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ABSTRACT

The Spring Project at the University of Massachusetts is a research and development
effort aimed at studying nezt generation time-critical systems. In addition to being
fast and predictable, these systems will have to be flexible, adaptive, and reliable.
These requirements arise from the fact that future systems will be large and complex
and will operate in environments that are dynamic, distributed, and fault-inducing.
In order to achieve its goals, the Spring Project takes a synergistic approach involving
the development of scheduling algorithms, operating system support, distributed
system architecture, and application development tools. In addition, the following
topics are also being investigated as part of the project: Transaction management in
real-time databases, support for real-time applications involving artificial intelligence,
and formal approaches to the specification and verification of real-time systems. This
report summarizes the current status of the project.

1This work is part of the Spring Project at the University of Massachusetts which is funded in
part by the Office of Naval Research under contract N00014-85-K-0398 and by the National Science
Foundation under grant DCR-8500332. We also acknowledge the support of Texas Instruments.



1 Introduction to the Spring Project

A number of new and sophisticated applications are currently being contemplated by
government and industry. Space stations, automated factories of the future, and fu-
ture command and control systems are examples of such systems. These applications
exhibit a set of common features:

e They will be large and complex.
e They will function in physically distributed environments.

e They will have to be maintainable and extensible due to their evolving nature
and projected long lifetimes.

e They will consist of many interacting time-critical components.

¢ They will result in severe consequences if logical and timing correctness are not
met.

Such systems in which tasks have deadlines that must be met are termed distributed
time-critical systems or distributed hard real-time systems.

Available tools for the development of such systems are woefully inadequate since
they are primarily aimed at applications that are static, operate in centralized envi-
ronments, and either ignore explicit timing constraints or treat them in a very ad hoc
manner. Also, many real-time systems are founded on the premise that time-critical
systems need to be fast, as opposed to being fast and predictable. Clearly, there is a
need for a fresh and flezible approach to building distributed time-critical systems.
Hence the Spring project.

In order to achieve the major goals of high performance (i.e., the need to be fast)
and predictability, we are currently exploring the following areas in a synergistic
fashion:

Scheduling algorithms for distributed time-critical systems.

Operating system support for time-critical systems.

Architectural support for time-critical systems.
e Tool support for building time-critical systems.

Protocols for time constrained communication.



In addition, transaction management for real-time databases, support for real-time
applications involving artificial intelligence, and formal approaches needed for speci-
fying and verifying real-time systems are also being investigated as part of the Spring
project.

To motivate the approach taken by the Spring Project, we first discuss the limi-
tations of current real-time systems and then present the new paradigm adopted in

Spring. This is followed by a summary of our work in each of the areas mentioned
above. |

2 Limitations of the Current Approach to Real-
Time Systems

Today’s real-time systems attempt to support time critical applications by imple-
menting a set of primitives which are very fast. This is a laudable goal. However,
fast is a relative term and not sufficient when dealing with real-time constraints. The
main problems with simply making timesharing operating systems fast is that it is the
wrong paradigm, there is no ezplicit support for meeting real-time constraints, and
the use (without extensive simulations) of these systems does not provide system de-
signers with a high degree of confidence that the system will indeed meet its real-time
constraints. For example, the current technology burdens the designers with the un-
enviable task of mapping a set of real-time constraints into a priority order such that
all tasks will meet their deadlines. Thus, when using the current paradigms it is diffi-
cult to predict how tasks may interact with each other, where blocking over resources
will occur, and what the subsequent effect of this interaction and blocking is on the
timing constraints of all the tasks. As real-time systems become more dynamic and
more sophisticated, it will be necessary to develop more effective ways to guarantee
real-time constraints and to meet the flexibility and predictability requirements.

Hence, our claim is that the basic paradigms for current real-time operating sys-
tems are wrong. In real-time systems the behavior of each task is well understood
as a function of the state of the system and inputs. There is no need to treat it
as a random process. lairness and minimizing average response time are not im-
portant in a real-time system. What is important is that all critical tasks complete
by their deadlines and that as many other tasks as possible also complete by their
deadlines (usually weighted by their importance). In other words, more appropriate
metrics than fairness and average response time are required. Finally, a real-time
system supports a single application with all the tasks acting as members of a team
to accomplish the best system-wide behavior.



In addition to the above problems with the basic paradigms of current operating
systems, many other more specific problems exist with today’s real-time systems. For
example, many real-time systems are highly static and consequently contain static
scheduling policies. However, for next generation real-time systems the dynamics,
the need for adaptability and reliability, and the inherent complexity will make it
impossible to precalculate all possible combinations of tasks that might occur. This
precludes use of static scheduling policies. Further, even in those current kernels
where more dynamic scheduling algorithms occur, they are inadequate for two main
reasons: (1) they do not address the need for an integrated cpu scheduling and
resource allocation scheme, and (2) they don’t handle the end-to-end scheduling
problem. We will further discuss these two important issues in subsequent sections.

We believe that the new real-time OS paradigm should be based on the following
considerations:

o tasks in a real-time application are known a priori and hence can be analyzed
to determine their characteristics. Tasks are part of a single application with a
system-wide objective,

e the value of tasks executed should be maximized, where the value of a task that
completes before its deadline is its full value (depends on what the task does)
and some diminished value (including a very negative value or zero) if it does
not make its deadline,

e predictability should be ensured so that the timing properties of both individual
tasks and the system can be assessed (in other words we have to be able to
categorize the performance of tasks and the system with respect to their timing
properties), and

o flexibility should be ensured so that system modifications and on-line dynamics
are more easily accommodated.

The next section shows how the Spring paradigm is based on these considerations.

3 The Paradigm Underlying Spring

This section presents the basic environment we are assuming and the general structure
for the real-time operating system paradigm we are proposing.

