is
much nicer to allow heterogeneity, as long as all the items are printable (i.e., supply an
appropriate operation Print).

Doing static type checking in the presence of subtyping while retaining a fair amount
of flexibility (i.e., dynamic binding) presents interesting conceptual, language-design, and
compiler-implementation problems. In the presence of subtyping, type checking is fre-
quently called conformance checking, since the issue is whether or not one type conforms
to another in some way more general than strict equality. As mentioned in the introduc-
tion, conformance involves the matching of interfaces, of operation invocations to operation
definitions, and of subtype operation definitions to supertype operation definitions.

Owl is an example of a language that supports subtyping, static type checking, and
dynamic binding. It is instructive to examine Owl’s type checking rules to gain better
insight into the differences between conformance checking and traditional type checking.
Owl’s rules are essentially the same as those adopted for Emerald. There are two basic
rules. (We omit some irrelevant details for simplicity.)

First we consider operation invocations. In the operation invocation
x:=p (e, el, ..., ek);

the static signature of p is determined by computing the static (compile time) type of the
first expression, e. This can be done by inspection if e is a literal such as 37. Similarly, if

e is a variable, its compile-time type is determined from the variable’s declaration — all

30



variables must have declared types in Owl. Finally, if e involves an operation invocation,
the static signature of the invocation is determined recursively, and the result type of that

signature is the static type of the expression.

Once the static type of e has been determined, the definition information for that type

is examined to get the signature of p. Suppose that signature is:
p (T, T1, ..., Tk) returns R

Assuming that the type of x is X, and that § C T means S is a subtype of or the same

type as T', the conformance rules for the operation invocation are:
e RC X;
eeilC Tiforl<i<k.

Thus, each argument expression ei must conform to the signature’s expected type, and the
result type must be acceptable for storage into x.

The other basic rule in Owl controls what C means. For S to be a subtype of T', §
must implement every operation that T does (.5 is allowed to have more operations), and
the operations must conform. In particular, assume we have the following signatures for

operation p:
e inT: p(T, T1, ..., Tk) returns TO;
e in S: p (S, S1, ..., Sk) returns SO.
The conformance rules are:
e SOC TO;

o TiC Si.

In words, the subtype result must be no more general than the supertype result. This
guarantees that type checking based on the supertype signature result type will not be
invalidated. The subtype arguments must be at least as general as the supertype argu-
ments. Again, this guarantees that operation invocation checks done with the supertype

signature are also correct for the subtype signature.
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Note that the rule for the result is reversed from the rule for the arguments. This
reversal, called contravariance, also appears in the conformance rules for function types in

[Cardelli and Wegner, 1985). As an alternative one might propose these covariant rules:
e SOC TO;

e SiC Ti.

While covariance is natural-looking, it simply does not work for general static type check-
ing. This is because the subtype operation cannot accept everything that a call statically
checked with the supertype’s signature might send to the subtype operation at run time.
Note, however, that if Si = Ti for every i (which trivially holds when there is only one
argument), S C T under both the covariant and contravariant rules. Perhaps because of
this fact, and in spite of the appérent shortcomings of the covariant rules, covariance has
been adopted for Eiffel.

The Owl and Emerald conformance rules are the only known foundation for static
type checking in the presence of subtypes. A number of subtleties arise, however, when
considering parameterized types, and there are competing proposals in that area. Detailed
consideration of the issues of parameterized types are beyond the scope of this paper.
See [Cardelli and Wegner, 1985], [Meyer, 1986], and [Horn, 1987] for more discussion
of subtyping and conformance with parameterized types. In the next section, we draw
conclusions about desirable ways of incorporating subtyping into programming languages,

and from those considerations suggest a design approach.

4 Language Design Principles

As can be seen from the review given in the preceding section, there is considerable
variety in the inheritance mechanisms that have been proposed and used with programming
languages. Also proposed and used are a number of notions of subtyping. Finally, static
type checking in the presence of subtypes is becoming better understood. We consider
this also to have been the historical development of the topic: first there were inheritance
mechanisms, then the idea of subtypes began to evolve, and now we understand enough

to develop some theory and to support static type checking. While this account may be
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an oversimplification, it is suggestive of a developing line of thought in the programming
language community, moving from mechanism towards theory, from form to meaning.

We feel it useful to organize and summarize what has been learned by suggesting some
pragmatic principles of language design related to inheritance and subtyping. Not all of
these principles are new, such as the Abstract Representation Principle first advocated
by Snyder. Nevertheless, many of the principles have not been articulated before and we
know of no language that adheres to all of the principles. We believe that the principles
are likely to lead to improved language designs — improved in the sense of encouraging
more reliable program construction analogous to the now well-accepted notions of data
abstraction and modularity.

As we allude to above, the principles derive from the perspective that inheritance and
subtyping should serve to support behavioral abstraction in programming languages. By
behavioral abstraction we mean the treatment of types as embodying or being behaviors,
rather than as syntactic constructs or data structures. Behavioral abstraction extends the
notion of data abstraction by relating behaviors in terms of behavioral subtype relation-
ships (Section 3.2.2).

