OPTIMAL EMBEDDINGS OF
BUTTERFLY-LIKE GRAPHS IN THE
HYPERCUBE

David S. Greenbergt, Lenwood S. Heath§,
Arnold L. Rosenberg

Compuler and Information Science Department
Universily of Massachusetts

COINS Technical Report 88-103

tYale University, New Haven CT
§Virginia Polytechnic Institute, Blacksburg, VA

OPTIMAL EMBEDDINGS OF
BUTTERFLY-LIKE GRAPHS IN THE
HYPERCUBE

Dawnd S. Greenberg
Department of Computer Science
Yale University
New laven, CT 06520

Lenwood S. Heath
Department of Computer Science
Virginia Polytechnic Institute
Blacksburg, VA 24061

Arnold L. Rosenberg
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

December 19, 1988

Abstract

We present optimal embeddings of three genres of butterfly-like graphs in the
(boolean) Hypercube; each embedding is specified via a linear-time algorithm. Our
first embedding finds an instance of the FFT graph as a subgraph of the smallest
Hypercube that is big enough to hold it; thus, we embed the n-level FFT graph,
which has (n+1)2" vertices, in the (n+ [log,(n+1)])-dimensional Hypercube, with
unit dilation. This embedding yields a mapping of the pipelined FFT algorithm
on the Hypercube architecture, which is optimal in all resources (time, processor
utilization, load balancing, etc.) and which is on-line in the sense that inputs can
be added to the Transform even during the computation. Second, we find optimal
embeddings of the n-level Butterfly graph and the n-level Cube-Connected Cycles
graph, each of which has n2" vertices, in the (n + [log, n])-dimensional Hyper-
cube. These embeddings, too, have optimal dilation, congestion, and expansion:
The dilation is 1 + (n mod 2), which is best possible. Our embeddings indicate
that these two bounded-degree approximations to the Hypercube do not have any
commmunication power that is not already present in the Hypercube.

1. INTRODUCTION

1.1. The Main Results and Motivation

The main results of this paper demonstrate that the (boolean) Hypercube architecture
can efliciently simulate butterfly-like communication patterns. We prove that:

1. The FFT graph is a subgraph of the smallest (Boolean) Ilypercube that is big
enough to hold it.

2. Fach of the Butterfly graph and the Cube-Connected-Cycles (CCC) graph is
efficiently embeddable in the smallest Hypercube that is big enough to hold it.
When the Butterfly or CCC has even order, it is embeddable as a subgraph;
when it has odd order, our embedding still has unit congestion,' but its dilation
increases Lo 2. This increase in dilation is inevitable.

-All three of our embeddings are specified by means of linear-time algorithms.

The major notions of the efficiency of a graph embedding are enunciated in [15]:
dilation measures how edges of the guest graph are “stretched” when they are embedded

Pochnical terms are defined informally in the next paragraph, and formally in Section 1.2,

in the host graph; congestion measures how many edges of the guest graph are routed
over a single edge of the guest graph (dilation and congestion jointly measure the
maximum delay engendered by the embedding); erpansion measures the fraction of
vertices of the host graph that are actually used as homes for vertices of the guest
graph; it is one way of measuring the efficiency of utilizing the processors of the host
array.

Motivating our first result is the probletn of mapping a parallel algorithm onto a pro-
cessor array. On the one hand, the algorithin has some natural subtask-interdependence
structure, engendered by either data dependencies or control dependencies; on the other
hand, the array has a fixed processor-intercommunication network. The mapping prob-
lem is the problem of accommodating the algorithm’s intertask dependence structure to
the array’s interprocessor communication structure. One typically studies the mapping
problem by viewing both of the structures of interest as simple undirected. graphs and
viewing the mapping problem as one of finding an efficient embedding of the algorithm-
graph in the array-graph (2, 3, 6|. Our first result studies the mapping problem for the
important Fast Fourier Transform (FFT) algorithm |1, Ch. 7| which is paradigmalic
for convolution-based algorithms, in the popular Hypercube architecture 3, 5,7-9, 12,
16, versions of which have been built by Intel, N-cube, BBN, and Thinking Machines.
We present a family of embeddings, each of which finds an instance of the n-level FI'T
graph F(n), which has (n + 1)2" vertices, in the d,-dimensional? Hypercube Q(d,,),
as a subgraph. We show how to construct optimal embeddings that are modular, in
the sense that the embedding of F(n + 1) in Q(d,.y) is an extension of the embedding
of F(n) in Q(d,). Our embeddings can be interpreted as mappings of the pipelined
FFT algorithm onto the Hypercube architecture, which utilize all resources opltimally
(primarily time, as measured by dilation and congestion, and processor utilization, as
measured by expansion); moreover, our modular embeddings can be viewed as map-
pings that are on-line, in the sense that (subject to the limitation of the size of the host
Hypercube) inputs can be added to the Transform at any time, even after computation
has begun. Our mappings provide yet another example of the efficiency of the Hyper-
cube as an interconnection structure, to supplement earlier work that has shown the
Hypercube to be an efficient host for the class of divide-and-conquer algorithms |3] and
the class of grid-based algorithms [12], as well as for a number of specific algorithms
[7, 8.

