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Abstract

Gradient-based approaches to the computation of optical flow often use a minimization
technique incorporating a smoothness constraint on the optical flow field. In this paper,
we derive the most general form of such a smoothness constraint which is quadratic in
first derivatives of the flow field, and quadratic in first or second derivatives of the grey-
level image intensity function, based on three simple assumptions about the smoothness
constraint: (1) that it be expressed in a form which is independent of the choice of Cartesian
coordinate system in the image; (2) that it be positive definite; and (3) that it not couple
different components of the optical flow. We show that there are esgsentially only four such
constraints; any smoothness constraint satisfying (1,2,3) must be a linear combination
of these four, possibly multiplied by certain quantities invariant under a change in the
Cartesian coordinate system. Beginning with the three assumptions mentioned above, we
mathematically demonstrate that all the best-known smoothness constraints appearing in
the literature are special cases of this general form, and, in particular, that the “weight
matrix” introduced by Nagel is esseniially (modulo invariant quantities) the only physically
plausible such constraint. We also show that the results of Brady and Horn on “rotationally
symmetric” performance measures for surface reconstruction are simple corollaries of our
main results, and in fact that such performance measures are invariant under the larger

group of transformations consisting of rigid motions of the plane.



1 Introduction

The computation of optical flow from a pair of frames in a dynamic image sequence is
an important problem in computer vision. One of the major techniques that has been
developed to address this problem is to minimize the sum of two functionals, one based on
the (local) intensity constancy constraint, and the other on a more global feature of the
optical flow field, usually called a smoothness constraint.

It is generally known that the local intensity constraint does not uniquely determine
the optical flow vector U at a point in the image. Along linear structures in the image
only the component normal to the local edge direction may be determined, and at points
in homogeneous areas even that information may not be available [Anan87).

The simplest example of this gradient-based approach is the work of Horn and Schunck

[Horn81). Here, the temporal variation 81 /8t of the grey-level image intensity function

I(z,y,t) at a fixed point in the image, and the spatial variation VI of I at a fixed

time are measured. These two quantities are related (under various assumptions—see
[Horn81,Schu84a.,Schu84b,Horn87]) to the optical flow U (z,y,t) via an image intensity
constancy constraint:
= +0-VI=0, (1)
or in matrix notation,

L+UTvI=0. (2)

Here we have defined the matrix UT = (U.,U,) = (u,v), and VT = (I-,1,); we denote
the fact that some object is a matrix by using the corresponding bold face symbol. We

represent the derivative of I with respect to the quantity ¢ by I, = OI /6¢.
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The single equation (2) is not, of course, sufficient to determine the quantity U, since
U has two components. Hence, it is clear that some additional constraint must be used to
determine the optical flow field. Such a constraint typically demands some sort of consis-
tency between neighboring flow vectors, i.e., it involves derivatives of U. Such constraints
are usually called “smoothness constraints.”

A significant problem for such an approach, however, is that t.here~ are situations, such
as at motion boundaries, where neighboring flow vectors need not be consistent in this
sense. Smoothness constraints will therefore be expected to encounter difficulties near
such boundlaries. Indeed, the physical motivation for the work of Nagel and Enkelmann
on “orientedl smoothness constraints” [Nage86] was to try to supress such a constraint in
the direction perpendicular to such boundaries.

Because of the corrupting eflects of noise, aliasing, and other artifacts of the measure-
ment process (as well as for the cases where the intensity-constancy constraint (2) is not
valid even in the ideal case), it is not ordinarily appropriate to express this smoothness
constraint as an additional equation, since these corrupting influences will customarily pre-
vent (2) from being satisfied exactly anyway. This suggests an approach which looks for
a flow U which minimizes some combination of the degree to which U fails to satisfy the
intensity constancy constraint (2), and the variation of U from “smoothness.” There is no
phy’sical reason why such a U should be the “correct” flow which gave rise to the measured
sp"i;,tiotemporal image gradients, but we would expect that except in pathological cases, U
f,should approximate the “correct” U.