In this section, we introduce the principles by describing each in turn. We then pro-
vide a more considered rationale for the behavioral abstraction approach underlying the

principles. Finally, we evaluate several existing languages in terms of the principles.

4.1 The Principles

The essence of our suggested design approach is to reverse the historical flow when
designing a language: consider inheritance mechanisms in the light of subtype theory.
More specifically, we propose that one should design the subtype system of a language
first, and then insure that the inheritance mechanisms support the subtype system well.
This is analogous to saying that syntax should follow intended semantics.

Designing the subtyping system of a language first leads to the following language
design principle:

Subtype Support Principle: Every desired form of subtyping in a language

should be supported by an easily recognized and easily used inheritance mech-
anism.
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The Subtype Support Principle is justified on the grounds that semantic concepts in a
language should be supported by clear syntax. An obvious syntactic mechanism for the
semantic concept of subtyping is inheritance. The principle applies equally well to dynam-
ically type-checked languages, such as LISP extensions or Smalltalk, as it does to statically
type-checked languages, such as C++ and Owl. The only argument that can be mounted
against this principle is that some particular form of subtyping may be desirable but used
rarely enough that the “cost” of providing a corresponding form of inheritance is not
worthwhile.

The Subtype Support Principle appears stronger than it is. In particular, the principle
does not require that there be language-recognized subtyping, only that the desired sub-
typing schemes can be modeled easily using the features of the language. Moreover, the
principle does not require that any specific subtyping scheme be provided, that inheritance

be used only in support of subtyping, or that subtypes be constructed only by inheritance.

Exclusiveness Principle: Inheritance mechanisms should be used exclusively
to support intended subtype relationships.

Given that inheritance is a syntactic mechanism, the question must be asked as to what
semantics it supports. We know of only one reasonable candidate, namely subtyping. The
reason for choosing subtyping stems from the fact that inheritance establishes a strong
bond among components of a system, particularly the components that are involved in
defining the semantics of objects. That bond, of course, is the one that causes implicit
propagation of changes from superclasses to subclasses. If such a relationship is reflected
only at the level of syntax (i.e., through the inheritance structure) and so has no visible
expression at the level of semantics, then we are likely to encounter serious maintenance
problems. For example, how can we tell what semantic effect a change in a superclass
may have, and if we cannot tell, how can we be sure that the change is the correct one?
Because subtyping is the language mechanism that captures behavioral relationships among
the components that define the semantics of objects, inheritance must be constrained to
operate only within the context of the subtype structure.

It is clear, and a recurrent theme of this paper, that we believe that inheritance and

subtyping can and should be separated. This suggests the following principle:

Separation Principle: It should be possible to build subtypes and supertypes
without using inheritance.
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This principle hides within it the essence of a behavioral view, that subtypes have to
do with behavioral rather than implementation properties. In that sense, the Separation
Principle is saying that languages should support behavioral subtyping. An argument in
favor of this principle is that it leads to natural ways of relating types that are semantically
similar but implemented using distinctly different code and representations.

Note that the Separation Principle does not contradict the Subtype Support Principle,

which says we can, but do not have to, use inheritance to build a subtype.

Multiple Implementation Principle: It should be possible to build multiple
implementations of the same type, having different code and representations.

This is actually a specific requirement from which we arrived at the Separation Principle.
It is useful to state it explicitly, however, since it is a bit different. The main argument
in support of the Multiple Implementation Principle is its utility: a considerable num-
ber of types afford more than one interesting implementation with differing performance
characteristics but the same functional behavior. The primary argument that might be
advanced against this principle is that it appears to require dynamic binding and has

difficulty dealing with operations that access more than one object of the type at a time.

Abstract Representation Principle: Types and classes should be designed
with an abstract representation, defined in a behavioral way.

Following this principle leads to better abstraction and modularity by localizing the code
that can observe and manipulate the representation. Representation abstraction is also
important in the definition of abstract classes, as we discuss in Section 3.1.3. Further,
representation abstraction facilitates the use of multiple implementations of a type. This is
done as follows. First define an abstract class with signatures, but no bodies, for operations
defining the abstract representation. Then define as many subclasses as desired, each one
supplying a representation plus bodies for the abstract representation operations in terms
of that representation.!One property of this technique is that it requires all operations to
be broken down into operations on a single instance of the class at a time — but that is

exactly the purpose of the abstract representation: to hide the actual implementation, even

15Exemplars provide a way to supply a representation as a number of similar interacting variants,
as described in Section 3.1.3. Hence, a representation need not consist of a single object or a single
physical layout.
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from related subclasses. In sum, the arguments for the representation abstraction principle
are that it increases abstraction and modularity, and assists in supporting simultaneous
multiple implementations of a type.

An argument against this principle is that it forces more operation calls, making im-
plementations of some operations needlessly costly. While more detailed analysis needs to
be performed, we believe that the performance argument does not stand up. For example,
suppose some operation does not directly access the representation, but uses the abstract
representation operations (as it should). By recompiling the operation in the context of
a given implementation it should be possible to expand simple representation accessing
operations inline. This is not different from the usual situation with abstraction, where
judicious inline expansion, and other optimizations, can be applied to overcome many
performance objections.