We assume that the environment is dynamic, large and complex. In this envi-
ronment there exists many types of tasks. There are critical tasks, essential tasks,



non-essential tasks, and tasks’ deadlines may range over a wide spectrum. Critical
tasks are those tasks which must make their deadline, otherwise a catastrophic result
might occur (missing their deadlines will contribute a minus infinity value to the sys-
tem). These tasks must be verified to always be able to meet their deadlines subject
to some specified number of failures. Resources will be reserved for such tasks. That
is, a worst case anaysis must be done for these tasks to guarantee that their deadlines
are met. Using current OS paradigms such a worst case analysis, even for a small
number of tasks is complex. Our more predictable kernel facilitates this worst case
analysis. Note that the number of truly critical tasks (even in very large systems)
will be small in comparison to the total number of tasks in the system. Essential
tasks are tasks that have deadlines and are important to the operation of the system,
but will not cause a catastrophy if they are not finished on time. There are a large
number of such tasks. It is necessary to treat such tasks in a dynamic manner as it
is impossible to reserve enough resources for all contingencies with respect to these
tasks. Our approach applies an on-line, dynamic guarantee to this collection of tasks.
Non-essential tasks, whether they have deadlines or not, execute when they do not
impact critical or essential tasks. Many background tasks, long range planning tasks,
maintenance functions, etc. fall into this category. Some non-critical tasks may have
extremely tight deadlines. These tasks cannot be dynamically scheduled since it
would take more time to ascertain the schedule than there exists before the task’s
deadline. Such tasks must also have preallocated resources. These tasks usually
occur in the data acquisition front ends of the real-time system.

Task characteristics are complicated in many other ways as well. For example,
tasks may be preemptable or not, periodic or aperiodic, have a variety of timing
constraints, precedence constraints and communication constraints. All these task
characteristics must be addressed together with the dynamic, distributed and evolv-
ing environment characteristics.

In light of these complexities, the key to next generation real-time operating
systems will be finding the correct approach to make the systems predictable yet
flexible in such a way as to be able to guarantee and predict the performance of the
system. Our approach to supporting this new paradigm combines the following ideas
resulting, we believe, in a flexible yet predictable system:

resource segmentation/partitioning,

functional partitioning,

selective preallocation,

e a priori guarantee for critical tasks,

an on-line guarantee for essential tasks,



e integrated cpu scheduling and resource allocation, and

o end-to-end scheduling.

4 System and Task Characteristics

Given that future time-critical systems are expected to function in physically dis-
tributed environments, it is appropriate for the computing environment also to be
distributed. Since we are interested in high performance and reliability, each node in
this distributed system should contain multiple processors and the nodes themselves
connected by a high-speed subnet. However, several questions still remain, especially
those relating to the architecture of each node and the nature of the subnet. Hence
we are proceeding in the following two directions.

First, since we do need a working hardware configuration to implement, test,
and evaluate the kernel, we have put together, using off-the-shelf components, a
distributed architecture, called SpringNet that while being reasonable, is also easily
.modifiable. In the current implementation, each node consists of a number of pro-
cessors (Motorola 68020’s) and a number of memory modules all on a common bus
(VME). We plan to configure the processors and the memory such that each proces-
sor has quick access to one specific memory module while having relatively slower
access to the remaining memory modules. Thus all the memory is shareable by all
the processors.

Concurrently, we are building a software testbed for experimenting with alter-
native distributed architectures. This testbed serves as a tool for designers and im-
plementers of time-critical systems. We discuss the software testbed tool in section

7.

In the rest of this section, we discuss the contents of a node in the Spring network
and the characteristics of tasks being considered by Spring.

4.1 A Spring Node

We assume that the Spring system is physically distributed and composed of a net-
work of multiprocessors. Each multiprocessor contains one (or more) application pro-
cessors, one (or more) system processors, and an I/O subsystem. System processors?

2Ultimately, system processors could be specifically designed to offer harware support to our system
activities such as guaranteeing tasks.



offload the scheduling algorithm and other OS overhead from the application tasks
both for speed, and so that this overhead does not cause uncertainty in ex-
ecuting guaranteed tasks. All system tasks are resident in the memory module
of the system processors. The I/O subsystem is a separate entity from the Spring
kernel and it handles non-critical I/O, slow I/O devices, and fast sensors. The I/0
subsystem can be controlled by some current real-time kernel such as VRTXTM, or
by completely dedicating processors or cycles on processors to these devices.

It is important to note that, although system tasks run on system processors,
application tasks can run on both application processors and system processors by
explicitly reserving time on the system processors. This only becomes necessary if
the surplus processing power of the application processor(s) is (are) not sufficient at
a given point in time. If both the application processors and a portion of the system
processors are still not sufficient to handle the current load, then we invoke the
distributed scheduling. To facilitate this, the code for tasks is replicated at various
nodes, so that only signals, partial state information, or input to the tasks need be
transmitted when distributed scheduling occurs, rather than transmitting the task
code itself.

To be more specific, the system processors run most of the operating system, as
well as application specific tasks that do not have deadlines. The scheduling algorithm
separates policy from mechanism and is composed of 4 modules. At the lowest level
multiple dispatchers exist, one running on each of the application processors. The
dispatcher simply removes the next (ready) task from a system task table (STT)
that contains all guaranteed tasks arranged in the proper order for each application
processor. The rest of the scheduling modules are executed on the system processor.
The second module is a local scheduler. The local scheduler can be used in two
ways. First, the local scheduler is responsible for locally guaranteeing that a new
task can make its deadline, and for ordering the tasks properly in the STT. The
logic involved in this algorithm is a major innovation of our work. Second, the
local scheduler can also be invoked as a time planner — valuable for real-time Al
applications. This important idea means that it is possible to consider the impact
of system level allocations and resource conflicts on the execution time properties of
application tasks and that this information can then be used by the application to
mare accurately accomplish goals on time. The third scheduling module is the global
(distributed) scheduler which attempts to find an execution site for any task that
cannot be locally guaranteed. The final module is a Meta Level Controller (MLC)
which has the responsibility of adapting various parameters or switching scheduling
algorithms by noticing significant changes in the environment. These capabilities
of the MLC support some of the dynamics required by next generation real-time
systems. All system tasks that run on the system processor have a minimum periodic
rate which is guaranteed. However, they can also be invoked asynchronously due to

events such as the arrival of a new task, if that asynchronous invocation would not



violate the periodic execution constraint of other system tasks. Asynchronous events
are ordered by importance, e.g., a local scheduling routine is of higher importance
than the meta level controller.

