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ABSTRACT

We present a new scheme for computing 3-D motion and structure from a flow field rep-
resenting either image velocities or image displacements between two frames. This scheme
is based on a global least-squares technique, introduced in [Adi85a,b], for minimizing the
deviation between the given flow field and the field predicted by the hypothesized 3-D mo-
tion and structure. Here, this technique is generalized by assigning a directional confidence
measure to each flow vector. This confidence measure is defined by two orthogonal axes
and corresponding confidence values, representing the reliability of the estimated image
motion along each axis. It is shown how to relate these confidence values to the error
distributions of the estimated flow values. The directional confidence measure is especially
useful for recovering 3-D information from correspondences of line segments or edge points,
where the normal component of the image motion is much more reliable than the tangential
component. Experiments based on simulated and real data demonstrate the improvement
achieved by employing a directional confidence measure instead of a scalar confidence mea-
sure. Finally, we show that the reliability of depth estimates can be predicted from the
confidence measure.

* The author is with Rafael, POB 2250(34), Haifa 31021, Israel. Most of this work was performed
when he was a visiting scientist at the Computer and Information Science Department, University of
Massachusetts, Amherst, MA 01003.



1. INTRODUCTION

The problem of passive navigation, where a sensor is moving through a stationary en-
vironment, is one of the ma jor research issues in the area of dynamic visual interpretation.
Given two perspective views from such a sensor, it is possible to extract the 3-D motion of
the sensor and the structure of the environment, up to a scaling factor. Such information

can be used to control the motion of vehicles or robots.

The most common approach for the analysis of visual motion is based on two phases.
The first phase is computation of image correspondences, usually referred to as an optical
flow field, or a displacement field. The second phase consists of an interpretation of this
field. Many of the algorithms described in the literature use point correspondences in
the second phase (e.g., [Ull79], [Lon81], [Bru81)}, [Tsa84], [Adi85a,b]). Given an image
point, we know that it is the projection of one of an infinite number of points in the 3-D
space, all of them located on a ray defined by the image point and the lens center. The
correspondence of a point in the first image to a point in the second image means that the
two 3-D rays associated with these points intersect each other. This puts a constraint on
the problem and, therefore, given a sufficient number of point correspondences, the 3-D

motion and structure can be extracted (up to a scaling factor).

Recently, a few authors have proposed to compute 3-D motion and structure from
line correspondences (e.g., [Liu88], [Fau87}, [Spe87]), utilizing the information given by
the orientation and the distance from the origin of the lines. This new approach may
be very useful in man-made environments where straight lines are dominant and stable
features. It has been found, however, that correspondence of a line in two frames does

not sufficiently constrain the problem; that is, the 3-D motion and structure can not be



recovered from such information. To understand this, notice that a line in the image is
associated with a plane in the 3-D space containing all the 3-D lines possibly generating
the image line. A correspondence of a line in the first image to a line in the second image is
equivalent, therefore, to the intersection of the two associated 3-D planes. Unfortunately,
two arbitrary planes generally intersect each other and, therefore, no constraint on the
motion parameters can be obtained from such an intersection. Thus, line correspondences

over three frames are necessary for recovery of 3-D motion.

In all interesting applications measurements of image motion are corrupted by noise.
Therefore, the recovery of 3-D motion and structure should be based on the minimization
of some error function of these 3-D variables. Such a function is usually the sum of error
terms, where each term is associated with one image cbrrespondence. The contribution of
this term to the global error function should depend on the reliability of the related image
motion measurement. In [Bru8l] and [Adi85a,b)] the overall reliability of each flow vector
is assumed to be estimated and represented by a scalar confidence measure. This measure
was integrated into a least-squares scheme for minimizing the sum of deviations between
the measured flow vectors and the corresponding vectors predicted by the hypothesized

3-D parameters.

Anandan [Ana87, Ana88] has introduced a more general confidence measure, which
we call the directional confidence measure. This measure ca..n be employed as a tool for
improving the representation of knowledge about uncertainties of image motion measure-
ments. It is defined by two orthogonal axes and corresponding confidence values, giving
the reliability of the estimation of displacement along each axis. Typically, the axis with
maximal confidence value will be oriented in the direction of the image gradient. Anandan
has applied such a directional confidence measure to the estimation of a dense displace-
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ment field. In this technique, each displacement vector is assigned a directional confidence
measure, based on the curvatures of an error surface associated with the measurements
for determining this vector. The confidence measure is employed to control the smoothing
between adjacent vectors. A similar “oriented smoothness” approach is taken by N agel and
Enkelmann [Nag86], but without recognizing the implicit use of a directional confidence

measure.