The approach that has usually been taken is to minimize, over the space of all possible



optical flow fields U, a functional II[U] given by

H[U] = /zim dz dy + /zum dz dy, (3)
where the integrals are over the image. Here
Sim = (I + UTVI)", (3)

and I, is some quantity related to “smoothness.” Since upon integration the quantity X,
yields a number related to the deviation of the flow field from “smoothness,” we will call
it the smoothness density or, for simplicity, simply the density. Brady and Horn [Brad83]
discuss this approach in some detail, and cite psychophysical evidence that something very
like this is performed by some parts of the human visual system.

We note that the reason for choosing ¥, as a quadratic funct.ional (rather than, say,
a quartic) is for mathematical simplicity only—a quadratic functional is convex and hence
unimodal. In 6ther words, such functionals are manifestly positive definite (for real func-
tions), a desirable feature of any minimization approach.

The choice for I,,, is less obvious, and has less physical justification, since “smooth” is
a vague concept. But, as we have stated, smoothness densities usually involve derivatives
of U. The density should also be positive definite.! Clearly, it is simplest to choose Ly
to involve only first derivatives of U (although other choices could he—and have been—-
made). We will call such constraints first degree smoothness consirainis.

We will confine ourselves to first degree constraints in this work, leaving the question

of second or higher degree constraints (such as the second degree constraint considered by

'The requirement is actually that the quantity be bounded from below, so as to guarantee the existence
of a minimum. But any such quantity can be made into a positive definite function by adding an appropriate
constant. Since the constant does not depend ou U or its derivatives, both quantities give the same Euler-
Lagrange equations. Hence we may, withoul loss of generality, assume the functional to be positive definite.



Anandan and Weiss [Anan85]) to the sequel to this work [Snyd89)]. Smoothness densities
have usually been chosen on the basis of either simplicity, or of heuristic arguments. In this
paper, we proceed in the opposite way by defining the smoothness density mathematically,
and then deriving all possible such smoothness densities.

We therefore consider the most general form of such a quadratic first degree density:

Som = 3, fH8:ULB;U (5)
ijkt

where ,7,k,£ = 1,2, with 8, = 8 /0z;, 2, = 2, 22 = ¥, U= (U1, Us) = (u,v) is the optical
flow vector, and f";‘ does not depend on U or its derivatives.

In order to make life bearable, we also introduce the Einstein Summation Convention:

if in any product an index is repeated, it is to be understood that the index is to be

summed over from 1 to 2. We therefore rewrite (5) as
Esm = ikjlaiUlcajUb (6)

Since i, j, k, and £ are repeated indices, it is understood that in (6) they are to be summed
over. In the event that repeated indices in a product are not to be summed over, we will
denote that by the phrase “(no sum)” next to the expression.

We will see in the next section that all of the smoothness densities so far proposed (see,

e.g., [Horn81,Nage86]) satisfy the following three conditions:

1. They are invariant under a change of the Cartesian coordinate system in the image

plane.

2. They are positive definite



3. They do not mix different components of U, i.e., the components of U are decoupled

in (6).
We discuss the significance of each of these conditions in turn:

1. The condition that the smoothness density be invariant under a change of the Carte-
sian coordinate system of the image plane is equivalent to stating that the value
obtained for the integral of X, over the image plane is independent of the coordi-
nate system chosen for its evaluation. This seems eminently reasonable: the image
itself has no preferred Cartesian coordinate system, so why impose one on it? This
is equivalent to the condition that the Euler-Lagrange equations which follow from
using this smoothness density are covariant under a change in coordinate system
(i.e., that they have the same form in all Cartesian coordinate systems). We show in
Appendix A that our condition is equivalent to the requirement that the density X,
transform as a scalar under the action of the semi-direct product group ISO(2) of
rigid transformations of the plane—the Euclidean group of the plane (see App. A).
The situation in this respect is like the requirement of Galilean or Lorentz invariance
in physics. Requiring that fundamental objects (like the Lagrangian) be invariant un-
der some group of transformations results in the covariance of the resultant equations

of motion under that same group of transformations.