4.2 Characteristics of Tasks

Tasks are characterized by:

e ID

e group ID, if any (tasks may be part of a task group or a dependent task group
- these are more fully explained below)

e C (a worse case execution time) (may be a formula that depends on various
input data and/or state information)

¢ deadline (D) or period or other real-time constraints
e criticalness (this is an indication of the importance of this task)
e preemptive or non-preemptive property

¢ maximum number and type of resources (this includes memory segments, ports,
etc.) needed

¢ type: non real-time or real-time

e incremental task or not (incremental tasks compute an answer immediately
and then continue to refine the answer for the rest of its requested computation
time)

o precedence graph (describes the required precedence among tasks in a task
group or a dependent task group)

¢ communication graph (list of tasks with which a task communicates), and type
of communication (asynchronous or synchronous)

¢ location of task copies

e conditional precedence (not discussed in this report)



5 Scheduling Algorithms for Distributed Time-
Critical Systems

Our scheduling algorithms are characterized by the fact that they are decentralized
- scheduling components at individual nodes cooperate to schedule tasks, dynamic -
tasks are scheduled as they arrive in the system, and adaptive - the algorithm adapts
to changes in the state of the system.

In traditional real-time systems, tasks are scheduled according to some policy,
say based on their priorities, and if a task does not complete before its deadline, an
exception condition is raised. We believe that because of the time-critical nature of
the system, the check for whether or not an arriving task will meet its deadline should
be done soon after task arrival and an exception condition raised if necessary. In this
case, the initiator of the task will have more time to handle the exception condition
than in traditional approaches. The nature of exception handling is dependent on the
application; the task initiator may resubmit the task with a later deadline or greater
importance, or initiate an exception-handling task with greater importance. This
important feature of our algorithm has implications for improved fault tolerance.

One of the key notions of our scheme is the notion of guarantee. Our scheduling
algorithm is designed so that as soon as a task arrives, the algorithm attempts to
guarantee the task. The guarantee means that barring failures ® and the arrival of
higher importance tasks, this task will execute by its deadline, and that all previously
guaranteed tasks with equal or higher importance will also still meet their deadlines.
This notion of guarantee underlies our approach to scheduling and distinguishes our
work from other scheduling schemes. It is also one of the major ingredients for
developing flexible, maintainable, predictable, and reliable real-time systems - our
major goal.

5.1 Overview of the Scheduling Scheme

Soon after a task arrives at a node. the scheduling component on that node invokes
the guarantee routine to determine if that task can be executed locally and com-
pleted before its deadline. If the task is not guaranteed locally, then the scheduling
component on that node communicates with its counterparts on other nodes to de-
termine if any other node is in a position to guarantee the task. (A copy of the task
will already exist on multiple nodes in the distributed system.) If one such node

3Failures are handled by various techniques such as guaranteeing multiple instances of a task with
proper timing considerations among the instances, other types of task replication, and reallocation of
tasks after a host fails [16].



exists, then a signal is sent to that node and a guarantee is attempted on that node.
The guarantee algorithm as well as the scheme used for cooperation ezplicitly take
the timing and resource constraints into account. Thus, ours is e scheduler that is
driven by the timing and resource constraints rather than by priorities which encode
the timing constraints.

5.2 The Notion of Guarantee

The basic notion and properties of guarantee have been developed elsewhere [6] and
have the following characteristics:

e the approach of providing for on-line dynamic guarantee of deadlines for essen-
tial tasks allows the unique abstraction that at any point in time the operating
system knows exactly what set of tasks are guaranteed to make their dead-
lines, what, where and when spare resources exist or will exist, and which tasks
are running under non-guaranteed assumptions, (in effect, the algorithm is an
on-line time planner),

e it integrates cpu scheduling with resource allocation,

e conflicts over resources are avoided thereby eliminating the random nature of
waiting for resources found in timesharing operating systems (this same fea-
ture also tends to minimize context switches since tasks are not being context
switched to wait for resources),

e there is a separation of dispatching and guarantee allowing these system func-
tions to run in parallel; the dispatcher is always working with a set of tasks
which have been previously validated to make their deadlines and the guarantee
routine operates on the current set of guaranteed tasks plus any newly invoked
tasks,

e early notification: by performing the guarantee calculation when a task arrives
there may be time to reallocate the task on another host of the system via
the global module of the scheduling algorithm; early notification also has fault
tolerance implications in that it is now possible to run alternative error handling
tasks early, before a deadline is missed,

e using precedence constraints it is possible to guarantee end-to-end timing con-
straints,

e within this approach there is a notion of still “possibly” making the deadline
even if the task is not guaranteed, that is, if a task is not guaranteed it receives
any idle cycles and in parallel there is an attempt to get the task guaranteed
on another host of the system subject to location dependent constraints,

10



e some real-time systems assign fixed size slots to tasks based on their worst case
execulion times, we guarantee based on worst case times but any unused cpu
cycles are reclaimed when resource conflicts don’t prohibit this reclamation,

e worst case execution time is computed for a specific invocation of a task and
hence will be less pessimistic than the absolute worst case execution time,

e the guarantee routine supports the co-existence of real-time and non real-time
tasks, and

o the guarantee can be subject to computation time requirements, deadline or pe-
riodic time constraints, resource requirements where resources are segmented,
criticalness levels for tasks, precedence constraints, I/O requirements, etc. de-
pending on the specific guarantee algorithm in use in a given system. This is a
realistic set of requirements.