We will employ the directional confidence measure as a tool for developing a unified
approach for solving 3-D motion and structure from point and line correspondences. This
tool is especially important in the case of line correspondences, and we will use this case
for motivating our approach. We have already concluded that line correspondences over
three frames are apparently necessary for recovering 3-D motion. Using a third frame is
roughly equivalent to using second-order time derivatives of the line parameters. However,
such derivatives can not be expected to be recovered reliably in the presence of noise, and
this solution may be particularly sensitive to noise if the three viewpoints are close to each

other.

In this paper we present another approach. Usually, endpoints of lines in the image
can be extracted, and the lines are given as line segments. We argue that, utilizing the
information given by the location of line endpoints, the 3-D motion and structure can be
estimated reliably using only {wo frames. In other words, we will introduce a method for
recovering 3-D interpretation consistent not only with the line equations, but also with the
location of the endpoints along the line (Fig. 1). This approach can also be regarded as a

specific case of solving motion and structure from point correspondences.

Of course, the determination of an endpoint location along a line may be a difficult



(see Fig. 2).
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Fig. 1: Corréspondence of lines with and without endpoint correspondence.
l; is a line segment in the first frame and I is a corresponding line segment
in the second frame. (a) A 3-D solution that transforms l; as shown is
supported by this 2-D line correspondence if consistency of the line equations
is the only criterion. It is not supported if, in addition, an overlapping of the
line segments is required. (b) In this more restrictive sense, a 3-D solution
that transforms the endpoints of I; to the endpoints of I is maximally
supported by the line correspondence.

task, and sensitive to noise. On the other hand, the transverse location of the endpoint
can be expected to be measured accurately. Therefore, when evaluating the consistency
of a hypothesized 3-D solution with image correspondences of line segments, the deviation

along a line should be allowed to be larger than the deviation in the transverse direction

This observation can be given a mathematical formulation by giving the longitudinal
deviation a relatively small weight, while giving the transverse deviation a relatively large
weight. In other words, the directional confidence measure is suitable for representing
our knowledge about the uncertainty of an endpoint location. This approach was already
demonstrated by Wells [Wel87] in a constrained case, where the motion is known and the

goal is to recover the location of 3-D line segments projected on a sequence of images.
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Fig. 2: Uncertainty in line segment position. The uncertainty of the line
segment position in the longitudinal direction is much larger than the un-
certainty in the transverse direction. (a) Correspondence of line segments
l; and I3 is consistent with this uncertainty and, therefore, it supports the
realted 3-D transformation. (b) Correspondence is inconsistent with uncer-
tainty in line segment position. Thus, it does not support the realted 3-D
transformation.

In the following sections we will develop a general scheme for using a directional con-
fidence measure. As has already been noted, such a scheme is especially needed in the
case of line segment correspondences, but it may also improve the results in other cases
when 3-D information must be extracted from feature correspondences or optical flow.
Given, for example, corner correspondences, one may want to give a higher confidence to
the direction perpendicular to the bisector of the angle of an acute corner. Finally, notice
that this scheme is relevant not only to motion analysis, but also to stereoscopic vision

and image matching.



2. A MATHEMATICAL FORMULATION

2.1 Relating Image Motion to 3-D Motion and Structure

In this section we show how the motion of image features is related to the 3-D camera
motion and the 3-D environmental structure, assuming a perspective projection. The
camera motion is allowed to be general, with six degrees of freedom, but the environment

is assumed to be stationary in this treatment.

Let (X,Y,Z) represent a cartesian coordinate system which is fixed with respect to
the camera (see Fig. 3), and let (z,y) represent a corresponding coordinate system of
a planar image. The focal length, from the nodal point O to the image, is assumed to
be known. It can be normalized to 1 without loss of generality. Thus, the perspective

projection (z,y) on the image of a point (X,Y,Z) in the environment is:

z=X/2, y=Y/Z. (1)

The motion of the camera between two time instances, ¢ and ', can be decomposed
into two components: rotation @ = (Q2x,fy,Qz) about an axis through the origin, fol-
lowed by translation T = (Tx,Ty,Tz). If (X,Y,Z) and (X',Y',Z') are the coordinates

at times ¢ and t', respectively, of a point in the environment, then

X' X
Y'|=R|Y | -T, (22)
z' Z

where the rotation matrix R can be approximated, assuming small values of the rotation
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e=X/Z, y=Y/Z (1)

The motion of the camera between two time instances, ¢ and t', can be decomposed
into two components: rotation § = (Qx,y,z) about an axis through the origin, fol-
lowed by translation T = (Tx,Ty,Tz). If (X,Y,Z) and (X',Y’,2') are the coordinates

at times ¢t and #', respectively, of a point in the environment, then

X! X
Y'|=R|Y|-1T, (22)
A z

where the rotation matrix R can be approximated, assuming small values of the rotation
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Fig. 8: Coordinate systems. A coordinate system (X,Y,Z) attached to
the camera, and the corresponding image coordinates (z,y). The image
position p is the perspective projection of the point P in the environment.