Behavioral Subtyping Principle: Programming languages should support
behavioral subtyping.

An argument in support of behavioral subtyping is that it leads to simpler semantic re-
lationships between types. Further, it allows one to recognize similarities of importance
to users of types, leading to programs that are more general and extensible. Focusing on
behavior rather than implementation may also tend to reduce the number of errors made
in programming. It may also tend to enhance reuse.

An argument against behavioral subtyping is the same one commonly advanced against
typing in general: objection to writing the declarations that define the behavior of pro-
gram components. A sharper criticism is that we do not really understand good ways of
describing behavior nor the compromises between precise description, conciseness, and au-
tomatic processing of descriptions. Another general kind of argument against a behavioral
approach is that it appears to require dynamic binding, which some feel is too expensive.

Behavioral Typing Principle: Types and type checking should be based
primarily on abstract behavior, and secondarily on implementation concerns.

This embodies a strong view: that a behavioral approach is the best of the known ap-
proaches to subtyping. We have already stated some arguments in favor of a behavioral
approach. One is that it leads to the simplest semantic relationships between types. Fur-

ther, since a behavioral approach is semantics based, it provides the best hope for correct
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programs and for reuse. Arguments in favor of its exclusive use include the fact that having
a single mechanism reduces confusion and the likelihood of error, and that the presence

of other subtyping approaches might undermine a behavioral approach and reduce its

practical value.

4.2 Rationale for Behavioral Abstraction

Having put forth the principles, we can now summarize why we believe behavioral

abstraction is both valuable and viable:

1. Behavioral abstraction subsumes and extends data abstraction, by establishing mean-
ingful relationships between types.

2. Behavioral abstraction organizes a system by semantics and behavior. This requires
behavior to be expressed and documented, and leads to reasoning in terms of behav-
ioral rather than syntactic or physical structure. This in turn improves reuse and
system malleability.

3. Behavioral abstraction supports multiple implementations of a type naturally, in-
creasing the flexibility of systems. This also encourages more of a “building block”
approach to software construction.

4. Behavioral abstraction has simple semantics, making it easy and reliable to use in
practice and increasing the applicability of formal tools.

The prospects of formal tools deserves more detailed comment. The language and the-
ory described in [Sheard and Stemple, 1988a), [Sheard and Stemple, 1988b], and [Stemple
et al., 1988] is an example application of automated reasoning about program correctness
in realistic situations. Stemple and Sheard start with primitive data types and data type
constructors that have a formal theory, and from them derive the theory of any type built
in terms of those primitives and constructors. This applies to abstract data types as well,
since their language, ADABTPL, also has a relatively simple formal semantics. They are
able to prove representation invariants in realistic situations, specifically, that database
integrity constraints are preserved by transactions against the database. Their language
has a behavioral subtyping structure and they speak of the inheritance of theory by sub-
types from supertypes. Such an automated reasoning capability can be used to support

sophisticated optimization in addition to demonstrating correctness. The formal approach
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of Stemple and Sheard may also indicate useful ways to extend the definition of interfaces
beyond simple operation signatures.

We feel that the benefits of behavioral abstraction are great, especially for large sys-
tems. The disadvantages of the approach appear to be minimal, although there are the
usual questions of efficiency and achieving adequate optimization from compilers. Even if
efficiency is an overriding concern, to the extent, say, that dynamic binding is judged too
costly for a given language or application, the value of behavioral abstraction is not un-
dermined. Rather, one is just finding a different tradeoff between efficiency and behavioral
abstraction. Still, this issue does raise questions as to the application domains to which
behavioral abstraction is most important or is of greatest benefit.

In supporting behavioral abstraction, we have been motivated primarily by problems
of programming-in-the-large. Indeed, behavioral abstraction does address programming-
in-the-large concerns, such as reuse, evolution, maintenance, and correctness. The main
observation that we would like to make is that almost all programming is programming-
in-the-large, in the sense that programming is done in the context of a large system.
For example, a considerable amount of the enthusiasm for Smalltalk has to do with the
tools and components already present in the Smalltalk environment, rather than with
the language itself. On workstations, we make use of considerable library packages and
applications frameworks for dealing with graphics and interactive interfaces, as well as the
traditional operating system features such as files.

It is reasonable to conjecture that one of the main routes to supporting exploratory
programming and rapid prototyping, where the essence of the effort is to find the “right”
behaviors, is providing a rich library of types and tools on which to build. Experimental
systems can be quite large [Wileden et al., 1988] and would benefit from judicious appli-
cation of behavioral abstraction. The nature of the tools might be a bit different — more
forgiving and less rigid at the outset, but helping to record and reduce inconsistencies as
design and exploration progresses. Thinking and programming behaviorally, and having
a crisp semantic model available, will still help. We do admit that there is still consider-
able room for increasing the flexibility of type systems and of bridging the gap between
the relatively restrictive realm of static type checking and the relatively insecure realm of