5.3 Details of the Scheduling Algorithms

Due to the real-time constraints on tasks, the scheduling algorithm itself should be
very efficient. That is, we must minimize the scheduling and communication delays.
This implies that the decisions, such as whether a task can be guaranteed on a node
as well as where to send the task when it cannot be guaranteed locally, must be made
efficiently. The problem of determining an optimal schedule even in a multiprocessor
system is known to be NP-hard. A distributed system introduces further problems
due to communication delays. All of these factors necessitate a heuristic approach to
scheduling.

We began our explorations into specific scheduling algorithms by developing al-
gorithms for scheduling simple tasks and then progressively extended our algorithms
to deal with tasks having more complex structures and requirements. Following this
approach we have developed a number of variants of our scheduling algorithms, the
differences between the variants arising from the factors they take into account.

In the basic version of our scheduling algorithm, only timing constraints, i.e.,
tasks’ computation times and deadlines were taken into account [6]. We considered
both periodic tasks and nonperiodic tasks. After evaluating this algorithm [13] [14],
we extended it to handle, among other things, resource requirements of tasks. This
is a significant accomplishment because handling resources is a complicated problem
ignored by most researchers. Our work as described in [29] presents a non-preemptive
algorithm for guaranteeing tasks that have deadlines and need resources in exclusive
mode. In [32], we consider the situation where resources can be used in both shared
as well as exclusive modes. Preemptive scheduling on a node is the subject of [30].

11



Scheduling on multiprocessors is the subject of [10] and [23]. In particular, in [10]
we were able to optimize a multiprocessor real-time scheduling algorithm so that it
runs in linear time and still provides excellent performance.

We have also developed a suite of algorithms for dealing with a task that is not
guaranteed locally, i.e., for distributed scheduling:

e The random scheduling algorithm: The task is sent to a randomly selected
node.

e The focussed addressing algorithm: The task is sent to a node that is estimated
to have sufficient surplus to complete the task before its deadline.

e The bidding algorithm: The task is sent to a node based on the bids received
for the task from nodes in the system.

o The flexible algorithm: The task is sent to a node based on a technique that
combines bidding and focussed addressing.

Simulation studies were performed to compare the performance of these algorithms
relative to each other as well as with respect to two baselines. The first baseline is the
non-cooperative algorithm where a task that cannot be guaranteed locally is not sent
to any other node. The second is an (ideal) algorithm that behaves exactly like the
bidding algorithm but incurs no communication overheads. The simulation studies
examine how communication delay, task laxity, load differences on the nodes, and
task computation times affect the performance of the algorithms. The results show
that distributed scheduling is effective even in a hard real-time environment and that
the relative performance of these algorithms is a function of the system state [6], [14],

[26], 9], and [27).

In parallel with the extensions involving resource constraints, we considered ex-
tensions to the basic algorithm to include precedence constraints among tasks. In
our approach [3,4], a task consisting of subtasks related by precedence constraints is
scheduled in an atomic fashion. We assume that the computation costs of subtasks as
well as the communication costs hetween subtasks are known when a task arrives at
a node. Nodes atiempt, in parallel, to schedule subtasks within the constraints im-
posed by precedence relationships; thus, once guaranteed, subtasks can be executed
in parallel at different nodes. [4] reports on evaluation of this scheduling strategy as
well as its efficacy in different situations.

We have also developed and evaluated two algorithms which integrate both dead-
line constraints and criticalness factors in making scheduling decisions [1,2]. Any

12



realistic scheduling algorithm must consider the importance of the tasks along with
their timing constraints.

During the evaluation of the various algorithms, we made the following observa-
tion: In a dynamic system where the system state and task characteristics change
dynamically, no single scheduling algorithm performs well in all situations. We need
to select the algorithm(s) needed for a particular situation depending on the state of
the nodes and the communication network as well as the task characteristics. In one
sense, what this amounts to is the control of scheduling [7]. Since scheduling is the
control of task executions, we term this higher-level control as meta-level control 7).
Such control will enhance the adaptability of resource allocation schemes and since
adaptability is one of our goals, we are currently studying the problem of meta-level
control in time-critical systems. Meta-level control can be used for the following:
Selecting the algorithm(s) used for scheduling tasks on a node and for cooperation
among nodes and selecting the values of scheduling parameters used in the chosen
algorithm(s). Given the potential uses of meta-level control, a question that deserves
special attention is the price. vs. performance of meta-level control techniques. We
are currently seeking an answer to this question by investigating various ways of im-
plementing meta-level control, and the cost and complexity of meta-level control, in
particular, its communication and processing costs. Meta-level control can also serve
as an interface to application semantics and we are also investigating this possibil-
ity. In particular we are looking at an air traffic control application and an avionics
application both of which may be running some form of expert system.

Even though we believe that we have made a number of substantial contributions
in the area of scheduling in time-critical systems, a number of problems still remain.
These include:

o Integrated scheduling schemes for nonperiodic tasks which have deadlines, re-
source requirements, criticalness, precedence constraints, and placement con-
straints.

e Scheduling such complex nonperiodic tasks in the presence of complex periodic
tasks.

o Coping with resources other than those on individual nodes, in particular, the
communication subnet.

e Scheduling tasks with precedence constraints on multiple nodes; in a complete
scheduling scheme, the scheduling of these tasks will have to be done in con-
junction with the scheduling of messages along the communication subnet.

e Strategies for scheduling tasks with a wide spectrum of timing constraints, i.e.,
where tasks have a large range of deadlines.
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o Scheduling schemes for soft real-time tasks coexisting with hard real-time tasks.