T = (Tx,Ty,Tz) and @ = (Qx,y,0z) represent the translation and
rotation of the camera.

parameters, by
1 Qz Oy
R=|-9z 1 Qx |. (2b)
Qy -Ox 1

Now, let (z,y) and (z',y') be the image points corresponding to (X,Y,Z) and
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(X',Y',Z"), respectively, and let (a,B3) be the displacement vector (2' =z, ¥ —y).

Then, from Eqgs. (1) and (2) we get:
1
- v! ' _ v - [} - X\ =
a=X"/2"-X/2 = Z(:cZ A)
= |2 - X +9xY +Tp) - (X' - 0zY + W Z + Tx)| =

= Qxa'y — Ny (1 +z2') + Qzy + (-Tx + Tz2')/ 2. (3a)
Similarly, we can obtain:
B=0x(1+yy') - Qzy - Qzz + (-Ty + Tzy')/Z. (3b)

These equations were previously introduced by Medioni and Yasumoto [Med85]. Notice

()-Gr)-(): “

where (ag,Br) and (ar,Br) are, respectively, the rotational and translational compo-

that

nents of the displacement field:

G)-(o e (o ()
Br 1+yy —zy' -

ar -Tx/Z z'

(ﬁT) = (—Ty/Z) + (y,) Tz/Z. (4c)

As can easily be verified, if z' and y' are replaced by z and y, respectively, then

Egs. (4) express the relations between image velocities (a,(3) and spatial velocities
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(x,90y,0z) and (Tx,Ty,Tz). In this case, the assumption of small rotation parameters
is no longer needed. In the rest of this paper, the term ‘flow’ refers to both ‘displacement’

and ‘velocity’.

Our basic goal is to extract the motion parameters T,  and the depth values {Z}
from the flow vectors {(a,B)}, using the relations (4). It is easy to see, however, that T
and {Z} can only be determined up to a scaling factor. Therefore, we will introduce new

parameters which represent the extractable information.

Let r be the magnitude of the translation. Assuming that r is non-zero, we define

new parameters which are possible to estimate:

U=T/r (5)

and

Z=r/2. (6)

U =(Ux,Uy,Uz) is a unit vector, representing the direction of the 3-D translation, and

Z represents a normalized version of the reciprocal depth, which we find more convenient

to estimate and analyze than Z/r. Employing these normalized parameters, Eq. (4a) can

(5)-(on) ()
()= G)-(@) Qe

be rewritten as

where
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2.2 Scalar and Directional Confidence Measures

Let us assume that each flow vector is assigned a confidence measure. In the past
we used a measure represented by a scalar, W, giving the overall reliability of the flow
estimate [Ana84], [Adi85a,b). A more general approach is to use a directional quantity,
represented by two orthogonal axes and corresponding confidence measures. Along one
axis the confidence, denoted by W, is maximal, while along the other axis the confidence,
denoted by W, is minimal. The angle between the axis of maximal confidence and the
z-axis is given by p (0 < p < 180°). Geometrically, the scalar measure can be represented
by a circle with radius W, while the directional measure can be represented by an ellipse

with a long axis W; and a short axis W) (see Fig. 4).

{’ow \/lc&w

(b)

Fig. 4: Geometrical interpretation of scalar and directional confidence mea-
sures. (a) The circle represents a scalar confidence measure, where the con-
fidence is uniform with respect to the direction. ( (b) The ellipse represents
a directional confidence measure, where the confidence varies as a function
of the direction.
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A directonal confidence measure is computed in [Ana87, Ana88] for a dense displace-
ment field. Typically, in uniform regions both minimal and maximal confidence values
are low, whereas at edges (except occlusion boundaries) the confidence is high along the

gradient direction and low along the edge, and finally at corners both values are high.