Motivating our second result is the question of how efficiently one interconnection
network can simulate another. This problem, too, is frequently studied via graph
embeddings: The guest graph in the embedding represents the interconnection network

2dy, =aet 1+ [log(n 4+ 1)]; all logarithms are to the hase 2.

to be simulated, and the host graph represents the simulating network [4, 5]. Our second
result, studies the Butterfly and Cube-Connected-Cycles networks. These networks were
invented as bounded-degree approximations to the Hypercube, which could equal its
speed on the important class of ascend-descend algorithms. (See [13] for a discussion
of both the networks and the class of algorithms.) The embeddings that prove our
result can be interpreted as showing that the structure of the Butterfly and CCC does
not. give those networks any communication power that was not already present in the
Hypercube.

A result superficially similar to our first result appears in [8]; in that paper, it is
shown thal each single level of the FFT graph is a spanning subgraph of the Hypercube,
whence one can run the FFT algorithm as fast on the lypercube as on an architecture
with the structure of the FFT graph. Our result is materially harder than that of [8],
in that we embed the entire FFT graph into the Hypercube at once. In a somewhal
similar vein, it is shown in [7] that il one stores the data for any one level of the FI"T
algorithm in Hypercube processors according to a binary reflected Gray code, then each
pair of data that are combined via a butterfly at that level of the algorithm reside at
processors that are at worst at distance 2 from one another. This result, too, is much
weaker than ours, because of the “distance 2” assertion as well as the fact thal only
one level of the algorithm is embedded at a time.

1.2. The Formal Framework

The technical vehicle for our investigation is the following notion of graph embedding.
Let ¢ and H be simple undirected graphs, having |G| vertices and |H| vertices, respec-
tively. An embedding of G in H is a one-to-one association of the vertices of G with the
vertices of H, together with a routing of each edge of G within H. The dilation of the
embedding is the maximum length of the routing of any edge of G. The congesiion of
the embedding is the maximum number of edges of G that are routed over a single edge
of H. The ezpansion of the embedding is the ratio |H|/|G|. Clearly, no embedding can
have better than unit dilation, and such dilation is achievable only if G is a subgraph
of H.

The graph G represents either the algorithm being mapped or the architec-
ture being simulated. In the former case. the vertices of G represent the
tasks of the algorithin, and the edges of G represent intertask dependencies.
In the latter case, G, and in both cases. H represent processor arrays: the
vertices of these architecture-graphs represent the processors of the arrays;
the edges represent inferprocessor communicalion links. "Thus, the dilation

of an embedding measures the delay incurred hecause of mismatched adja-
cencies, while the congestion of the embedding measures the contention for
the communication links of “processor array™ I, either when one executes
“algorithin” G on “processor array” Il or when one uses “processor array”
H to simulate the most costly communication link of “processor array” G.
Congestion can be resolved either by increasing the bandwidth of the links,
al the cost of increased hardware and increased layout area, or via queuing
of messages, at the cost of increased delay; our embeddings have such small
congestion that increased bandwidth seems to be the appropriate response.
The expansion of an embedding is a measure of how efliciently ¢ utilizes
the processors of H.

Our specific focus here is on embeddings of three finite families of graphs G, Ga.
and G in a fourth finite family ¥. We seek the best possible embeddings — relative to
dilation and congestion — of each G € §; in the smallest H € ¥ that will hold it, i.e.,
for which |IT]/|G| > 1. Thus, we optimize expansion and then try to optimize dilation
and congestion. We are able here to optimize all three cost measures simultaneously.
In [11] examples are presented wherein optimizing cither the dilation or the expansion
of an embedding forces the other cost to grow without bound.

The graph families of interest to us here are FFT graphs, Butterfly graphs, and
¢ graphs (which play the role of our (i's) and Hypercubes (which play the role of
our I’'s).

e Lot n be a positive integer. The order-n (2"-input) FFT graph F(n) (so named
because it reflects the data-dependency structure of the 2"-input FFT algorithm)
has vertex-set® V,, = Z,41 x ZJ. For each vertex v = ({, 5) e V,, we call ¢ the
level of v and & the position-within-level (PWL) string of v. Vertices al level 0
of F(n) are called inputs, and vertices at level n of F(n) are called oulpuls (in
deference to the algorithmic origins of the graph). The edges of F'(n) are of two

types: For each (€ Z, and each &by - 6,_) € Z7, the vertex
(€, 606y 6,-1), on level € of F(n).
is connected by a straight-edge with vertex

(€+1, 66y -+ 6,-1), on level £+ 1 of F(n)

3For any set § and positive integer k: Z =44 {0,1.- - k= 1}; S* denotes the set of all length-k
strings of elements of S.

and is connected by a cross-edge with vertex!
(6 + 1. 606y -+ 8u—1(6¢ D 1)bgyy - 6n-1), on level € + 1 of F(n);

It is often useful to view F(n) inductively: F(1) = K3 ,, the butterfly or, complete
bipartite graph on two inputs and two outputs; for n > 2, one obtains F'(n) by
taking two copies of F(n — 1), and 2" new output verlices, and constructing
butterflies connecting the k'" outputs of each copy of F(n — 1), on the one side,
to the k* and (k + 2" !)*" new outputs, on the other side. Thus, F(n) has
(n + 1)2" vertices and n2"*! edges.