We are in the process of extending our current scheduling schemes to deal with
the first two issues. Also, we have made a beginning with regard to the issue of
dealing with the communication subnet. Specifically, we have developed an algorithm
that can be used for preallocation of processor and network resources for periodic
safety-critical tasks that have substasks with communication, fault-tolerance, and
precedence constraints [11]. Evaluation of this algorithm is currently in progress.

In summary, our work on scheduling continues, as we seek integrated solutions
that take into account the complex characteristics of tasks in time-critical systems
and the nature of resources that these tasks require. In addition we are exploring the
efficacy of meta-level techniques that will contribute to the flexibility and adaptability
of the solutions.

Recall that our scheduling algorithm is based on the notion of guaranteeing that
a task will complete execution before its deadline. For this guarantee to be useful, it
should be done with respect to a task’s worst-case requirements. For this guarantee to
hold, in a sense, the scheduling algorithm has to reserve the resources needed by a task
with respect to its worst-case behavior. Since a task has resource requirements, may
have complex precedence constraints, and may invoke operating system primitives,
a task’s worst-case behavior should be determined with respect to its worst-case
resource requirements, the worst-case communication time between its subtasks, and
the worst-case execution time for the operating system primitives. Needless to say, if
a task’s worst-case parameters are much larger than their average-case parameters,
an underutilized system results. This suggests careful design of the architecture and
operating system underlying time-critical systems and the provision of design rules
and constraints for the tasks that constitute an application. The rules and constraints
can then form the basis for the tools that aid in the development of time-critical
applications. It should also be pointed out that our scheduling approach is actually
doing on-line planning for resource allocation under time, resource, and criticalness
constraints. Such a planning capability can be used by higher level application tasks,
possibly integrating additional semantics into the scheduler. Such extensions are
being considered at this time (see section 10).

6 The Spring Kernel

As was already pointed out, the crucial ingredient of our kernel, called the Spring ker-
nel [17,22] is the ability to guarantee a task with respect to its real-time constraints.
The major innovations exhibited in the Spring kernel lie in the scheduling algorithm

14



itself and in the way in which the rest of the kernel supports the scheduling algo-
rithm. Of course, the kernel contains features which closely resemble functions found
in other real-time kernels. The difference is that extreme care has been taken to en-
sure predictability of system tasks which when coupled with our scheduling algorithm
provides predictability for the application. This predictability of the former implies
that we know how long system tasks take to execute and what their resource require-
ments are. Predictability of the application assures us about the timely execution of
tasks that form the application as well as their resource requirements.

The kernel supports the abstractions of tasks, various resource segments such
as code, Task Control Blocks (TCBs), Task Descriptors (TDs), local data, data,
ports, non segmented memory, and IPC among tasks. It is possible to share memory
(one or more data segments) between tasks. Scheduling is an integral part of the
kernel and the abstraction provided is one of a guaranteed task set. The scheduling
algorithm handles resource allocation, avoids blocking, and guarantees tasks; the
scheduling algorithm is the single most distinguishing feature of the kernel. 1/O and
1/0 interrupts are primarily handled by the front end I/O subsystem. It is important
to note that the Spring kernel could be considered a back~end hard real-time kernel
that deals with deadlines of high level tasks. Because of this, interrupts handled by
the Spring kernel itself are well controlled and accounted for in timing constraints.

To enhance predictability, system primitives have capped execution times, and
some primitives execute as iterative algorithms where the number of iterations it will
currently make depends on state information including available time.

A brief overview of several of these aspects of the Spring kernel is now given.

6.1 Task Management

The Spring kernel contains task management primitives that utilize the notion of
preallocation where possible to improve speed and to eliminate unpredictable delays.
For example, all tasks with hard real-time requirements are core resident, or are made
core resident before they can be invoked with hard deadlines. In addition, a system
initialization program loads code, set up TCBs, TDs, local data, dala, ports, and
non segmented memory using the kernel primitives. Multiple instances of a task may
be created at initialization time and multiple free TCBs, TDs, and ports may also be
created at initialization time. Subsequently, dynamic operation of the system only
needs to free and allocate these segments rather than creating them. Facilities also
exist for dynamically creating new segments of any type, but with proper design such
facilities should be used sparingly and not under hard real-time constraints. Using
this approach, the system can be fast and predictable, yet still be flexible enough to
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accomodate change.

More specifically, a task consists of reentrant code, local data, dynamic data seg-
ments, a stack, a task descriptor and a task control block. Multiple instances of a task
may be invoked. In this case the reentrant code and task descriptor are shared. All
the above information concerning a task is maintained in the task descriptor. Much
of the information is also maintained in the task control block with the difference
being that the information in the task control block is specific to a particular in-
stance of the task. For example, a task descriptor might indicate that the worst case
execution time for TASK A is 5z milliseconds where z is the number of input data
items at the time the task is invoked. The actual worst case time for this module is
computed at invocation time and the computed value is then inserted into the TCB.
The guarantee is then performed for this specific task instance. All the other fields
dealing with time, computation, resources or criticalness are handled in a similar
way.

6.2 Memory Management

Memory management techniques must not introduce erratic delays into the execution
time of a task. Since page faults and page replacements in demand paging schemes
create large and unpredictable delays, these memory management techniques (as
currently implemented) are not suitable to real-time applications with a need to
guarantee timing constraints. Instead, the Spring Operating System memory man-
agement adheres to a memory segmentation rule with a fixed memory management
scheme.

Memory segments include code, local data, data (including shared data), ports,
stacks, TCBs, TDs and non-segmented memory. Tasks require a maximum number
of memory segments of each type, but at invocation time a task might dynamically
require different amounts of segments. The maximum is known a priori. Tasks can
communicate using shared memory or ports. However, recall that the scheduling al-
gorithm will automatically handle synchronization over this shared memory or ports.
Tasks may be replicated at one or more sites. A program named the Configurator,
calling the kernel primitives, initially loads the primary memory of each site with the
entire collection of predetermined memory segments. Changes occur dynamically to

this core resident set, but it is done under strict timing requirements or in background
mode.