The confidence measure (either scalar or directional) can be used for weighting the
contribution of the flow vector to the determination of 3-D motion and structure parame-

ters. In order to save computation, it is also possible to select and use a given number of

“best” flow vectors, while ignoring the other vectors.

3. A GLOBAL OPTIMIZATION APPROACH USING

A SCALAR CONFIDENCE MEASURE

Before turning to the directional confidence measure, we show in this section how
knowledge, represented by a scalar confidence measure, can be integrated into a least
squares scheme for extracting 3-D motion and structure from optical flow.
Let (a1,B1),...,(an,Bs) be n flow vectors measured at the image points (z1,%1),.--,(Zn,¥n)
and assigned scalar confidence values W),..., W, . The goal is to extract 3-D motion pa-
rameters, U and ), and normalized depth values; Z1y+-+,Zn, which are maximally

consistent with the available data.

Let us briefly review the approach in {Bru81] and [Adi85a,b], where a least squares
scheme is employed. This approach, which is attractive because of its relative robustness
to noise, is based on minimizing the deviation between the measured flow vectors and those
predicted from the estimated 3-D motion parameters and depth values. The deviation

related to each flow vecior is weighted by the corresponding confidence value. In other
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words, we want to find U, £ and Z1yee oy Zn such that the error function

Y Wil(ei — ari - ay;Zi) + (B — Bri — BuiZi)’) (9)
=1

-

is minimized (see Eq. (7)). In addition, the constraints Z; > 0, 1

1,...,n, should
be satisfied, but, for the sake of brevity, we ignore them in the current discussion. The

interested reader is referred to [Adi85a,b)].

Given the values of the motion parameters, the optimal value of Z;, 1<i<n,can

be found by minimizing the corresponding term in the error function (9):

(o — ani)ovi + (Bi = Bri)Bu;

Z; =
afy; + B

(10)

Substituting (10), for any 1 < ¢ < n, into (9) and expanding the resulting expression

yields the following representation of the error, as a function of the motion parameters:

E(U,Q) = i W [(ai — api)Bu; — (B: - ﬂRi)an]z. (11)

2 2
i=1 ap; + B,

The motion parameters are recovered in [Adi85a,b] by deriving from (11) an error
measure which correpsponds to possible values of U. For each hypothesized U, the
optimal rotation parameters and a related error value are computed by solving three linear
equations. A minimum value of the resulting error function is determined, using a multi-

resolution sampling technique.
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4. A GLOBAL OPTIMIZATION APPROACH USING

A DIRECTIONAL CONFIDENCE MEASURE

4.1 Error Functions and a Search Procedure

In this section we generalize the analysis of the previous section by assuming that a
directional confidence measure is assigned to each flow vector. Let (Wi, Wiy, pi) represent
the directional confidence corresponding to the measured flow vector (i, Bi), 1<i<n
(see Section 2.2). In order to weight correctly the deviation between the measured and
predicted flow vectors, a rotated coordinate system is separately determined for each vector,
using p; as the angle of rotation. Values in a rotated coordinate system will be denoted

(3]

by the symbol *'’, e.g. (see Fig. 5):

al cosp; sinp; a;
i) = P P 1. (12)
; —sinp; cospi ) \ Bi

Following Eq. (9), the error function to be minimized is

n
> [Wi(el — alp; — oy 2:) + Wiy — Br; — By Zi)’] (13)
1=1
Again, we can find the optimal value of Z;, as a function of the motion parameters, by
minimizing the corresponding term in the error function. This can be done by examining
the first derivative of (13), with respect to Z;, and setting it equal to 0. Thus, we get

_ Wyi(a} — ap;)ay; + Wi(B: — Bk, )8y, .
Wial2 + WiBl,°2

1

Z; (14)

Substituting (14), for any 1 < ¢ < n, into (13) and expanding the resulting expression
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Fig. 5: Rotating a coordinate system via the confidence vector. The flow
vector (@,B) is given in the image coordinate system (z,y). The angle
p corresponds to the axis with maximal confidence. It defines a rotated
coordinate system in which o' and (' are the new flow values.

yields the following representation of the error, as a function of the motion parameters:

E(U,Q) = zn: WuWu[(ai — a'}ii)ﬂb; - (ﬂ: - ﬂhi)a'm]z
= Wyal? + Wi;By:

=1

(15)

The search for optimal U and  can be based on the search procedure outlined in the
previous section. The values of o} and g}, 1 <i<n,canbe determined by applying Eq.
(12). Similarly, the coefficients of the rotation parameters in o'p; and B, 1 <i<n,can
be determined from the corresponding coefficients in ap; and Bg; (see Eq. (4b)). For a
given U , the values of of;; and By, 1 < i < n, can be computed from ay; and By; (see

Eq. (8)). Thus, for each hypothesized value of U, the problem becomes a least squares
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problem with expressions which linearly depend on Qx, Qy and Q7. These rotation
parameters and a corresponding error measure can, therefore, be computed by solving
three linear equations. Thus, an error function, defined on the unit sphere, is obtained. As

in Section 3, this function can be minimized using a multi-resolution sampling technique.