2. The requirement of positive definiteness for 3, is necessary to guarantee that [1|U]

has a minimum, as discussed previously.

3. The requirement that the components of U be decoupled in X, has no physical

basis I am aware of. We consider the effect of such a coupling in [Snyd89]. This



requirement is equivalent to demanding that Z,,[U} = Tom[t] + Zemlv]-

In the next section, we elevate the properties (1,2,3) to the status of requirements for
any smoothness constraint, and discuss the implications of this for the possible smoothness
densities.

We believe that the demand of invariance under a change in the Cartesian coordinate
system should be made not only of quantities like the smoothness density, but for any

functional. We state this here as the “Zeroth Law of Computer Vision”:
The 0 Law of Computer Vision

Any functional having as domain functions defined over the image plane must be in-

variant under ISO(2)

2 The Definition of a Smoothness Density

2.1 General expression for the smoothness density

We will consider only smoothness densities of the form (6). We will require Z,m to satisfy

the following Requirements:

I. X, is invariant under ISO(2).
II. X, is positive definite.

IIL. The structure of I,y is such that the different components (u,v) of the optical flow
field U are decoupled in all Cartesian coordinate systems. That is, Ly can be written

as the sum of two integrands, one which depends only on u, and the other only on v.



3. They do not mix different components of U, i.e., the components of U are decoupled

in (6).
We discuss the significance of each of these conditions in turn:

1. The condition that the smoothness density be invariant under a change of the Carte-
sian coordinate system of the image plane is equivalent to stating that the value
obtained for the integral of ¥,,, over the image plane is independent of the coordi-
nate system chosen for its evaluation. This seems eminently reasonable: the image
itself has no preferred Cartesian coordinate system, so why impose one on it? This
is equivalent to the condition that the Euler-Lagrange equations which follow from
using this smoothness density are covariant under a change in coordinate system
(i.e., that they have the same form in all Cartesian coordinate systems). We show in
Appendix A that our condition is equivalent to the requirement that the density ¥,

transform as a scalar under the action of the semi-direct product group ISO(2) of

rigid transformations of the plane—the Euclidean group of the plane (see App. A).

The situation in this respect is like the requirement of Galilean or Lorentz invariance

in physics. Requiring that fundamental objects (like the Lagrangian) be invariant un-

der some group of transformations results in the covariance of the resultant equations

of motion under that same group of transformations.

2. The requirement of positive definiteness for Lsm is necessary to guarantee that nuj

has a minimum, as discussed previously.

3. The requirement that the components of U be decoupled in X, has no physical

basis I am aware of. We consider the effect of such a coupling in [Snyd89]. This



requirement is equivalent to demanding that Z,[U] = Zym[t] + Zem[v].

In the next section, we elevate the properties (1,2,3) to the status of requirements for
any smoothness constraint, and discuss the implications of this for the possible smoothness
densities.

We believe that the demand of invariance under a change in the Cartesian coordinate
system should be made not only of quantities like the smoothness density, but for any

functional. We state this here as the “Zeroth Law of Computer Vision”:
The 0** Law of Computer Vision

Any functional having as domain functions defined over the image plane must be in-

variant under ISO(2)

2 The Definition of a Smoothness Density

2.1 General expression for the smoothness density

We will consider only smoothness densities of the form (6). We will require Lom to satisfy

the following Requirements:

I. . is invariant under ISO(2).
II. 3, is positive definite.

III. The structure of X, is such that the different components (u,v) of the optical flow
field U are decoupled in all Cartesian coordinate systems. That is, Iy can be written

as the sum of two integrands, one which depends only on u, and the other only on v.



We have seen that requirement I is necessary in order that the integral have a unique
value, independent of the coordinate system, for a given optical flow and image intensity.
Requirement II is necessary in order to ensure that the smoothness integral have a min-
imum. Requirement III is not in any sense necessary, but it is characteristic of all the
smoothness densities so far proposed; it is equivalent to assuming that the two components
of the optical flow are “smoothed” independently.