When a task is activated, any dynamic information about its resource require-
ments or timing constraints are computed and set into the TCB; the guarantee routine
then determines if it will be able to make its deadline using the algorithm described
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in section 4. Note that the execution of the guarantee algorithm ensures that the
task will obtain the necessary segments such as the ports, data segments, etc. at the
right time. Again, tasks always identify their maximum resource requirements; this
is feasible in a real-time system. If a task is guaranteed it is placed in the system
task table (part of the memory associated with the system processor) for use by
the application processor dispatcher. A separate dispatcher exists for system tasks
which are executing on the system processor. Note that a fixed partition memory
management scheme (of multiple sizes) is very effective when the sizes of tasks tend
to cluster around certain common values, and this is precisely what our system as-
sumes. Also, pre-allocating as much as possible increases the speed of the OS with
a loss in generality. One of the main engineering issues of hard real-time systems
is where to make this tradeoff between pre-allocating resources and flexibility. Our
approach makes this tradeoff by dedicating front—end processors to both I/O and
tasks with short time constraints. As functionality and laxity of tasks increase, we
employ on-line, dynamic techniques to acquire flexibility.

6.3 I/0

Many of the real-time constraints in a system arise due to 1/O devices including
sensors. The set of I/O devices that exist for a given application will be quite
static in most systems. Even if the set of I/O devices changes, since they can be
partitioned from the main system and changes to them are isolated, these changes
have minimal impact on the rest of the kernel. Special independent driver processes
must be designed to handle the special timing needs of these devices. In Spring we
separate slow and fast I/O devices. Slow I/O devices are multiplexed through a front
end dedicated I/O processor. System support for this is preallocated and not part of
the dynamic on-line guarantee. However, the slow 1/0 devices might invoke a task
which does have a deadline and is subject to the guarantee. Fast I/O devices such as
sensors are handled with a dedicated processor, or have dedicated cycles on a given
processor or bus. The fast 1/O devices are critical since they interact more closely
with the real-time application and have tight time constraints. They might invoke
subsequent real-time higher level tasks. However, it is precisely because of the tight -
timing constraints and the relatively static nature of the collection of sensors that we
pre-allocate resources for the fast I/O sensors. In summary, our strategy suggests that
many tasks which have real-time constraints can be dealt with statically, leaving a
smaller number of tasks which typically have higher levels of functionality and higher
laxity for the dynamic, on-line guarantee routine.
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6.4 Interrupts

Another important issue is interrupts. Interrupts are an environment consideration
which causes problems because they can create unpredictable delays, if treated as a
random process, as is done in most timesharing operating systems. Further, in most
timesharing systems, the operating system often gives higher priority to interrupt
handling routines than that given to application tasks, because interrupt handling
routines usually deal with 1/O devices that have real-time constraints, whereas most
application programs in timesharing systems don’t. In the context of a real-time
system, this assumption is certainly invalid because the application task delayed by
interrupt handling routines could in fact be more urgent. Therefore, interrupts are
a form of event driven scheduling, and, in fact, the Spring system can be viewed
as having three schedulers: one that schedules interrupts (usually immediately) on
the front end processors in the I/O subsystem (what was discussed above), another
that is part of the Spring kernel that guarantees and schedules high level application
tasks that have hard deadlines, and a third which schedules the OS tasks that execute
on the system processor. Interrupts from the front end I/O subsystem to the Spring
kernel are handled by the system processors so this doesn’t affect application tasks. In
other words, I/O interrupts are treated as instantiating a new task which is subject to
the guarantee routine just like any other task. The system processor fields interrupts
(when turned on) from the I/O front end subsystem and shields the application tasks,
running on the application processors from the interrupts.

It should be obvious from the discussion in this section that the Spring kernel is
under development [17]. We expect to complete an implementation by the Summer
of 1989. To reduce implementation time and costs, we are building the kernel by
modifying the commercially available VRTXTM real-time kernel. Modifications are
particularly needed to substitute our scheduling algorithms for the priority-based
algorithm embedded in VRTX and to implement resources in a way that allows
for segmentation and preallocation. In addition, enhancements will be needed to
allow decentralized scheduling and execution in an environment where each node is
a multiprocessor. The slow front end processing can be supported by the VRTX
kernel itself and its IOX package. This is acceptable to us because the front end is
relatively slow, not critical, and need not be very flexible. Since fast I/O typically
requires periodic processing, nodes executing a simple version of the Spring kernel
(in particular, containing the kernel modules that deal with periodic tasks) can serve
the needs of fast I/0.

Clearly, in the design of the Spring Kernel, we have made a number of assump-
tions, in particular, those that relate to resource preallocation, handling slow and
fast I/0, and the handling of interrupts. Our design decisions are also based on the
assumption that the possibility of appropriately segmenting resources will give us a
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means by which to tame worst-case behavior. Experience with the kernel will help us
understand the implications of these assumptions, as well as indicate whether they
are reasonable.

7 Tool Support for Building Time-Critical Sys-
tems

Based on the discussions so far, we can classify the tools required as follows:

A hardware testbed to implement, test, and evaluate the kernel (including the
scheduling algorithm).

A software testbed for evaluating alternative kernel algorithms, specifically,
scheduling algorithms.

A software testbed for evaluating competing architectures for time-critical sys-
tems.

A repertoire of tools for designing time-critical applications.

The software testbeds will help us study the following:

o The effect of different segmentation strategies.

e The effect of using different types and numbers of processors to construct a
multiprocessor node.

o The effect of different types of node interconnection structures as well as the
protocols appropriate for them.

o The effect of the use of different scheduling algorithms appropriate for the
different system configurations.