dynamic type checking.
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It is interesting to consider whether behavioral abstraction is a useful principle out-
side the domain of programming languages. In fact, it almost certainly underlies notions
of standards and interfaces used in a variety of domains and may help point the way to
new styles of specifying standards and interfaces that allow considerable implementation
freedom while supporting interoperability and reuse. Networking and operating systems
come to mind as particular domains in computer science that benefit from these ideas,
and it seems reasonable to speculate that the ideas have application broadly throughout
many engineering disciplines. Closer to home, what about artificial intelligence, and its
programming and cognitive modeling languages? This seems like much shakier ground. It
is not at all obvious that what is good for compilers and provability is necessarily much
like accurate or useful models of intelligence. Behavioral abstraction, as we intend it to
be used in programming languages, relies on formal semantics that can be automatically
manipulated. There are those who argue strongly that logic and formal semantic systems,
such as those on which behavioral abstraction relies, are definitely inadequate as cogni-
tive models. At present, the applicability of behavioral abstraction to notations such as
knowledge representation languages must be considered an open question.

It is easy to see that effective behavioral abstraction depends on the ability to describe,
compare, and relate behaviors. Thus, it implies the need for certain programming lan-
guage features. Going beyond specific features, we believe that behavioral abstraction,
and the principles we have presented in this section, suggest a strategy for designing the
subtyping and inheritance features of programming languages. These matters are taken

up in Section 5.

4.3 A Look at Existing Languages

We now consider the extent to which a number of existing languages follow the prin-
ciples we have presented. We have attempted to cover a broad range of significant and
popular languages, but do not claim that to offer a comprehensive survey. The results are
summarized in Table 1, with additional commentary appearing in the text.

Smalltalk

References: [Goldberg and Robson, 1983; Borning and Ingalls, 1982].
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Subtype Multiple Abstract Behavioral| Behavioral
Support | Exclusiveness| Separation | Implementation| Representation| Subtyping| Typing

C++ E E P G G F G
CLOS G P G G P NA NA
CommonObjects G G G E NA NA
Eiffel]|  E E P G E G €]
Emerald P NA E E E G E
Flavors F P G G P NA NA
Owl E E P G B G G
SmallTalk G P G F F NA NA

E—excellent; G—good; F—fair; P—poor; NA—not applicable

Table 1: How Several Existing Languages Adhere to the Principles.

Background notes: Smalltalk has a very weak notion of type, one that is heavily tied to
implementation rather than behavior. Partially as a result, it has no language-recognized
notion of subtype. Subtyping relationships can be expressed in terms of coincidental
operations that may or may not be built by inheritance. Those relationships, however,

cannot be validated by the language system.

o Subtype Support Principle: If used with discipline, Smalltalk’s inheritance mecha-
nism supports a tree subtype structure (single immediate supertype) fairly well. The
multiple inheritance scheme of [Borning and Ingalls, 1982] extends the structure from
a tree to a directed acyclic graph, though it is based upon automated copying.

o Exclusiveness Principle: Because of Smalltalk’s weak notion of type, proper use of
inheritance within a subtyping structure cannot be enforced.

e Separation Principle: It is possible to define subtypes independently of inheritance,
but such subtypes exist “only in the head” of the programmer.

e Multiple Implementation Principle: Multiple implementations can be created by
building multiple subclasses of a Smalltalk class. The subclasses, however, would all
share the common representation of the superclass (although they can add to it).

o Abstract Representation Principle: While no special features are provided, and typi-
cal Smalltalk style does not follow this principle, abstract representations can indeed
be devised and used. Abstract classes appear frequently as sources for inheriting and
structuring code. While Smalltalk does prevent the representation of objects from
being manipulated at will,!ft does not protect them from subclasses.

16We are assuming the user does not employ some of the powerful operations that allow any
object to be accessed and updated (instVarAt:, for example).
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o Behavioral Subtyping Principle: Because Smalltalk does not have a genuine notion
of type, this principle does not apply.

¢ Behavioral Typing Principle: Because Smalltalk does not have a genuine notion of
type, this principle does not apply.

C++

References: [Stroustrup, 1986; Stroustrup, 1987).

Background notes: C++ is superficially similar to Smalltalk (with multiple inheritance).
It differs primarily, and significantly, in that it supports a strong notion of type, static
type checking, and overloading of operations. It also differs in that it permits finer control
over what is inherited by and what is visible to subclasses. C++ supports a weak form
of subtyping that requires exact matching of operation signatures, although more flexi-
ble subtyping relationships can be simulated using overloading. Moreover, the subtyping
structure is dictated by the inheritance structure, rather than the other way around, and
therefore C++ is considered to adhere very well to the Exclusiveness Principle, but not so

well to the Separation Principle.

e Subtype Support Principle: C++ has one form of subtyping and it is supported
explicitly by inheritance.

o Exclusiveness Principle: In C++, inheritance cannot be used other than to support
its single notion of subtyping.

e Separation Principle: C++ does not adhere to this principle, since a subtype always
inherits from its supertypes, except that alternate code and representation can be
supplied.

e Multiple Implementation Principle: Multiple implementations can be created by
defining an abstract class and then a subclass for each different implementation.

e Abstract Representation Principle: An abstract representation can be created by
hiding the representation from subclasses, using the private construct, while providing
those subclasses with appropriate abstract representation operations. This technique,
however, is used at the discretion of the developer.

e Behavioral Subtyping Principle: C++ adheres to the extent that signatures represent
behavior, but the conformance rules are quite restrictive.
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Owl

Behavioral Typing Principle: C++ type checking is based on the subtype structure
and therefore C++ adheres well to this principle. Its adherence is not quite as good

as Emerald’s, however, because the subtype structure is dictated by the inheritance
structure.