4.2 Discussion

A few interesting observations can easily be made from Egs. (14) and (15):

1) Given a flow vector (a,3) for which W; « W; (e.g., a point along an edge but not

at a corner), one can estimate the corresponding depth by

unless a'U2 < ﬂbz . This estimate is only based on the one reliable component of the flow
vector. If, for example, we deal with a line correspondence, then the transverse component
of the line displacement will be the dominant one in determining the depth, unless this

component is much smaller than the longitudinal component of the displacement.

2) f W; = 0, then, according to Eq. (15), the corresponding flow vector gives no
constraint on the optimal motion parameters. This is consistent with the observation
already made in the literature that line correspondences in two frames do not constrain
the problem. However, assuming that the motion parameters are known (e.g., via the
constraints from the other flow vectors in the optimization process), the corresponding

depth value (see (16)) may still be recovered.
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3) Assuming that 0 < W, < W;, the related error measure is
2
e ~ —5|(o — ap)By — (B' - Br)ev)"- (17)

Thus, the contribution e of a flow vector to the total error measure is principally deter-
mined by the value of W;. However, even if W) is small, e may be large if |ay| < |8yl-
Given a line correspondence, for example, this means that the hypothesized focus of ex-
pansion (FOE) is along the line. In this case, we have
I \2
ex (2L (o' - o). (18)

!
oy

Therefore, in order to minimize e, oy should be close to a'. In the case of a line
correspondence, the transverse component of the motion predicted by the hypothesized

rotation should be similar to the transverse component of the measured displacement.

Suppose now that line correspondences are determined and an FOE is hypothesized
such that there exist lines approximately oriented towards it. Applying the previous discus-
sion, we can check whether there exist rota.tioﬁ parameters consistent with the transverse
displacements of these lines and, thus, either compute the rotation parameters or refute
the hypothesis. For example, it is possible to compute the rotation parameters of a sensor

moving along a road by using the boundary lines of the road.
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5. RELATING CONFIDENCE MEASURES TO NOISE DISTRIBUTIONS

In this section we show how confidence values can be derived from probabilistic esti-
mates of measurement errors of flow vectors. Suppose that each flow vector is corrupted
by an additive noise with two orthogonal components, N; and N,. It is assumed that the
expectations of N; and N; are 0 and that their standard deviations, o; and oy, satisfy
0 < 01 < 01. The angle, denoted by p, between the axis corresponding to N; and the
z -axis may be different for each flow vector (0° < p < 180°). Following the analysis and
notations in Section 4.1, a coordinate system rotated by p;, 1 <1 < n, is introduced for

each flow vector (a;,B;), and the corresponding values are denoted by the symbol ‘'’

Employing the least squares scheme, it is desirable to normalize each deviation by
the expected value of the related measurement error. Hence, the error function to be

minimized should be

So[(Shm e oy (BB BTy (19)

Ot ol

Thus, each deviation is measured in units of the standard deviation of the related mea-
surement error, and the penalty for the deviation is determined by this normalized value.

Notice that Eq. (19) leads us to Eq. (13) with

Wﬁ:l/ﬂfi y W1i=1/0'?i N (20)

In the framework of the least squares technique with a scalar confidence measure, the

deviations are computed in the z and y axes. Let N and N, be the corresponding
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measurement errors. Their standard deviations, 0z and oy, satisfy the equalities
ﬁ+a§=mN§+N§=ﬂm§+Nf=a%+ﬁ, (21)

where p denotes expectation, in a probabilistic sense. In addition, N: and Ny are equally
distributed and, therefore,

2 =at= (42 (22)

For estimating the 3-D motion and structure, we should minimize the expression

z [(ai — ap; — O‘Uizi)2 + (ﬂi - Br; — .BUizi)z]. (23)

Oz a'y
Using Eq. (22), this leads us to Eq. (9) with

W; = 2/(02 + ok). (24)

The definitions (20) and (24) of Wy, W, and W yield the following relation between

the directional and scalar confidence measures:

2 2 A4
W = = = .
ol+o} 1YW +1/W, Wi+ W (25)

This relation will be employed in Experiment 2 for obtaining a scalar confidence measure

out of the given directional confidence measure.