The effectiveness of a particular choice will be measured with respect to its impact
on system performance, predictability, reliability, and flexibility. We see the testbed
as serving a number of purposes. We discuss some of these now.

As opposed to a general timesharing system, architecture and operating system

support for time-critical systems will be closely tied to the applications. Hence the
testbed can be used to choose the appropriate mix of architecture and operating
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system components that is suitable for a particular (set of) application(s). Results
of experimentation with the testbed will also be used to develop rules for segmenting
resources, in particular, memory, secondary storage devices, as well as buses and
channels connecting processors and nodes respectively. Experience with structuring
applications using the testbed will assist us in building a set of rules and constraints
that can then be used by the application development tools to be discussed next.
Finally, observations made in the course of the experimentation will give us a wealth
of information that will be used to produce a knowledge base to drive the meta-level
control component of the Spring kernel.

This testbed is operational, but it is continually being enhanced. This testbed
allows us to experiment with different scheduling strategies, both local and global, and
study the impact of different parameter settings on the performance of the scheduling
algorithm.

Let us now discuss the tools needed for designing tasks with predictable behavior.
These tools will assist designers in the building of applications based on a set of
constraints and rules that are geared to produce predictable systems with enhanced
performance. The rules and constraints are related to the structuring, i.e., units of
segmentation, of resources. They are designed to minimize the variations in task
execution time and minimize the resource requirements of task components. Thus,
the rules and constraints will help a designer to take a single task that requires
different resources at different times during its execution and has wide variations
in its execution times and divide it into a set of subtasks related by precedence
constraints; a subtask will request resources that it needs during most of its execution;
also, each subtask will have minimal variations in its execution time. Clearly, the
rules and constraints are related to the types of resources in a distributed system,
their segmentation properties, and the manner in which the kernel allocates these
resources, i.e., schedules the tasks.

We have already formulated a set of preliminary rules and constraints which we
plan to refine as we implement and experiment with the Spring kernel. We also
envisage further rules as we apply existing rules to structure simple applications and
study their predictability and performance properties both by implementing them
using the Spring kernel and by experimenting with the testbed discussed earlier.

It is also possible to package our various real-time scheduling algorithms and base-
line scheduling algorithms into a design tool. This tool would then provide system
designers with timing information about a particular system configuration and work-
load. Continued modifications of the configuration and re-use of the tool would help
converge on the proper system configuration needed to meet the timing requirements

of the system. Due to lack of manpower we have not actually implemented such a
tool.
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8 Time Constrained Communication

Distributed real-time systems will have multiple, distributed tasks cooperating to
achieve the application’s goals. An important issue in having such tasks satisfy their
timing constraints is the ability to deliver messages on-time. Such message trans-
mission must be integrated with scheduling. This is one of the major open problem
areas for distributed, real-time systems referred to as the end-to-end problem. For
example, process A might want to communicate with process B which is physically
remote. The entire step by slep process of running process A, executing the send
message primitive, invoking the OS, physically transferring the message, receiving
the message, invoking the receiving task, processing the message, and replying all
must be accomplished within a deadline. This requires an integrated scheduling and
resource allocation policy. Our approach enables such a policy to be employed.

There are two broad ways of dealing with scheduling in the presence of message
delays. The first is based on utilizing information about the maximum delay that a
message will encounter [8]. Thus, if the nodes in a distributed time-critical system
are connected by a local area network and the channel access protocol is designed to
guarantee message delivéry within bounded time then communicating tasks can be
scheduled assuming bounded message delivery delays. The second method to deal
with scheduling tasks in the presence of message delays is to compute a deadline
for each message delivery from the deadline requirements of the tasks; use a com-
munication protocol that transmits messages so that they are delivered before their

deadlines.

We have already developed two protocols appropriate for time constrained com-
munication. One called the Virtual-Time CSMA protocol [31] belongs to the class of
Inference avoidance protocols; the other is a window protocol [34] and belongs to the '
class of Inference seeking protocols. The protocols attempt to minimize the num-
ber of messages lost, i.e., minimize the number of messages that do not reach their
destinations before their deadlines. Both protocols have been thoroughly evaluated
via simulation to determine their appropriateness for real-time systems with different
system and application characteristics. While these protocols are definitely better
than those that do not take message deadlines into account, they are not sufficient
to handle the types of messages that occur in real-time systems. For example, these
protocols have to be extended to handle critical messages, i.e., those messages which
if lost, may lead to a catastrophy. We are currently investigating integrated proto-
cols which guarantee that critical messages will not be lost while minimizing loss
for non-critical messages. This will maximize the value, to the system, of messages
transmitted and at the same time increase channel utilization. Also, it still remains
to better integrate these new protocols with the cpu scheduling algorithm.
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9 Real-Time Transactions

It is accepted that the synchronization, failure atomicity, and permanence properties
of transactions aid in the development of distributed systems. Many computations
that occur in real-time systems possess these properties. However, little work has
been done in utilizing transactions in a real-time context. Hence we have been
looking at the use of ideas from Spring in the database context. Specifically, our
current work in this area involves the development of an integrated approach for
supporting real-time transactions. The following topics are being investigated:

e Concurrency control protocols,
e Recovery techniques,
¢ Deadlock resolution strategies, and

e CPU scheduling algorithms for transactions.

All the algorithms being developed are to be implemented, evaluated and compared
on an existing distributed database testbed, called CARAT. CARAT contains all the
major functional components of a distributed transaction processing system (transac-
tion management, data management, log management, communication management,
and catalog management) in enough detail so that the performance results will be
realistic. CARAT runs on a 5-node distributed system. To support real-time trans-
action research we have expanded the CARAT testbed into a distributed real-time
database testbed called RT-CARAT.