e Let n be a positive integer. The order-n Butterfly graph B(n) is the FFT graph
F(n), with “wraparound” obtained by identifying each input vertex (0, &) with
the corresponding output vertex (n, 6. Thus, B(n) has n2" vertices and n2"!!
edges.

e Let n be a positive integer. The order-n Cube-Connected Cycles (CCC) graph
C(n) has vertex-set W,, = Z,, - Z3. For each vertex v = (¢, §) € W,, we call
¢ the level of v and & the position-within-level (PWL) string of v. The edges of
C(n) are of two types: For each (< Z, and each 86y -+ - 6,y € Z3, the vertex

(0, 86y -+ 6n-1), on level { of C'(n).
is connected by a straight-edge with vertex

(€, 86y -+ 6,-1), on level ' = ¢ + 1 (mod n) of C(n),
and is connected by a level-edge with vertex

(0, Buby -+ e- (8¢ D 1)bpyy -6y).

e Let d be a nonnegative integer. The d-dimensional (boolean) Hypercube Q(d) has
verlex-set Z¢; the edges of Q(d) connect each string-vertex x with the d strings
that differ from z in precisely one bit-position. Thus, Q(d) has 2 vertices and
d2-! edges.

1.3. Basic Tools and Facts

A. Gray Codes and Their Transition Sequences

1® denotes addition modulo 2.

Gray codes and sequences that generate them are the main technical devices in our
study.

A length-m d-dimensional Gray code is a cyclically ordered sequence of m distinct
length-d binary words, having the property that words adjacent in the sequence differ
in precisely one bit-position. In the obvious way, such a Gray code can be viewed as
(specifying) an m-vertex cycle in the d-dimensional Hypercube Q(d).

Many devices are known for constructing Gray codes of desired lengths and di-
mensionalities. The device used here is the following notion of Gray code transition
sequence |14]. Let d be a positive integer (which represents the dimensionality of the
target Hypercubes, hence of the desired Gray codes), and let D = (do,dy," " ,dy) be an
ordered sequence of bit-positions, i.e., integers, each < d; symbolically,

do < dy« - d s d.

For any r < t, the ™" Gray code {ransition scquence specified by D. denoted GS[ri D)
is the length-(2" — 1) sequence of inlegers defined inductively by the following scheme.

QSII;D] = dy
GSlk+1;D] = GS|k; Dl de, §Sk: D)
We denote by GS|r; D)i the i*" element of G§|r: D] (counting, as usual, from 0). For

any integer k < 27!, one can use G $|r; D] to construct a length-2k d-dimensional Giray
code &, E1y. v k1, as follows.

1. Select any length-d binary string as word £, of the code.

3V

. For0 < i < k — 1, generate word £:41 by Ripping bit-position GS|ry D)i of £
3. Generate word ﬁk by flipping bit-position d of Ek»—l-

4. For0 < i < k — 1, generate word €vvirs by flipping bit-position GS|r; D); of Errir

It follows automatically that word aj is obtained by flipping bit-position d of Eak-1. Let
us denote by §$|r; D;2k] the sequence of bit-positions flipped in this procedure:

GS|riD) if
GS|riDy2k)i = d if 7
GS[ri D)icie if i

c{0,1,---,k -2}
e {k-1,2k-1}
e {kk+1,---,2k -2}

B. Easily Verified Facts

~3

Having developed the main technical devices needed for our embeddings, we present
a number of easily verified facts about our formal framework. We leave proofs to the
reader.

Since every two occurrences of an integer h in §GS|r; D] are separated by an occur-
rence of some integer > h + 1, it follows that

Lemma 1 Every contiguous subsequence of GS8|r; D| contains at least one element an
odd number of times.

Using Lernma 1 on prefixes of §S|r;: D|. one verifies that
Lemma 2 The just-described procedure generates a length-2k d-dimensional Gray code.
The following immediate consequence of Lemma 2 is useful in Section 3.

Lemma 3 For all d, the d-dimensional Hypercube Q(d) contains a cycle of every even
length 4 < 2k < 24,

Since Q(d) is bipartite, the parity requirement in Lemma 3 cannot be removed:

Lemma 4 For alld, the d-dimensional Hypercube Q(d) contains no cycle of odd length.

2. EMBEDDING THE FFT GRAPH

It is not hard to find a unit-dilation embedding of F(n) in Q(2n), by assigning two
new dimensions for each level of F(n); but this embedding has expansion (2" /n).
Likewise. it. is not hard to find a dilation-2 (expansion-optimal) embedding of F(n) in
Q(d.), which is the smallest Hypercube that holds F(n), using embedding techniques
analogous to those used in [5|. What we accomplish here is to optimize both cost
measures sitnultaneously, and to do so via linear-time algorithms (which specify the
vertex-mappings). In [act, we present a family of such algorithms, all based on Gray
codes and Gray code transition sequences. Stated lormally, we prove

Theorem 1 Fvery FFT graph is embeddable in a Hypercube, with unil dilation and
congestion, and with optimal exrpansion. Thus, for each n, F(n) is a subgraph of Q(d,,);
moreover, there is a family of such embeddings that is modular in the sense that the
embedding of F(n-+ 1) is an exlension of the embedding of F(n). All of these embeddings
arc produced by a linear-time algorithm.