Requirement I has as an immediate consequence that the integrand Z,, = f must be
an ISO(2) scalar, i.e., that f'(r') = f(r), where r' = Rr + t; here R = R(#) € SO(2) is the
2 x 2 rotation matrix, and t is the translational vector (see Appendix A).

We now use two of the three requirements to write the smoothness density (6) in a

more convenient form. We first use requirement III to see that f must be of ‘the form:

f = filj]aiUlale + f226,U,0;U,

)

= Ai; 8:U,8;U, + Bi; 8;U28;Us, (7)

where UT = (U;,U,). In order that this structure be valid in any Cartesian coordinate
system, it follows that
A;; = B;; = F;. (8)
This can easily be seen as follows.
We note that under an 1SO(2) transformation parametrized by and T, U and V
transform like
U—U=RU, V—V =RV, 9)

which means that

Va' = cos§RVu+sinf RV,



Vv = —sinfRVu+cos@ RVv.
Therefore,
VAV + VIiBVy = (Vu')TA' (V') + (V') B(V'Y)
= V% [RT(A’ cos?6 + B'sin’ )R] Vu

+ V% [RT(A'sin’0 + B’ cos? 9)R| Vv

+ 2sinfcosd V7u [RT(A’ - B')R] Vv (10)

The absence of the last term for all # implies that A’ = B'. By taking 8 = 0, the claim (8)

is established.

We can use (10) to show more, however. Using (8) in (10), we see that in terms of F:
F' = RFR’. (11)

That is, F transforms as a second-rank tensor under 1SO(2).

We see that f may be written in the form

f = F;(8:U,0;U, + 8;U;0;U,)

= F"j (B;U,,B,-U,,) = 8.-U;,F.-,-6,-U,,.
Defining the matrix @ = VU7, having matrix elements (R?),,,, = OmUn, we see that

f = (n)ln‘(F)ij (n)jk= (Qan)kk (12)

tr (ATFQ), (13)

where tr (A) = A;; denotes the trace of the matrix A.

10



We will call the matrix F the interaction for the smoothness density f. This is appro-
priate, since the structure of F determines how the various derivatives of U combine (i.e.,
interact) in the smoothness density. Nagel [Nage86) was the first to write the smoothness
density in this form. We see here that this is a simple consequence of Requirements I and

III.

2.2 Properties of F; Scalar— and Tensor-based Interactions

Since 1 is the outer product of two objects that transform as a vector, we see (cf. Appendix

A) that © (and hence 01T) behaves, under ISO(2), as a second rank tensor:

. — RAaRT, (14)

af — ROTRT. (15)

It follows from this transformation of {2 and Q7 and the requirement that f be an ISO(2)
scalar, that the interaction F must also transform as a second rank tensor, as we showed
previously.

Furthermore, since
tr [QTFQ) = tr[QTFQJT = tr QTFTA), (16)

it follows that only the symmetric part of F contributes to the trace. As a consequence

we lose no generality by limiting ourselves to symmetric interactions:
F = F. (17)

Since both the identity matrix 1, and the antisymmetric matrix J = R(w/2) commute

with R (see Appendix A), thenif F = o1, or F = 0J, where o is an 1SO(2) scalar, F will

11



transform like a “tensor” (11). But since F is proportional to either 1, or J, both of which

commute with R, it is also (in this case) true that
F — F' = RFR” = FRR” = F, (18)

i.e., that F transforms like a scalar. Such a “tensor” interaction is a possible interac-
tion that gives rise to an invariant smoothness density. We therefore have two classes of

interactions which satisfy requirements I and III:

o “scalar—based” interactions, in which the interaction F commutes with R, i.e.,

is of the form F = o1, or F = ¢J, and hence transforms like (18), where o is an

ISO(2) scalar,

¢ “tensor—based” interactions, in which F does not commute with R, and trans-
forms like (11) under ISO(2).