References: [Schaffert et al., 1986].

Background notes: Owl and C++ are remarkably similar in their adherence to the prin-

ciples. The major difference lies in the fact that Owl’s conformance rules are much more

flexible than those of C++.

Subtype Support Principle: Owl has one form of subtyping and it is supported
explicitly by inheritance.

Exclusiveness Principle: In Owl, inheritance cannot be used other than to support
its single notion of subtyping.

Separation Principle: Owl does not adhere to this principle, since a subtype always
inherits from its supertypes, except that alternate code and representation can be
supplied. In other words, the subtyping structure is dictated by the inheritance
structure, as in C++.

Multiple Implementation Principle: Multiple implementations can be created by
defining an abstract class and then a subclass for each different implementation.

Abstract Representation Principle: Owl adheres extremely well, since all representa-
tion access is mediated through operations whose bodies can be replaced. Further,
through the private and subtype_visible attributes, access by subtypes to representa-
tion and code of supertypes can be controlled.

Behavioral Subtyping Principle: Owl adheres well, to the extent that signatures
represent behavior.

Behavioral Typing Principle: Owl type checking is based on the subtype structure
and therefore Owl adheres well to this principle. Its adherence is not quite as good
as Emerald’s, however, because the subtype structure is dictated by the inheritance
structure.

Emerald

References: [Black et al., 1987].
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Background notes: Emerald and Owl are very similar in terms of their realization of
the notion of subtyping. They differ primarily in two ways: First, in Owl the subtype/
supertype structure is established through an explicit syntactic construct, while in Emerald
the relationships are implicitly based on interfaces. Second, Emerald does not support
inheritance.

e Subtype Support Principle: Emerald does not provide an inheritance mechanism.

o Exclusiveness Principle: Emerald does not provide an inheritance mechanism.

e Separation Principle: Emerald does not provide an inheritance mechanism.

¢ Multiple Implementation Principle: Multiple implementations are a key feature of
Emerald. They are created by using different so called object constructors to con-
struct objects that conform to the same type; object construction, and hence imple-
mentation, is separate from the typing structure.

o Abstract Representation Principle: Subtypes are not given access to the representa-
tion of a supertype.

e Behavioral Subtyping Principle: Emerald adheres well, to the extent that signatures
represent behavior.

e Behavioral Typing Principle: Emerald type checking is based on the subtype struc-
ture and therefore Emerald adheres well to this principle.

Cros

References: [Bobrow et al., 1987)].

Background notes: CLOS is similar to Smalltalk in that it has a very weak notion of type
that is heavily tied to implementation rather than behavior, does not have a language-
recognized notion of subtype, and allows the expression of subtype relationships in terms
of coincidental operations that may or may not be built by inheritance. The inheritance
mechanism of CLOS, however, is much more powerful than Smalltalk’s.

e Subtype Support Principle: The powerful inheritance mechanism of CLOS has no
difficulty supporting a tree (single inheritance) subtype structure. It also supports a
directed acyclic graph structure, though care must be taken with respect to multiple
superclasses that define operations having the same name.

o Exclusiveness Principle: The CLOS inheritance mechanism is designed to allow a
composite object to be built by inheriting from its components’and thus does not

17CLos advocates have been known to present such examples first in their talks on the language.
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exclusively support subtyping. As we discuss in Section 2, aggregation (i.e., the “part
of” relationship) should not be confused with subtyping.

o Separation Principle: While subtypes and supertypes can certainly be built with-
out inheritance, it should be noted that CLOS does not have a language-recognized
notion of subtype, only of inheritance. Therefore, subtype relationships cannot be
adequately guaranteed.

o Multiple Implementation Principle: CLOS allows multiple implementations, but in
the absence of any indication that the implementations are implementations of the
same type.

e Abstract Representation Principle: Because slots are revealed to all other compo-
nents, CLOS is not considered to adhere to this principle.

e Behavioral Subtyping Principle: Because CLOS does not have a genuine notion of
type, this principle does not apply.

o Behavioral Typing Principle: Because CLOS does not have a genuine notion of type,
this principle does not apply.

Flavors

References: [Moon, 1986].

Flavors adheres to the principles similarly to CLOS. One significant difference is the
greater power and substantially more complex semantics of the inheritance mechanisms
of Flavors, namely method combination. This makes Flavors adhere even less well to the

Exclusiveness, Separation, and Abstract Representation principles.

CommonOb jects

References: [Snyder, 1985|.
In contrast to Flavors, CommonOb jects adheres to our principles better than does
CLos. CommonOb jects does better primarily on the Abstract Representation Principle,

though its stronger stand on data abstraction improves its adherence generally.

Eiffel

References: [Meyer, 1986; Meyer, 1988].