2.1. The Embedding Strategy

All of the embeddings of F'(n) in Q(d,) that we use to prove the Theorem are specified
via two labelling schemes:

e We assign each vertex v of F(n) a unique dn-bit label L(v), which is its image
vertex in Q(dn).

o We assign each edge (u,v) of F(n) a bit-position label B(u,v) € {0,1,--- . dy - 1}
such that L{u) and L(v) dilfer exactly in bit-position B(u,v).

We simplify our embedding by using a single bit-position pair (bp-pair, for short) (s;,¢;)
Lo assign labels to edges between levelsi—1 and 7 of F(n). 1 = 7 7 n; all straight-edges
between these levels flip® bit-position s;, and all cross-edges between these levels {lip
hit-position c;.

Note that edge (u,v) of F(n) is mapped by our embeddings onto the edge
crossing dimension B(u,v) of Q(d,.), between vertex L(u) and vertex L(v)
(whence the unit dilation of our embeddings). Note also that flipping bit-
position b corresponds to crossing dimension b of Q(d,,).

Thus, our embedding is specified by means of a levelled bp-pair sequence (LBPS, for
short)

S = (.¢|,Cl), (Sz,(‘.-z), I (3,,.(‘,,).

One verifies easily that the LBPS gives us almost all the information we need to specify
the embedding completely: When we assign a d,-bit label L(v) to any single vertex v
of F'(n), the labels of all remaining vertices are completely determined by the LBPS.
We can, and shall, therefore, specify our embedding by labelling input vertex vy =,
(0, 0) of F(n) with the length-d, string 0 (thereby assigning it to vertex 0 of Q(d.)
in the embedding) and using an appropriate LBPS to induce the labelling of all other
vertices. This strategy reduces the problem of specifying an embedding to the problem
of specifying an LBPS S(n) for each FFT graph F(n); and, it reduces the problem of
validating a given labelling — i.e., verifying that it actually specifies an embedding

to the problem of proving that the label-assignment is one-to-one. This last assertion
(about the reduction) is true since any mapping produced by the strategy is well-
defined, in the sense that the label inductively assigned to each vertex of F(n) is
independent of the order of inductively assigning labels. Well-definition is verilied as
follows.

SEdge (u,v) of F(n) is said to flip bit-position p if L(u) and L(v) differ precisely in bit-position p.

Proposition 1 Any mapping of the vertices of the FFT graph to the vertices of Lhe
Hypercube which 15 induced by an LBPS 15 well-defined and has unit dilation.

Proof. The unit-dilation property being immediate from the fact that the mapping
flips just one bit-position for each edge of F(n), let us concentrate on verifying the
well-definition of the labelling procedure.

Assume that vertex v is assigned label L(v) when the labelling is induced by the
path P from vertex vy to v and that it is assigned label L'(v) when the labelling is
induced by the path P' from vertex vy to ». We claim that L(v) = L'(v).

We begin with three basic facts about cycles in F(n).

1. For each level ¢ = {0,1,--- .n}, the number of level-¢ edges in any cycle in F'(n)
is even.

2. For each level € € {0.1,---.n}, the number of level-f cross-edges in any cycle in
F(n) is even.

3. For each level £« {0,1,---,n}, the number of level-¢ straight-edges in any cycle
in F(n) is even.

The first fact follows since there is no “wraparound” in F(n), so any cycle must re-
cross levels. The second fact follows since every level-€ cross-edge flips bit-position ¢
of the current vertex's PWL string, and no straight-edge flips a bit; therefore, in order
Lo regain a previous vertex, one must restore every flipped bit-position by re-crossing
level ¢ via a cross-edge. The third fact follows from the first two via arithmetic.

Next. note that since we are dealing here only with labelling schemes that are
induced by LBPS’s, crossing a level of F(n) twice using the same type of edge — a
cross-edge or a straight-edge -- flips the same bit-position of the Hypercube label twice,
hence leaves the label unchanged.

Finally, consider the cycle formed by tracing path P from vertex v, to vertex v,
followed by tracing the reverse of path P' from vertex v to veriex vy. By the foregoing
facts, each Hypercube dimension appears an even number of timmes around the cycle;
hence, the parity of the number of appearances of each dimeusion on P must be the
same as the corresponding parity on . It follows that L(v) = L'(v). C

The next subsection is devoted to specifying and validating, within this simplified
framework, a broad family of embeddings which meet the initial demands of Theorem
I; i.c., they find instances of I'(n) as a subgraph of Q(d,). Subscction 2.3 identilics a

10

subfamily of these embeddings that are modular in the sense of the Theorem. We leave
to the reader the straightforward verification that all of the embeddings presented can
be produced by linear-time algorithms.

2.2. A Family of Embeddings

A. The Embeddings
Let A, = [log(n + 1)], and let D be any An-element subset of Zy,. (Note that
An = dy, — n.) Define the LBPS

SD("') == (S],C]), ('q2~‘7'.’)1 ey (Sny (?")

as follows:

® S5 = gs[)\n;le.’—l

e ¢, = the ¢*" largest integer in the set Z,;, - D

for all €& {1,2,---,n}. Note the crucial facts that

(a) the set of bit-positions we assign to the straight-edges of I'(n) is disjoint from the
sel of labels we assign to the cross-edges.

(b) The cross-edges at each level of F(n) are assigned a unique bit-position. (This is
possible only because A, < d, - n.)