We have already developed four access control protocols based on locking and
one based on forward optimistic concurrency control. The first locking protocol is
based on the notion of a virtual clock, the second on a pairwise comparison of value
functions, the third on separating deadlines and criticalness, and the fourth based
on assuming that the system has an estimate of a transaction’s execution time. For
the locking based protocols we have already developed versions which can prevent
deadlock rather than relying on deadlock detection [18], [5]. Evalnations of these
protocols is currently in progress with encouraging preliminary results. Through
further studies, we plan to understand the combined effect of concurrency control
and recovery protocols, CPU and I/O scheduling algorithms, deadlock resolution
strategies, and time constrained communication protocols on the performance of
real-time databases.
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10 Support for Real-time AI Applications

Many next generation real-time systems will include one or more expert system com-
ponents or other Al programs. For example, applications such as avionics, the space
station, process control, command and control, and robotics are all investigating this
approach. Consequently, a significant amount of research is now being conducted
in the area of real-time Al (RTAI). However, to date this work has not examined
scheduling and resource allocation issues. Ignoring these issues can seriously affect
the timing properties of the system.

To meet the requirements of Al applications, the operating system should have
the following abilities:

e The ability to dynamically change criticalness, timing requirements, resource
needs, precedence constraints, and even the structure of a computation, possibly
as a function of various conditions.

e The ability to plan future execution times of functions that may subsequently
change in various complicated ways.

o The ability to perform tradeoff analyses.

e The ability to use semantic information supplied by the application program
and to return appropriate system information to the application.

To support Al applications, the Spring OS must therefore contain primitives to
handle the requirements listed above as well as to support sophisticated task sets
[24]. It must do this in such a manner as to make the system predictable, especially
with respect to its timing properties. For Al applications, we plan to extend the
Spring operating system with a Time Planner (this could consist of multiple versions
of the local scheduler being invoked for different purposes, i.e., to suggest tradeofis,
to perform planning of future schedules for tasks or to suggest the causes of the
problems in the current plan), and a Condition Monitor (this implements a general
(situation,action) pairs capability), various Demons (inclnding possibly a garbage
collector that runs in parallel). The Meta Level Controller discussed earlier will be
especially useful for complex applications such as Al

The scheduling algorithm approach we are proposing for Al applications is an
extension of the basic algorithm. The extension can be viewed from different per-
spectives. The original algorithm collects all application tasks that have been guar-
anteed to make their deadlines into a system task table (STT) which is ordered for
dispatching. Executing the tasks in this order, guarantees that deadlines will be
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met. While we still maintain this dispatch list, we add other dimensions to the table,
each additional dimension representing a different way of looking at the system (i.e.,
different scheduling plans and/or alternatives). These other dimensions are required
due to the increased complexity of tasks, task interactions, and task dependencies as
well as due to the ever changing environment and system conditions. The scheduler
can be invoked on one or more dimensions to aid in planning future actions by ob-
taining tradeoff analyses among alternatives. The invocation of the scheduler as a
time planner can occur from the application level, or from the OS level via simple
conditional events or more complicated situation-action pairs.

Clearly, our examination of necessary system support for Al applications is in its
initial stages. We propose to pursue these ideas further by focussing on one or more
typical Al applications.

11 Formal Specification and Verification of Real-
time Systems

We have recently embarked upon the development of a formal method specifically
to aid in the specification and verification of real-time systems. Formal methods
developed to reason about sequential and even concurrent processes often permit
generality and computational power that obscure the fundamentally limited resources
of any digital computer — limits that designers of real-time systems cannot ignore.
Modal Transition Arithmetic (MTA) is being designed to address this problem; we are
especially interested in developing modelling and proof techniques that are applicable
to systems with large state spaces.

MT A combines elements from the algebraic theory of finite state automata, modal
logics and primitive recursive arithmetic [25]. The system to be verified is modelled
as a product of structured finite state automata. The key concepts here, in addition
to the well-understood finite-state automata, are structured automata and product of
automata. Structured automata allow us to capture the encapsulation and layering
typical in compnter systems. Also, this allows us to tame the state-space explosion
problem that haunts typical automata-based approaches. Product(s) of automata
are used to capture the concurrency inherent in most non-trivial computer systems.
We specify and analyze these machines via a modal extension of primitive recursive
arithmetic. There are two modalities: One corresponds to paths in a finite state
machine, and the other corresponds to factors of algebraic products of state machines.
The first modality permits us to reason about the dynamics of state change, and the
second permits us to reason about systems composed of layers of state machines.
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Modal Grammars are used to indirectly specify finite state systems. Specifications
via grammars is especially usefnl for systems that are too large and complicated to
be handled with traditional methods like state diagrams. This is because grammars
allow us to precisely specify automata while avoiding the tedious enumeration of state
sets or manipulation of regular expressions that have traditionally plagued finite state
methods.

The difficulties of specification and verification are compounded when higher and
lower levels of specification are given in different languages. We define a relatively
simple syntax in which one can make assertions about the current state, states of
factor automata, enabled transitions and future states. Within this formal syntax we
can define quite high level operators including analogs of the operators of branching
time, interval and real-time temporal logics.

Time is modeled through the use of tick transitions. Timing constraints can be
concisely imposed using tick transitions, e.g., permitting the traversal of a transition
labelled, say, a only if at least (or exactly or at most) n ticks have been traversed since
the previous a transition was traversed. This construction and our use of products of
automata also make it possible to describe systems composed of objects that change
state at different rates or at different granularities of time.

We are currently working on MTA to better understand the algebraic proper-
ties of the model structures, to further develop the proof mechanism, and to build
automated tools needed to prove properties of complex systems. Specifically, the
following topics are being investigated:

e Implications of, and techniques for hierarchical proofs.

e Axiomatization of M TA and relative advantages of semantic and syntactic proof
methods.

o Integration of model checking and proof theoretic paradigms.

e Complexity of answering queries about state machines specified by MTA gram-
mars.

o Complexity of proof procedures and the effect of restricting the power of the
arithmetic base on the complexity of proofs.
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