Eiffel is identical to Owl in terms of its adherence to the principles.
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5 Some Implications of a Behavioral Approach

Having proposed several language design principles and argued in favor of a behavioral
approach, we now consider in more detail the implications a behavioral approach would

have for programming language features and the language design process.

5.1 Effects on Types

One immediate implication of a behavioral approach is that the most important prop-
erty of the notion of type in a programming language is that a type implies a behavior. It
is instructive to consider the historical development and refinement of types in program-
ming languages. In FORTRAN, types of variables constrain their behavior, of course, but
FORTRAN types primarily specify implementation. Further, FORTRAN does not allow new
behaviors to be described — that is, there are no user-defined types. ALGOL68, PL/1,
CoBoL, and Pascal have richer type systems than FORTRAN, but types are still primarily a
means for specifying implementation. CLU, and to a lesser extent Modula and Ada, allow
type implementations to be hidden, which has the effect of playing down implementation
concerns and emphasizing behavior.

It is clear that the abstract data type approach is closely related to the behavioral
notion of type. The main difference is that a pure behavioral approach would allow more
complete dissociation of type specification from implementation: in the ideal it may be
possible to describe a type without supplying any true implementation. We suspect that
any effective and practical method for completely describing behavior will be some kind of
implementation, such as an abstract model. On the other hand, less complete specifications
might very well be possible without implementation. Ada, CLU, and Owl, for example,
allow types to be described abstractly without providing an implementation.

A behavioral type is a description of behavior and need not be tied to any particular
component or piece of code. In a behavioral language, a component would not so much
be a type or represent a type as have, implement, or conform to a type. That is, if types
describe behaviors, then, since two components might provide indistinguishable behavior,
types cannot be identified with components. In this way all hints of implementation are
removed from the notion of type. This seems to be a logical next step in the evolution of

types in programming languages.
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How to express behavior is a difficult problem, worthy of considerable study. On the
one hand, signatures are relatively easy to check, but somewhat unreliable since they
capture little semantics. Full semantic descriptions are more difficult to write and check
(not to mention the problem of devising an appropriate notation for them), but provide
maximum safety. Moreover, they better support code optimization, given a sufficiently
powerful optimizer. Finding a good middle ground, or even showing how to go beyond
signatures in a practical programming language, is still an open problem, though [Sheard

and Stemple, 1988b] and [Perry, 1986] help point the way.

5.2 Effects on Type Checking and Call Binding

If behavior is the most important property of types, then behavioral conformance is
the appropriate approach to type checking, as opposed to exact matching of types. Any
specific type definition and conformance checking design takes some aspects of behavior to
be significant and treats others as being irrelevant for definition and checking purposes. For
example, performance attributes such as size and speed might be ignored when defining and
checking types since those properties do not affect program correctness, even though they
may ultimately be very important in determining if the program meets its full requirements.
This observation suggests that no single notion of type conformance will suffice for all
languages or circumstances. Allowing the significant attributes of behavior to be adjusted
according to situation is an interesting language research problem.

One specific kind of conformance that is certainly useful is full conformance: a compo-
nent or implementation fully conforms to (or implements) a type if the component meets
the type’s specification. The component may offer more, but it cannot offer less than the
type requires, or change any aspects of the type’s specification. It is obvious from this def-
inition that a type may have a number of implementations. How to describe (or determine
automatically or semi-automatically) which implementation to use when more than one is
available is an open question in language design.

Full conformance implies neither the presence nor absence of dynamic binding or over-
loading. Owl and Emerald show that static full conformance checking and dynamic bind-
ing can be used together effectively. Using multiple implementations of the same type

simultaneously from the same piece of source code does appear to require, or at least is
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greatly simplified by, dynamic binding. Further, dynamic binding with static conformance
checking, except of multiple implementations of exactly the same type, requires inexact
matching of components to types. The Owl and Emerald conformance rules demonstrate
one way of doing this.

We have argued that full conformance is useful in considering the implements rela-
tion: the relationship between type specifications and components that implement them.
Partial conformance (behavioral similarity) is also important and appears more related
to inheritance than to implementation. For example, it is not difficult to imagine type
inheritance operators that allow one to take an existing type and modify it in ways other
than pure addition, so as to produce a new type that conforms only partially to the old
one. Further, specifying new types that way may be quite convenient. Supporting such
inheritance operators does not undermine the Behavioral Typing Principle as long as the
semantics of the operators can be clearly and crisply characterized. Behavioral similarity
is a topic deserving further study.

In addition to full and partial conformance, type parameters to components or type
definitions present interesting situations and problems. Even CLU and Ada have ways of
imposing behavioral requirements, in terms of signatures, on types used as parameters. For
an example of such a requirement, consider a sort component for sorting items of type T,
T being a parameter of the component definition. The component may require that T offer
comparison operators if it is to be an acceptable parameter. A more subtle situation is one
in which the parameterized type has some property depending on whether the parameter(s)
have a corresponding property. The parameterized type Array demonstrates this situation:
it is possible to print an array if and only if the type of item contained in the array also
has a Print operation. Owl has some support of parameterized types along these lines, but
Horn’s work [Horn, 1987] goes into more subtle situations, such as parameterized abstract
classes, and should be examined closely before undertaking future designs. As mentioned
above, conformance for parameterized types and components is not fully understood and
is another topic deserving additional research.