Claimn. For any choice of D, the LBPS Sp(n) specifies an optimal embedding of I'(n)
in Q(d,).
B. Validation

Our proof that the LBPS Sp(n) labels F(n) injectively, hence specifies an embed-
ding, depends on Lemma 1 and on the following easily verified property of FFT graphs.

Lemma 5 For all PWL strings 7,6 € {0.1}". there is a unique length-n path in F(n)
connecling vertex (0, 7) and vertez (n, 6).

Proof. Level-£ edges of F(n) are the only ones that affect bit-position of vertices’
PWL strings. A length-n path that connects a vertex at level 0 with a vertex of level »
traverses each level of F(n) precisely once. Therefore, any path that connects vertices
(0, 7) and (n, &) must traverse the straight-edge between levels ¢ and ¢ + 1 for every

11

bit-position 7 in which the PWL strings 5 and gagree, and it must traverse the cross-

gflge between levels ¢ and ¢ + 1 for every bit-position ¢ in which the PWL strings 5 and
6 differ. O

Now, we proceed with the case analysis that establishes the injectiveness of the
labelling produced by Sp(n).

Focus on two arbitrary distinct vertices of F(n), say u = (€, &,) and v = (€,, &.).
Without loss of generality, assume that ¢, > (,. Let u' = (n, 7,) be the vertex in the
bottom level of F(n), that is atlained by following only cross-edges from vertex u; let.
v' = (0, 4,) be the vertex in the fop level of F(n) that is attained by following only
cross-edges from vertex v. Consider the path P in F(n) that starts al u, traverses
cross-edges until it reaches u', thence follows the unique length-n path from »' to o'
(cf. Lemma 5), and finally traverses cross-edges to end up at v. Let u" and v" be,
respectively, the vertices at levels ¢, and ¢, along the subpath of P that connects u'
and v'. We now analyze the structure of the path P.

The ends of the path. For each level k -, and each level k < €,, the path P traverses
two edges connecting level k with level k + 1 -—— and one of these edges is a cross-edge.
If at any of these levels, the other edge is nol a cross-edge, then it is immediate that
L(u) # L(»). To wit. the LBPS Sp(n) assigns each level-k cross-edge a bit-position
that is shared by no straight-edge and by no cross-edge at any other level of F'(n);
hence, the net effect of traversing the two edges would be to flip some bit-position of
L(u) that is flipped nowhere else. We conclude that the subpath of I’ that connects u
to u' coincides with the subpath that connects u' to ", which means that v = u". By
similar reasoning. v = v".

The middle of the path. For each remaining level k of F(n), the path P traverses only
one edge connecting level k& to level & + 1. If this edge were a cross-edge for any of
these levels, then —— as above — the edge would flip a unique bit-position, thereby
assuring that L(u) # L(v). Assume, therefore, that all the edges on these levels
are straight-edges. Recall that straight-edges on any consecutive sequence of levels of
I’(n) flip bit-positions that are specified by a contiguous subsequence of a Gray code
transition sequence. By Lemma 1, some nuimnber occurs an odd number of times in
this subsequence; hence, some bit-position is flipped an odd number of times along the
middle portion of path P. Once again, this assures that L(u) # L(v).

We have exhausted all possible structures for the path I and shown that cach
possibility guarantees that L(x) # L(v). Since v and v were arbitrary, we have shown
that the mapping induced by the LBPS Sp(n) is injective. [0

Proposition I, together with the just verified Claim, establish that we have spec-

ified a family of unit-dilation (hence, unit-congestion) embeddings. The expansion-
optimality of the embeddings follows from our choice of the parameter A, which en-
sures that our embedding maps F(n) into Q(d,), the smallest Hypercube big enough
to hold it. This completes the proof of Theorem 1. O

2.3. A Family of Modular Embeddings

We want to choose an infinite sequence of integers
dy < d] < (12 SRS

with the following property. If we define D, to be the first A, elements of the sequence,
then for each set D,, the LBPS Sp, (as specified in Section 2.1) specifies an optimal
embedding of F(n) in Q(d,). The embeddings defined by the sequence of LBPSs Sp,
will be the desired modular family of optimnal embeddings.

Claim. The infinite sequence of inlegers defined by
de =28 4 k- |
yields the desired scquence of LBPS’s.

A. Validation

When we construct LBPS’s from sets I of dimensions in Section 2.1, we always
assign to each cross-edge bit-position ¢; a dimension that is new in the sense that it is
used for no edge at a lower numbered level than 7. In contrast, the bit-positions used
for straight-edges are reused continually; but a new dimension must be introduced at
least, at every level whose index is a power of 2, since any given set D of dimensions can
be used for only 2/P1 — 1 levels of an LBPS (if the induced embedding is to be injective).
"T'his means that a given set of dimensions D leads to an optimal embedding of an order-
(2P - 2) FFT graph in a Hypercube, and D must be augmented if a bigger FFT is to
be embedded. When we augment D, we must add to it a dimension that is new. To see
this, note that the dimensionality of the smallest Hypergraph that will hold an FIFT
graph usually increases by 1 when we expand F(n) to F(n.+1) (which is why just a new
cross-edge bit-position ¢; suffices); but when n is a power of 2. then the dimensionality
of the target Hypercube increases by 2, so we need the bit-position s; to be new also.
In order to retain optimal expansion, we want to augment D with the smallest as-yet-
unused bit-position. We see easily that this smallest number is 2?1 + |D| — 1; to wit,
straight-edges have consumed |D| — 1 bit-positions, while cross-edges have consumed
2IPl — 1 bit-positions. The claim follows. 0O

13

2.4. More on Modular Embeddings

The embeddings we have presented thus far all derive from Gray codes and their tran-
sition sequences. Other families of equally efficient embeddings exist. To illustrate
this point, we present, without validation or analysis, the (historically) first family of
embeddings of FFT graphs as subgraphs of Hypercubes we found in the course of the
current research. The somewhat lengthy validation of these embeddings can be found
in [10].