6. A CONFIDENCE MEASURE FOR DEPTH ESTIMATES

Many experimental results show that depth estimates are often inaccurate (see, for

example, the careful study in [Dut88]). This problem is inherent near the FOE or when
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the translation is small relative to the distance of the camera from the observed surface
[Adi89). It is important, therefore, to define a confidence measure for the depth estimates,

thus making it possible to distinguish between reliable and unreliable results.

As in the previous section, let us again assume that the flow field is corrupted by an
additive noise (N, N;). In addition to the properties and definitions already stated in
Section 5, we assume that N; and N; are uncorrelated. Using the directional confidence
measure, the depth estimate is given by Eq. (14). Assuming that the motion parameters

are accurately recovered, the variance of each depth estimate is

- Wzata +W2 2ﬂ

o*(2) = (26)
(Wta + Wiy )

Substituting W; and W; with 1/0? and 1/0}, as proposed in the previous section, we

obtain:
- 1

o%(Z) = 27
) (aly/00)* + (By /o) #1)

We can now define a confidence measure for Z:

C(Z) € 1/6%(2) = Weay® + Wi By’ (28)

Notice that this confidence measure is small near the FOE, where o}, and B are close

to 0.

Eventually, we are usually interested in estimating Z/r, that is, 1/ Z . Denoting Z/r

by Z*, we can obtain the following equalities, where estimated values are denoted by small

letters:

def - =
AZ*'=2-2"=1]2-1/Z = — = —. 29
# 2 / Zz Zz (29)
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Thus, the relative error in the estimated depth is

- - Z
|AZ'|/2" = |AZ|/z = |AZI/Z = lAZI—;—, (30)

where the approximation above is justified if the relative error in estimating Z is small.

In this case,

TN DT S T L— . (31)
7 ~ @ ot + Byla)}  (alp/o + (Bp/or?’
and a confidence measure can be defined as
. [ r? 12 12 12 ' 2
C(AZ /Z ) = -Z—Z(Wtau + Wlﬂu ) = I/VtaT + W[ﬂT . (32)

As a conclusion, the estimated value of Z/r becomes more reliable as the ratio between
the translation magnitude and Z is increased. In addition, notice that the reliability is
determined by the ratios, o¢/af and o1/f, between the expected measurement errors
and the corresponding translational components. A reliable depth estimate can be expected

only if at least one of these ratios is small.

7. EXPERIMENTS

In this section we compare results achieved by employing either a scalar confidence
measure or a directional confidence measure. The first experiment is based on simulated
data, while the other two are based on images taken from a video camera translating

through a hallway in the direction of the line of sight.

7.1 Experiment 1

The first experiment simulates a camera translating along the line of sight at speed
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of one (focal) unit per second. This motion can be represented by T = (0.,0.,1.) and
2 =(0.°,0.°,0.°). The environment consists of two planar surfaces parallel to the image
plane. A background plane is in a distance of 20 units from the image plane. It is occluded
around its intersection with the line of sight by the second surface, which is a planar patch
in a distance of 10 units from the image plane. The field of view of the camera is 30°,

and the image contains 512 x 512 pixels.

Velocity vectors are uniformly sampled in the image. Each vector is perturbed by
additive noise, with two orthogonal and independent components, N; and N;. These
noise components are assumed to be uniformly distributed in the intervals [—0.5,0.5) and
[-6.,6.], respectively, where values are given in units of pixels per second. The angle
p, between the z-axis and the axis corresponding to Ny, is uniformly distributed in the

interval [0.°,180.°).

The motion and depth values were computed from the flow data using both the scheme
with scalar confidence measure and the scheme with directional confidence measure. In
the first case, the confidence values should be identical for each velocity vector. In the

second case, following the discussion in Section 5, W;/W; = (6/0.5)? = 144.

A statistical study of the results was performed, based on 200 experiments with each
of the schemes. In 100 experiments 64 velocity vectors were used, while in the other
experiments 256 vectors were used. In each experiment the noise values were randomly
sampled. The results, shown in Table 1, demonstrate the significant improvement achieved
by using the directional confidence measure. Relative to the scheme based on scalar
confidence measure, there is an improvement of more than 50% in estimating the motion

parametlers, and more than 60% in estimating the normalized depth values. Notice that
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a similar improvement in the estimation of the motion parameters (but not in the depth

values) has been achieved by using 256 flow vectors instead of 64 vectors.