‘We emphasize that since J is antisymmetric, and only the symmetric part of F con-

tributes to tr [ﬂTFﬂ], the only “scalar-based” interactions we need consider are those

proportional to 1,, with proportionality factor an 1SO(2) scalar. The smoothness density

which results from such a scalar-based interaction will therefore be a multiple of
Bem = tr [07TQ] = w2 + ul + v2 + v;, (19)

which is just the smoothness density originally proposed by Horn and Schunck [Horn81].

Any scalar-based interaction, therefore, will give rise to a Horn and Schunck-like
smoothness density, modulated by an overall ISO(2) scalar factor. Such an interaction
smooths U isotropically. It cannot, therefore, give rise to any “orientation—-dependent”

smoothness constraints (in the sense in which it is used by Nagel [Nage86)).

12



Looking ahead, we prove (Corollaries C.2.1 and C.3.1 of Appendix C ) that there is
only one independent scalar-based interaction quadratic in 1** derivatives of the image
intensity I, and only two independent such interactions quadratic in 2" derivatives of I ,
as was originally shown by Brady and Horn [Brad83]. (Note, however, that they showed
this only for the rotational subgroup SO(2) of ISO(2).)

In the rest of this work, we will not consider scalar-based interactions, since they are

trivially related to the Horn and Schunck interaction.

3 The Determination of All Possible Smoothness Den-

sities Quadratic in First or Second Derivatives of I

Since we have assumed that all the dependence of I, on derivatives of the flow field is
contained in the matrix 2, it follows that in the absence of any significant pre-processing
such as grouping or model recognition, the interaction F can only depend on the grey-level
image intensity function I(z,y). If we are to limit ourselves to tensor-based interactions,
then we must construct out of I and its derivatives objects which transform like ISO(2)
tensors. This is done in the next two Sections for the case of 1* and 2" derivatives of I.
The reader should consult Appendix A for the background necessary to understand the

arguments of these sections.

3.1 Interactions that are Quadratic in First Derivatives of I

Since I is a scalar, it follows that therc are precisely two vectors which can be constructed

from the (two) first derivatives of I, namely, VI and its dnal vector JVI = V1. It is shown

in Theorem C.1 of Appendix C that these are the only two independent vectors which can

13



be so constructed. Now a second rank tensor must, in particular, have two indices (the
row and column of the matrix which represents it). This means that the minimal tensor
interaction must be quadratic in first derivatives of I. We know from Appendix A that if
A and B are vectors, then the outer product ABT transforms as a tensor. Consequently,

we can construct four tensors that are quadratic in 1** derivatives of I:

rr Ll
T = = T= x cly
VIV = K=K (I,_Iy 2 ) (20)
o ey (LI, I
VIV = JK= ( “r ol (21)
_ . ]2
VIV'] = KIT=(K) = ( '”'ﬁy L ) (22)
12 1L,
o~ P — 2 —
VIvT = R=oka*=( b ~Lb (23)
LI, I’

The tensor K = JKJ7 is called the dual of the tensor K. Since J = R(r/2), we see that

K is just the tensor K, rotated by 90°. We show in Theorem C.2 of Appendix C that these
are the only second rank tensors not proportional to 1, or J which are quadratic in the
1% derivatives of I.

Therefore, the quantities (20)—(23) constitute a complete list of all the tensor-based
interactions consistent with Requirements I and IIL

We now impose the ancillary requirement (discussed in Section 2) that the interaction
F be symmetric. Since K and K are symmetric, they hoth pass this test. The interactions

JK and KJ7, however, are not symmetric. Since they are transposes of each other, it

14



follows that they have the same symmetric part, namely (one-half of):
JK + (IJK)" = JK + KJT = JK - KJ = [J, K], (24)

where we have used JT = —J. There are, therefore, precisely three independent tensor-

based interactions quadratic in 1* derivatives of I:
K, K, [J,K] (25)

We have used Requirements I and III to restrict the number of possible interactions
to three in this case, but we have not yet demanded Requirement I1, that the density be
positive definite. This question is addressed by the following, which are proved in Appendix
B:

Theorem B.1 Let © = tr [QTFQ]. Then O is positive definite if and only if tr F > 0

and detF > 0.