Call an LBPS S = (sy,¢1),(s2,¢2)....,(Sn,¢,) proper if, for each 7, at least one of
s; or ¢; is new. We now construct, for every n, a proper LBPS S(n) that specifies an
embedding in stages, ensuring propriety at every stage.

Partition the levels {0, 1,---,n} of F(n) into tiers, tier k being the set of levels
{ic2b i 2% 1y Z,.

Let the singleton {0} constitute tier — 1.

In common with our other modular embeddings:

e we obtain the LBPS S(n 1) from the LBPS S(n):

e we always use any new bit-position as one becomes available.

As we noted earlier, increasing the order of our embedded FFT graph always ensures
Lthe existence of at least one new bit-position to use in S(n 1 1). Let us always use this
new bit-position to label the straight-edge at level n. i.e.. to be bit-position s,,. When
n = 2¥ is a power of 2, two new bit-positions are available for the expanded labelling
when we proceed to F(n 4 1). In this case, we call the pair (s,,¢,) of new bit-positions
shield positions for tier k of all F(m), m ~ n. Given this strategy, we can specify
explicitly

o s, =0 t|logl| forall e {1,2,-- - ,n};

e ey =284 kb Llorall ke {1.2,--- |logn|}.f

Finally, we specily the ¢;'s that are not shield positions. We proceed inductively, based
on the tier number k, the case £ = 1 being trivial. Having chosen the ¢;’s for tier k - 1,
we choose the 2F - 1 ¢;’s for tier k as follows.

“Our specification is consistent hecause 28 4 kv 1 - 04 [log €] + 1 when ¢ = 2V,

R N A
. e ok
® Cokyj - Sgk- 1 if1=2 .
Cok- 1y if 2"" <1 2

3. EMBEDDING THE BUTTERFLY AND CCC

The Butterfly graph, whose structure so closely approximales that of the FFT graph,
can be embedded in the Hypercube almost as cfficiently as can the FFT graph (via a
similar, but still quite distinct mapping). Since the structure of the CCC graph is even
closer to that of the Hypercube than is the structure of either the Butterfly graph or
the FE'T graph, it yields to an even simpler mapping technique to obtlain an embedding
in the Hypercube whose efficiency s identical to that of our embedding of the Butterlly.
We begin by stating our second result formally.

Theorem 2 Every order-n Butterfly graph or CCC graph is embeddable in a Hypercube
with unil congestion, with optimal ezpansion. and wilh dilation 1 + (n mod 2). These
embeddings are optimal in all three cost measures and are compulable in linear l1me.

The embeddings that establish the upper bounds of Theorem 2 are presented in the
next two subsections. The lower bound implicit in the last sentence of the Theorem
follows immediately from Lemma 4.

Since the Butterfly and CCC graphs have fewer vertices than does the I'FT graph
of the same order, our embeddings in this Section will be into a (sometimes) smaller
Ilypercube than we used in Section 2. Specifically. in this Section. we shall embed the
order-n Butterfly graph B(n) and the order-n CCC graph (/(n) into the b,-dimensional
Hy percube Q(dn), where b6y =aer 1 + |logn].

3.1. Embedding The Butterfly Graph

A. The Underlying Embedding of the FFT Graph

Our embedding of the Butterfly derives from one specific member of the family
of embeddings of the FFT graph described in Section 2.2. Letting Even(n) =aeu 1t
(n mod 2), we define the LBPS

Sp(n) = (s1,¢1). (s2,02)y- 00 s (Sn-cn)

that specifies the desired embedding by setting D = Z,, and defining

15

e s¢ = GS|An; D; Even(n)]e-:

e ce=0+ A\,

for all £€ {1,2,---,n}.

Remarks. (1) Since §GS|An; D; Even(n)] uses no integer greater than A, — 1, the labels
we assign Lo the straight-edges of F(n) are disjoint from the labels we assign to the
cross-edges.

(2) When n is even, the images of the straight-edges of F(n) form a cycle in Q(6n);
when n is odd, all but one adjacent pair of image-strings differ in one bit-position. while
the remaining pair differ in two bit-positions.

B. The Underlying View of the Butterfly

Our embedding employs the following characterization of Butterfly graphs. The
order-n Butterfly B(n) consists of two copies of the order-(n -- 1) FF'T graph F(n - 1),
along with edges between each output and its corresponding input in both copies of
F(n - 1). This characterization should be compared to that of F(n) as consisting of
two copies of F(n — 1) and two sequences of 2"~! new vertices (which will become the
outputs for F(n)), along with edges between each output in each copy of F(n 1) and
its corresponding vertex in both sequences of new vertices.