We have pointed out that taking a behavioral approach to conformance checking is
somewhat independent of the issue of static versus dynamic binding. We also should point
out that behavioral typing and conformance checking are independent of this issue as well;

a behavioral approach prescribes the nature of the check but not when it is done. Granted,
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having type specifications, especially behavioral ones, is conducive to static checking, but

in some kinds of programming, run-time type checking may be preferred.

5.3 Explicit or Implicit Subtyping?

There is one additional implication of behavioral typing for language designs that de-
serves attention. Assuming that full specification of behavior along the lines of [Sheard
and Stemple, 1988b] or [Perry, 1986] will not be practical or accepted for some time, in the
interim we are likely to rely primarily on operation signatures as the means for specifying
types and checking conformance. Is it better to require that the programmer explicitly
mark subtype relationships, as is done in Owl, or to recognize subtypes implicitly from
their conformance, as is done in Emerald? Note that Owl and Emerald have the same
conformance rules, but take opposite positions on this issue.

Since a signature is but a pale shadow of a full behavioral specification, a behavioral
approach suggests that subtype relationships must be explicitly designated or marked by
the programmer rather than inferred by the language system. For example, many aggregate
types (Stack, Queue, Set, etc.) might quite reasonably have operations called Insert and
Remove, yet they have rather different behaviors. A structural or implicit subtyping rule
would allow these types to be substituted for one another inappropriately.

In the absence of full specification it seems more wise to require the programmer to
note subtype relationships explicitly. Of course, the language system should check that
the signatures of explicitly designated subtypes do in fact conform to their supertypes’
signatures. Note that Cardelli and Wegner use implicit subtyping in [Cardelli and Wegner,
1985]. In private communication, Cardelli has indicated that this appears to produce a
simpler theory than explicit subtyping; to our knowledge, no detailed theory of explicit
subtyping has been developed. We feel that even if such a theory is a bit more complicated,
the practical advantages of explicit subtyping justify it.

A useful view to take of conformance checking is that it is a simplified form of the-
orem proving — type checking in essence proves a type correctness theorem. Explicit
subtype designation by the programmer can be viewed as an assertion that the appro-
priate behavior-conformance theorem could be proved. As we learn how to specify and

check behavior more completely, we should be able to minimize the need for programmers’
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assertions, and rely more on automated checking.

5.4 Static Checking and Restriction Subtypes

Recall that in Section 3, when discussing restriction subtypes, we considered an example
type Person with a subtype Minor for persons that are not yet legal adults. At first glance
it might appear that Minor is a full behavioral subtype of Person; but because IncrementAge
prevents Minor from being a closed type, Minor is not a full behavioral subtype of Person,
and only partially conforms (i.e., it conforms if we omit consideration of IncrementAge).

The closure problem arises whether we are dealing with a mutable type (Minor is
mutable: it has state that can change over time) or an immutable one. In fact, a mutable
type can be thought of as just a “variable” containing an immutable value, with update
operations performing an implicit assignment to the variable.

There do not seem to be many alternatives in dealing with this problem. One approach,
taken in the Owl and Emerald conformance rules, is to require that subtypes be closed.
This has the effect of ruling out restriction subtyping, including subranges and embed-
ded subtypes. This permits compile-time conformance checking with no extra run-time
overhead. Another alternative would be to use run-time checks to verify closure. A final
alternative is to use more complete semantics and prove closure for the specific uses at
hand. This would include proofs that numerical code never leads to overflow, for example,
in the case of bounded integers.

While one might argue that the conflict between evolution of behavior and static typing
(closure) undermines our arguments for a behavioral approach to types, it is more a clarifi-
cation of the roles and properties of static and dynamic approaches to types. For example,
the variant record construct of Pascal shows a clear distinction between the aspects of a
type that are allowed to vary during program execution (which case of the variant pertains
at any given time) and those aspects that may not change (the other fields, the record
properties, the fields present with each case tag, etc.).

We do wish to clarify one point with respect to restriction subtypes: while they may
not be acceptable subtypes in terms of full conformance rules (including closure), they are
certainly useful and are readily constructed via inheritance. Restriction subtypes are yet

another of the cases where we would benefit from a theory of behavioral similarity.
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5.5 Static Checking and Contravariance

There are subset subtypes where the closure problem does not arise, but static rules
are still perceived as being overly restrictive. A good example is provided by considering
the (unbounded) integers without division as a subtype of the rationals (again without
division). Under the Owl and Emerald conformance rules the specified integer type is not
a subtype of the rationals. Consider the addition operation on integers; by the contravari-
ant conformance rule, the second argument must be a supertype of the rational type, not
a subtype. This is partly the result of determining signatures for type-checking purposes
from the first (implicit) argument alone. Still, even if that were not done, the addition
operator on the integers cannot be substituted for the addition operator on the rationals,
since the integer operator cannot accept rationals. It seems more appropriate to consider
the rationals as a subtype of the integers, but even that may be difficult because of imple-
mentation concerns, unless an appropriate abstract representation can be devised, which
seems unlikely.