Corollary‘ B.1.1 If F is a real, traceless, symmetric 2 x 2 matrix different from 0.

Then the associated © = tr [QTFQ] is not positive definite.

Corollary B.1.2 If F = M?, where M is a symmetric, real 2 x 2 matrix different from

zero, then © = tr [QTFQ] > 0.

It is easy to see that the trace and determinant of K and K are the same, and that

rK = tr(VIVI) = tc(VTIVI) = VTIVI = ||VI|? > 0, (26)
I LL\ .
detK = det(my 2 )_0. (27)

(We show in Section 5.1 that the singularity of K and K is because both are projection

operators.) Hence, both K and K give rise to positive definite densities. On the other

15



hand, the commutator of two (finite rank) matrices is always traceless, and since 9,K]
is symmetric by construction, [J,K] vis a symmetric, traceless, real matrix. Hence, from
Corollary B.1.1, the associa.tgd density is not positive definite.

We summarize these results in the following theorem:

Theorem 1 If a smoothness density -satisﬁes Requirements 1, I, and III, and is
quadratic in 1* derivatives of I, then the tensor-based interaction which gibea rise to
it must be of the form:

F=0K-+ azﬁ,

where a; and a; are constants.

We note that our results here are slightly more general than they appear at first sight.
Namely, we can construct tensors of order 2n in 1* derivati;res of I by simply cénstructing
products of n tensors quadratic in 1** derivatives of I, i.e., K,JK, KJT, and K. It can be
shown that su.ch tensors of order 2n in 1* derivatives of I are just equal to |VI**~? (an
ISO(2) scalar) times one of the original four ténsors.

This is easy to show. We first denote the four tensors (20)—(23) as:
K, =K; K,=JK; K;=KJ7; K,=K. (28)
Each of these four is a product of the form
K; = A,B;T (nosum),

where A; and B; are either VI or VI. A typical term K.K; quartic in 1* derivatives of

I is then of the form

(A:B.T)(A,;B;T) = Ai(B:"A;)B;T (no sum), (29)

16



where B;T is either VT or GTI, and A; equals either VI or VI , depending on what 3

and j are. The term (B;TA;) in (29) is therefore simply a number, equal to one of the

following:

viIvI = IV =|vIpp,
VIV = VIVI=0

consequently, the product K;K; either vanishes identically (a trivial ISO(2) scalar), or is

equal to

K.K; = |VI|? A;B,".

But A;B;T must be one of the original four K;'s given by (28). It is then obvious that
a non-vanishing tensor of order 2n in 1" derivatives of I, given by a product of n of the

K;'s, must be of the form
K; K, - K, =|VI|*"?K,,

for some k, which is exactly what we wanted to prove. We emphasize, however, that we

have not shown that all tensors of order 2n in 1% derivatives of I are of this form.

3.2 Interactions Quadratic in Second Derivatives of I

In this section, we consider interactions which are quadratic in second derivatives of [ , Le.,
F is of the form

F = A("""‘)aiajIB,,a,I, (30)

where A7) are matrices (not matrix elements!).

17



We can construct such tensors by noting that the quantities

vvll = L= ( ;y ;::) (31)
VT = JL= ( e -Iyzi,,)’ (32)
vV = LJT=(2’:: j:) (33)
VYT = JLIT=L-= ( _I;”y 'Iiy) (34)

are all tensors which are linear in 2"¢ derivatives of /. Hence, the 4 x 4 = 16 products of

each of these tensors with each other are a set of tensors which are quadratic in 2" order

derivatives of I. Let us denote the above tensors by
L,=L; L,=JL; Ly=LJ"; L,=L. (35)

Upon computing all the possible products {L;L;;,7 = 1...4}, we find that there are only

8 different ones, given by:
L2, L2 J1?, L7, LL, LL, JLL, LLJ".
However, one easily checks from the explicit form of L and L that
L =(detL) L7,
and hence that

LL = LL = (det L)1,; JLL = —LLJT = (det L)J.