C. The Embedding

We bhegin specifying our embedding of B(n) by reserving the highest dimension,
bn, of Q(6,) as special, thereby partitioning Q(6n) into two subcubes, each a copy of
Q(é, - 1). We embed one copy of F(n - 1) into the copy of Q(8, — 1) in which every
vertex-address has a 0 in bit-position é,, using the simple embedding of Section 3.1A;
let @0 be the address of the vertex of Q(6,) to which the le[tmost output, (n - 1. 0)
of this copy of FF(n — 1) is mapped. Next. we embed the second copy of F(n — 1) into
the copy of Q(6, — 1) in which every vertex-address has a I in bit—posi&ion 6., using

the same simple embedding strategy, but inapping the origin vertex (0, 0) of F(n — 1)
to vertex al of Q(6,) rather than to vertex 0.

D. Validation

We validate our embedding in two steps: We note first those properties (injective-
ness and costs) that are inherited from the embeddings of F(n - 1) into the subcubes;
we then consider the dilations and congestions of the edges that connect the outpuls
of the copies of F(n - 1) with their corresponding inputs in both copies.

Hereditary properties. 1t [ollows from the analyses in Sections 2.1 and 2.2 that our
cembedding of 3(n)

16

e is well-defined and injective (It is induced by an LBPS, and it embeds the two
copies of F(n — 1) disjointly.)

e embeds all edges of B(n) that do not connect outputs of the copies of F(n - 1)
with inputs as edges of Q(6,) (It uses the paradigm of Section 2.2.)

The new edges. Consider first the edges of B(n) that connect an output (n—1, &) of
a copy of F(n — 1) with its corresponding input (0, a in that copy. As we remarked
in Section 3.1A, our underlying FFT embedding maps each input-to-output path of
straight-edges in F(n — 1) to a Hypercube cycle of length FEven(n). Hence, when n
is even, the cycle has length n, so each output-to-input edge we are considering here
completes the cycle in Q(6n), hence has unit dilation. When n is odd the cycle has
length n + 1, so each output-to-input edge we are considering here must be mapped
onto a length-2 Hypercube path in order to complete the cycle in Q(é,), engendering
dilation 2; congestion is still 1, since the length-2 paths are used only to close the cycles.

The edges that connect an output {n -1, f) of one copy of F(n — 1) and its cor-
responding input (0, §) in the other copy are all embedded as Hypercube edges, hence
are all embedded with unit dilation and congestion; in fact, they all cross dimension é,

of Q(8,). We now verify this assertion.

Let us look first at the edges that connect outpuls of the first copy of F(n — 1) with
inpuls of the second copy. Note that the image a0 of output {(n — 1, 0) of the first
copy of F(n — 1) is adjacent in Q(6,) to the image a1 of inpul {0, 0) of the second
copy of F(n - 1), across dimension é,. Let {n - 1. €; he any output of the first copy
of F(n - 1). Consider the cycle in @(6,) that

1. starts at vertex @0 (the image of output n -1, 0) of the first copy of F(n - 1)),

2. follows the image of the unique length-(n — 1) path in the first copy ol F(n - 1),
to input (0, &,

3. crosses to the image of output (n — 1, £} of the second copy of F(n — 1),

4. continues along the image of the unique path in the second copy of F (n—1) to
input (0, 0),

5. completes the cycle by crossing to vertex a0;

By design, the last step of this cycle has just to cross dimension b, of Q(6,). Further,

the images of the two unique length-(n — 1) paths in the cycle must cross ezactly the
same Hypercube dimensions, the same numbers of times. This is true since both copies

17

are embedded using the same LBPS; hence the only way the described cycle could cross
every llypercube edge that it uses twice is for these paths either both to follow a cross-
edge at a given level or both to follow a straight-edge. Thus, since we have described a
cycle in Q(6,), the one step we have not yet mentioned — that crosses from the image
of input (0, £) of the first copy of F(n — 1) to the image of output (n — 1, &) of the
second copy, must also cross dimension 6,. Since the PWL gwas arbitrary, we have
thus proved that the image of every output of the second copy of F(n — 1) is adjacent.
across dimension 6, to the image of the corresponding input of the first copy.

We look finally at the edges that connect outputs of the second copy of F(n—1) with
inputs of the first copy. Note first that the image of output (n — 1, 0) of the second
copy of F(n — 1) is adjacent across dimension 6, to input (0, 6) of the first copy. We
can use an argument symmetric to that of the preceding paragraph to prove that all
of the edges we consider here cross dimension §,. thereby completing the proof of the
claim, hence of the Butterfly portion of Theorem 2. To this end, note that the image
in Q(6,) of the unique path in the first copy of F(n - 1) from output (n - 1, 0) to
input. (0, 0) crosses just the same Hypercube dimensions the same numbers of times
as does the image of the unique path in the second copy of F(n - 1) from input (0, 0)
to output (n — 1, 0). Details are left to the reader. (]

3.2. Embedding The CCC Graph

Our efficient embedding of the CCC graph is simplified by the following well-known
(and easily verified) fact about the Hypercube.

Lemma 6 For all integers c and d. the Hypercube Q(c +d) is isomorphic to the product
graph Q(c) x Q(d).”

Lemma 6 allows us to embed C(n) in the product graph Q([log n]) x Q(n), rather
than explicitly in Q(n + [logn]).