It is interesting to note in this regard that CLOS provides a dynamic binding mechanism
that can take into account the (run-time) types of all the arguments for an operation and
locate the appropriate code to use. But it should also be noted that CLOS does not support
static type checking, and type checking is the point of our discussion. Again, this issue

needs further research.

5.6 Effects on the Process of Language Design

In addition to some specific implications that a behavioral approach has for features
of programming languages, concentrating on behavior also suggests a new process for

designing programming languages. Here are the design steps we propose:

1. Determine a model of behavior for the language. What is it that is important? For
example, in most languages, an important aspect is the set of operations possessed
by a type, the number and types of the arguments to those operations, and so on.
Implementation and performance aspects are generally ignored.

2. Given a behavioral model, design the type system to embody it. Here is where a
determination must be made as to what can actually be expressed about behavior
— is it just operation signatures or can we be more precise?
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3.

The type checking rules for the type system should represent conformance of the
behaviors that the types represent. That is, non-conforming types must have non-
conforming behaviors, according to the language-specific notion of behavior. It would
also be nice if conforming types always had conforming behaviors, but since con-
formance is likely to be approximate as previously argued, we cannot expect type
checking to establish true behavioral conformance. What we can expect is that type
checking will catch a lot of mistakes. The Owl and Emerald type checking rules, pos-
sibly extended with some of Horn’s ideas [Horn, 1987, illustrate current technology
in conformance checking.

Finally, design the inheritance mechanisms, ensuring that they preserve simple and
useful behavioral properties. The point here is that an effective and safe inheritance
mechanism is one that preserves key behavior, according to the behavioral model
of the language — the behavioral model should guide the design of the inheritance
mechanism, not vice versa. Thus, we find in Owl that inheritance works along the
lines of preserving all language defined behavior (signatures on instance operations).
This particular inheritance scheme results from Owl’s definition of conformance as
complete compatibility. Thus, if there are any substantial weaknesses in the Owl
design, they lie in its models of behavior and conformance, not in its inheritance
mechanism per se.

Notice that the first two steps essentially end up defining the notion of type for the language

being designed. We think it important that one begin by deciding what is and what is

not important to the concept of type in a given language, and only then should the type

system be designed. However, in practice the process is undoubtedly iterative.

To sum up, we are suggesting that designers concentrate on the notion of behavior,

and let inheritance mechanisms follow from that. The benefits of designing inheritance to

match with behavior are:

The inheritance mechanism, since it is designed to preserve significant behavioral
properties, can be used to do just that. This will tend to reduce programming
€ITors.

The ability to reuse components will also be enhanced, in that programmers will
know that important behavior will not be disturbed in the inheritance process.

Since components that were built using inheritance will have well-defined relation-
ships with their sources, they will be easier to understand. This also contributes to
their correct use as sources of inheritance and reuse.

Conformance checking is simplified. For example, Owl has dynamic binding, and in
theory we should match every possible signature against the actual types when type
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checking an operation call. However, the inheritance rules allow us to check just one
signature, since we know that any other signature will conform to that one.

¢ Programmers can think behaviorally, rather than trying to interpret mechanical, pos-
sibly counter-intuitive, rules and “playing compiler”. This will speed programming
and reduce errors.
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A. Glossary

Behavioral abstraction the treatment of types as embodying or being behaviors, rather

Class

Code

Component

Field

Inheritance

Interface

Method
Object

Operation

Representation

Signature

Slot

than as syntactic constructs or data structures

an encapsulator of program-entity declarations; when used as the
source of inheritance, a class is said to be a superclass, and when
used as the target of inheritance, a class is said to be a subclass

one of three primary components of a class definition (the others
being interface and representation), forming the
executable-statement portion and often broken down into
(statement) bodies for the operations defined in the class

a portion of a program that is syntactically distinct from other
portions, such as a class definition, a type definition, a signature,
or a slot

synonym for slot

a means by which new system components can be constructed
from old system components such that changes to the definitions
of the old components can have an effect, subject to certain
constraints, on the definitions of the new components

one of three primary components of a class definition (the others
being code and representation), forming the specification of the

class and often broken down into signatures for the operations
defined in the class

synonym for operation
instance, or run-time realization, of a class or type definition

a separately executed portion of code that represents a
well-defined manipulation of an object; it usually consists of a
signature and a (statement) body

one of three primary components of a class definition (the others
being code and interface), forming the data structure portion
and often broken down into slots

a specification for an operation consisting of a name for the
operation and a list of the types of the operation’s arguments
and results

a portion of the representation component of a class, usually
acting as a variable or as a reference to an object
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(Statement) body

Subclass
Subtype
Subtyping

Superclass
Supertype

Type

a portion of the code component of a class, usually consisting of
the executable statements of an operation

see class
see subtyping

a means by which the behavior of one object can be established
or asserted as being similar to the behavior of another object
such that the first object can be used, subject to certain
constraints, in place of the second object; the type of the first
object is said to be a subtype of the type of the second object,
while the type of the second object is said to be a supertype of
the type of the first object

see class
see subtyping

a behavioral abstraction of the objects that are its instances

57