18



Since det L is an obvious ISO(2) scalar, we see that these are in fact scalar-based interac-
tions, and not tensor-based. We therefore drop them from further consideration.

This leaves the four tensors:

L, 12, JL?, L4". (36)
We have no a priori guarantee, however, that all second rank tensors quadratic in 2" order
derivatives of I can be obtained in this way. That is, the same question of completenessv
arises here as it did in the previous section. Theorem C.3 of Appendix C, however, tells
us that the arbitrary second rank tensor not proportional to 1, or J , and quadratic in
274 order derivatives of I, is a linear combination of the four tensors (36). We therefore are
assured that the only possible tensor-based interactions are those we have already found.

As in the previous section, the tensors JL? and L2J7 are transposes of each other and

hence have the same symmetric part, which is easily seen to be
T
I+ (JL?) = (3,17,

It is also easy to see that L? and L? are symmetric.
We therefore have the following set of tensors which are symmetric, and which satisfy
Requirements I and III:
L’, 1L, (3,17,
We now impose the requirement that the corresponding density be positive definite (Re-
quirement IT). An analysis identical to that for the set (25) shows that L? and L2 give
rise to positive definite densities, and that (J,L?| does not. Hence, there are only two
interactions which are quadratic in 2" derivatives of I and which satisfy requirements I,

I1, and IIL This is summarized in the following theorem:

19



Theorem 2 If © = tr [QTFQ], where F is quadratic in 2" derivatives of I, is a

tensor-based smoothness density satisfying Requirements I, II, and III, then
F= aoLz + ali2,

where ap and e, are constants.

4 Relation to the Work of Brady and Horn on Per-

formance Measures for Surface Reconstruction

Our claim that a smoothness density (or any other object, such as the “performance index”
considered by Brady and Horn [Brad83]) be ISO(2) invariant generalizes the requirement
proposed by these authors that such objects be “rotationally symmetric.” We note that
the central mathematical results of Brady and Horn (Propositions 2 and 6 in [Brad83],
namely that I:' + I? is the only independent “rotationally symmetric” scalar quadratic
in 1* derivatives of I, and that (V2I)? (the “squared Lagrangian™) and 2+ 212, + I},
(the “quadratic variation”) are the only independent “rotationally symmetric” quantities
quadratic in 2" derivatives of I appear (with “rotationally symmetric” replaced by the
more general “ISO(2) scalar”) as immediate corollaries (C.2.1 and C.3.1) of our main
theorems. In addition, the cumbersome “tensor product” notation used by them is seen to

be unnecessary, and to have a more elegant expression in terms of the tensors and scalars

we have introduced here.

20



5 Relation to the Work of Nagel and Enkelmann

In searching for a smoothness constraint that would be more effective than the isotropic
constraint of Horn and Schunck at computing optical flow near motion and depth bound-
aries, Nagel [Nage83,Nage87], and Nagel and Enkelmann [Nage86], noted that a suppres-
sion of the constraint along image gradients and along one of the two principal directions
of the image intensity surface, would accomplish that task to a certain degree. Such a
smoothness constraint is called by them an “oriented smoothness constraint.” What we
have called the “interaction” is called by them a “weight matrix.” The interaction intro-
duced by them is essentially a linear combination of the tensor interactions K and L? we
introduced in Section 3. Indeed, the matrices F and C~' given in [Nage86] are given in

our notation by

F = K+pL? (37)
) F
c = detF’ (38)

They also considered other normalizations of the interaction F, such as dividing F by
tr F. It is clear th;;t since the determinant and trace of a tensor are ISO(2) invariant, such
normalizations are simply multiplication of a tensor-based 1SO(2) density by an ISO(2)
scalar. Similar comments obtain for the later smoothness constraint discussed in the recent
paper by Nagel [Nage88]. We note also that the smoothness constraint used by Hildreth
[Hild83) is shown by Nagel [Nage87] to be a special case of the smoothness constraint (38).