Errors | # Vectors [ Scalar | Directional

‘ Confidence | Confidence

AU 61 2300 T o5

TTT9s6 7 Tosss U 032

9 | 64 | 0.158° [ 0.078°

S 256 0.078° | 0.030° |
|AZ|)Z 64 234% 9.5%

256 | 18.7% | 63% |

Table 1: Experiment 1. The average errors in the direction of the
translation vector and in the magnitude of rotation, and the average
relative error in the depth values.

7.2 Experiment 2

This experiment is based on a dense displacement field and a related directional confi-
dence measure computed by Anandan’s technique [Ana88]. The experiment demonstrates
the ability to recover 3-D motion and structure from such estimates of image motion, using
either a scalar confidence measure or a directional confidence measure. The input images
(of 256 x 256 pixels), the displacement field and the maximal component of the directional
confidence measure are shown in Fig. 6, Fig. 7 and Fig. 8, respectively. The field of view

of the camera is 25°.

The confidence values, computed by Anandan’s technique, can take any non-negative
number. We assumed, however, that the standard deviation of the least accurate dis-
placement measurements is at most 10 times the standard deviation of the most accurate

measurements. Therefore, we transformed the confidence values W into the interval
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(P)

Fig. 6: Experiment 2: the intensity images.
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Fig. 7: Experiment 2: a 32 x 32 sample of the computed flow field. The vectors are scaled

by 1.2.

(o TTrtttette e TTTTTTTTTITTITTITITTTT
k_\\ —; ’ -
e— .
g R

- - . et s,
k’t- __—> e oy 7
f_ . . .om 0t .t e e
b — =P o= r~.(—b-.o——)

€ - - - e e s -

:? e‘\ € ~f —P e . A~ -
- - —— el AL e - -
-~ - P - P R o 2N
- - 6_..(_(_.- . - e . e
-y - . . S - > . . eee—
- - .. t. Vo e s e .
- - . . - . -
< - - AR I
= . . T . .
| oty _ . .
e -
- . . '
—

Fig. 8: Experiment 2: a 32 x 32 sample of the maximal component of the directional
confidence measure. Notice the high confidence assigned to the normal component of

displacements near straight lines.
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[1.,100.), using the transformation W' = (100W +1)/(W +1). Then, a scalar confidence
measure was derived from the directional confidence measure using the relation (25). A
selection of 256 vectors from the displacement field was performed, based on two criteria:

high values of the scalar confidence measure, and a uniform distribution over the image.

The 3-D motion parameters were computed from the selected vectors by minimizing
either Eq. (11), using the scalar confidence measure, or Eq. (15), using the directional con-
fidence measure. In the first case v}e estimated the value of U as (0.005,—0.020,1.000),
which is a deviation of 1.15° from the line of sight, and the value of 0 as

(—0.035°,—0.112°,—0.652°). The results in the second case were almost identical.

In the last stage, the relative depth values were computed using either Eq. (10) or Eq.
(14). In both cases (see Figs. 9 and 10) the depth values usually vary smoothly, unfor-
tunately even across occlusion boundaries, due to the smoothness process in Anandan’s
technique. The results obtained by using the directional confidence measure seem to be
somewhat better in this sense. The overall improvement is not significant however, because
the tangential components of displacement vectors at edge points are almost as accurate as
the normal components. This was achieved by employing the directional confidence mea-
sure as a tool in the smoothness process. To conclude, the directional confidence measure
did not significantly improve the 3-D interpretation, since it did not reflect the accuracy

of the displacement measurements.

7.3 Experiment 3 The input to this experiment is a list of line segment pairs, where the

lines were extracted by the method described in [Bol87), and matched by the algorithm
presented in [Wil88]. This experiment demonstrates the ability to recover 3-D motion and

structure from line segments, using only two frames. As in the previous experiment, the
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Fig. 9: Experiment 2: The depth map obtained by using the scalar confidence measure.
The depth values are encoded by intensity (more distant surfaces are brighter).

Fig. 10: Experiment 2: The depth map obtained by using the directional confidence
measure.
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intensity images contain 256 x 256 pixels and correspond to field of view of 25°. The first
image is shown in Fig. 11, and the line segments computed for this image are shown in Fig.
12. The estimation of 3-D information was based on endpoint correspondences obtained

from the list of line matches.