To achieve this embedding, note that Lemma 3 guarantees the existence in Q([log n])
of a cycle of length Even(n). This cycle implicitly orders Even(n) of the 21\& 1] copies
of ¢(n) that are contained in the product graph Q([log n}) - Q(n), so we can freely
talk about “the i*" copy of @(n).” call it Q,. To embed C(n) in Q([logn|) =~ Q(n), we
assign each vertex (¢, 5) of C(n) to vertex & of Q. This association has the following
properties.

“For graphs G = (V.;, E.;) and H = (Vig, Ey). the productgraph G « H has vertex-set V\; < V. Lel.
v and v be vertices of (7, and let x and y be vertices of H. Then ((u, 7}, (v, 7)) is an edge of ¢ - 1]
just when (u, v) is an edge of G5 ({u, 7), (v, u}) is anedge of & - H just when {z,y) is an edge of 11,

18

1. The association is one-to-one, in the sense that it maps distinct vertices of C(n)
to distinct vertices of Q([logn]) x Q(n).

2. Under this association, each level-edge of C(n) can be realized via a single edge
of one of the copies of Q(n). (Indeed, C'(n) was invented to have the property
that the level-edges at each level ¢ “nimic” the edges across dimension of Q(n)

[13}.)

Under this association, the images of the endpoints of cach straight-edge of ¢/(n)
that goes from level ¢ to level ¢ + 1 (mod n) are adjacent il 7 is even, for then
the straight-edges form length-n cycles in copies of Q([logn|); the images are at
distance at most 2 if n is odd, for then the straight-edges form length-(n + 1)
cycles in copies of Q([logn]).

.;J

Property 1 assures us that we have described a valid embedding of C’(n) in Q(8,).
Properties 2 and 3 assure us that the dilation of the embedding is | when n is even and
i< 2 when n is odd: Level-edges of C(n) can be routed as unit-length paths in Q(é,).
while straight-edges can be routed as paths of length at most 2. This completes the
prool. (]

4. A REMAINING CHALLENGE

Our results lend yet more evidence of the power of the Hypercube network. Now that
we know that Hypercubes can simulate butterfly-like networks efficiently, the foremost
unresolved question about the Hypercube's power is the issue of how efficiently it can
simulate shuffle-like networks, such as the deBruijn and Shuffle-Exchange networks.
Resolving this issue is an inviting challenge.

ACKNOWLEDGMENT. The research of D. S. Greenberg was supported in part
by NSF Grant MIP-86-01885. The research of L. S. Heath was supported in part by
NSF Grant DCI-85-04308. The research of A. L. Rosenberg was supported in part by
NSF Grants DCI-85-04308 and DCI-87-96236.

5. REFERENCES

1. A.V. Aho, J.E. Hopcroft, J.D. Ullman (1974): The Design and Analysts of Com-
puter Algorithms. Addison-Wesley, Reading, MA.

19

o
.

6.

9.

10.

11.

12.

13.

1.

F. Berman and L. Snyder (1984): On mapping parallel algorithms into parallel
architectures. Intl. Conf. on Parallel Processing.

S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1988): Efficient emn-
beddings of trees in hypercubes. Typescript, Univ. of Massachusetls. See also,
Optimal simulations of tree machines. 27th IEEE Symp. on Foundations of
Computer Science (1986) 274-282.

. S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, A.L. Rosenberg (1988):

Optimal simulations by Butterfly networks. 20th ACM Symp. on Theory of
Computing, 192-204.

S.N. Bhatt and L. Ipsen (1985): Embedding trees in the hypercube. Tech. Rpt.
DCS/RR-443, Yale Univ.

S.1l. Bokhari (1981): On the mapping problem. IEEE Trans. Comp.. (%30,
207-214.

. R.M. Chamberlain (1988): Gray codes, Fast Fourier Transforms and hypercubes.

Parallel Computing 6. 225-233.

T.F. Chan (1986): On Gray code mapping for mesh-FFTs on binary N-cubes.
Tech. Rpt. RIACS-86.17, NASA Ames Research Center.

T.C. Chen, M.D.F. Schlag. C.K. Wong (1983): The hypercube connection net-
work. IBM Report RC-10219.

D.S. Greenberg, 1..S. Heath and A.L. Rosenberg (1988): Optimal embeddings of
FFFT graphs in the Hypercube. Tech. Rpt. 88-23, Univ. Massachusetls.

J.-W. Hong, K. Mehlhorn, A.L. Rosenberg (1983): Cost tradeoffs in graph em-
beddings. J. ACM 30, 709-728.

L. Johnsson (1985): Basic linear algebra computations on hypercube architec-
tures. Tech. Rpt., Yale Univ.

F.P. Preparata and J.E. Vuillemin (1981): The cube-connected cycles: a versatile
network for parallel computation. . ACM 24, 300-309.

. M. Reingold. J. Nievergelt, N. Deo (1977): Combinatorial Algorithms: Theory
and Practice. Prentice-11all. Fnglewood Cliffs, NJ.

15. A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-
Theoretic Concepts in Compuler Science: Procecdings of the International Work-
shop WG80, Bad Honnef, Germany (H. Noltemeier, ed.) Lecture Notes in Com-
puter Science 100, Springer-Verlag, New York 150-176.

16. Y. Saad and M.H. Schultz (1988): Topological properties of hypercubes. IEEL
Trans. Comp. 37, 867-872.

21