The endpoint pairs were grouped into two sets according to their reliability. This
grouping affects the determination of the confidence measure, as explained in the following
paragraph. In the set of unreliable correspondences, we included pairs associated with
non-unique line matches or with matches where one segment was more then 20% longer
than the other segment. We also included in this set pairs where one of the endpoints was
less than 2.5 pixels away from the image boundary. All the other endpoint pairs were

included in the set of reliable correspondences.

A directional confidence measure was determined for the displacement vector obtained
from each endpoint pair. The direction of minimal confidence was estimated as the average
orientation of the lines associated with the pair. For the reliable pairs, the standard devi-
-ations, oy and o, of the transverse and longitudinal measurement errors, were estimated
as 0.25 and 1 (in pixels), respectively. Hence, the corresponding confidence values were
selected to be W, = 16 and W; = 1. For the unreliable pairs, we still selected W; = 16,
but W, was determined to be 0. Thus, these pairs did not participate in the computation

of the 3-D motion parameters, but their depth was estimated.

The 3-D motion and structure were computed using either a scalar confidence measure,
or a directional confidence measure. In the first case, the same scalar weight was assigned
to each of the more reliable endpoint pairs. The motion parameters found in this case were

U = (0.045, 0.058, 0.997), corresponding to a deviation of 4.23° from the line of sight, and
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Fig. 11: Experiment 3: The first intensity image.

= 7

=1 /£

Fig. 12: Experiment 3: The line segments extracted from the first image. Objects with
known depth values are labeled.
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£ = (0.250°,0.096°, —0.033°) . In the second case, using a directional confidence measure,
the vector U was found to be (0.008,—0.011, 1.000), deviating 0.77° from the line of

sight, and the rotation vector Q was estimated as (0.087°,0.204°,0.041°) .

In this experiment, the actual depth values of some of the ob Jjects in the scene are
known. In addition, the translation magnitude is known to be 1.95 feet. In Table 2, we
compare the estimated depth values computed by each of the algorithms to the ground
truth values. For most objects, the estimates obtained by employing the directional con-
fidence measure are significantly better than the estimates corresponding to the scalar
confidence measure. The results for Cone 5 and Cone 6 are exceptional, because the re-
lated lines are oriented towards the FOE, and their longitudinal displacements are almost

as accurate as the transverse displacements.

Object | Ground | #Pairs [ Scalar Conf. — | Direct. Conf. - | Direct. Conf. -

Truth Average Error | Average Error | Aver. Norm. Err.
Cone 1 20.0 ft 8 11.5% 2.2% 0.88
Cone 2 25.0 ft 8 56.5% 1.8% 0.48
Wall1 | 27.1ft 1 7.1 % 5.6% 1.02
Can! | 30.0ft 6 13.0% 6.8% 0.42
Cone 3 | 35.0 ft 6 14.6% 5.2% 0.45
Cone 4 | 40.0 ft 6 7.9% 6.2% 0.49
Cone 5 | 45.0 ft 4 13.0% 81.9% 1.01
Wall 2 | 48.7 1t 6 T 57.2% 39.8% 0.64
Can 2 55.0 fi 2 51.1% 55.5% 0.49
Cone 6 | 60.0 ft 4 32.8% 67.9% 1.09
Doorway | 87.1 ft 8 91.3% 57.4% 0.84

Table 2: Experiment 3. For each object the following data is shown: the ground truth

value, the number of endpoint pairs, the average value of errors |AZ|/Z, both for the
scalar confidence measure and for the directional confidence measure, and the average

value of |AZ|/o(Z) for the directional measure.
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The depth errors associated with the directional confidence measure were normalized
to units of their estimated standard deviations. In other wc‘ers, the ratios |AZ| Jo(Z)
were computed, using Eq. (27) for estimating o(Z). For each object, the average of
these normalized errors was computed (see Table 2). These average values vary between
0.42 and 1.09, thus, demonstrating the predictability of the actual depth errors from their
estimated standard deviations. This shows that Eq. (27) can be used successfully to

distinguish between reliable and unreliable estimates.

8. SUMMARY

The directional confidence measure is a numerical representation of the expected relia-
bility of image flow estimates. A scheme for incorporating this measure into a least squares
technique for computing 3-D motion and structure from a flow field was introduced. A
confidence measure for the depth estimates was also presented, and relations between these

measures and between expected errors of the flow estimates were established.

The ability to employ a directional confidence measure was found to be especially
useful in the case of line segment correspondences. Experimental results demonstrated the
superiority of this measure over a scalar confidence measure in cases where the reliability

of the image flow is orientation dependent and can reasonably be estimated.
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