In the next two sections, we discuss the geometry of the four interactions we have

found, and show that the approach of Nagel and Enkelmann to “oriented smoothness”
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constraints is essentially the only possible one.

5.1 The Geometrical Interpretation of K and K

In this section we investigate the geometrical interpretation of K and K as smoothness
interactions. Our analysis makes more explicit the comments of Nagel [Nage86] on these

interactions.

We recall from (20) and (23) that K and K are defined as:

K=VIVT ; K=VIVI.

We define the unit vectors €, and €, as

vi
€ = — 39
T (39)
6 = L (40)
|V Ij]

These vectors may be defined everywhere that VI # 0 (which we assume in the rest of

this discussion). They form a local basis for the image plane:
€aT € = b (41)

Recalling that VI = JVI = R(n/2)VI, we see that & is a unit vector normal to the

isointensity contour, and €, is a unit vector tangent to the isointensity contour.

We see that K and K can be expressed as

K = |VI|’P, (42)

K = |vI|Q, (43)
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where the operators (matrices) P and Q are given by

é6é] = P=P7, (44)

&él = Q=QqT. (45)
It follows from (41) that the set {P, Q} obeys the algebra of a complete set of orthogonal

projection operators, namely:

P’ = P; Q'=Q
PQ = QP=0;
P+Q = lz. (46)

It is easy to show from this that the determinants of both P and Q are zero—which

is characteristic of any projection operator not equal to the identity. This explains our

statement in the previous section regarding the singularity of K and K.
Since {€;,€,;} form a local basis for the image plane, the effect of P and Q on any

vector field is uniquely determinecj by their effect on €, and €,, which is found to be

Pe, = € ; Pe;=0;

Qé = 0; Qe =¢. (47)
Any vector V can be expressed as the sum of a vector V, along €, (i.e., perpendicular

to the image isointensity contour), and a vector V|| along €, (i.e., parallel to the image

isointensity contour):

where

Vo = &(elv) = (@) v=PvV, (49)
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A\ Z (V) = (#8])V ~ QV. - (50)

These relations are, of course, the reason why P and Q are called “orthogonal projection
operators”—P projects any vector onto its component in the direction (€,) perpendicular to
the »isointensity contour, while Q projects any vector onto its component in the orthogonal
direction (€,) parallel to the isointensity contour.

Since ||VI||? is “orientation-independent” (in Nagel’s sense), the “orientational” prop-
erties of K and K are identical to those of P and Q, respectively. Hence, we lose no
generality by discussing only the latter.

If the quantities Vjju and V, u (and the corresponding quantities for v) are defined as

Vju = PVu,
Vi = QVu,
then since
Q=vVUT =(Vu, Vv), | (51)

it follows that

PR = (PVu, PVv)

= (Viu, Viv). (52)
We then see that since P = P?,
tr [27PR] = & 'ﬂ"Pm]

= tr fnTPTPn]

= tr [{PR}T{PA}]
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= tr [{PAOHPA}T].

Consequently, using (52),

T
tr [QTPQ] = tr(Viu, Vlv)( E:i:;T )

= tr [V_Lu(Vlu)T] + tr [Vlv (Vlv)T]
= tr [(Vlu)T Vlu] + tr [(Vlv)T V_._v]

= (V_L‘U,)T V_Lu + (VJ_'U)T V_L‘U

Hence,

tr [OTPQ| = ||V, u|| + || Vo],

Similar calculations for Q give
tr [27QQ) = || Vyu|l® + | Ty 1°.
Therefore (using (42) and (43)),

tr (QTKQ) = VI {|Viu]? + || Vool?}

tr (nT Rn)

1112 {Ioyull® + [ ¥yo]1?} -

(53)

(54)

(55)

(56)

(57)

Recalling the significance of the subscripts “||” and “1”, we see that if K (or K) is used

for the smoothness interaction, “smoothness” will be demanded only of the components

of Vu and Vv perpendicular (or parallel) to the image isointensity contours. Although

there is no physical basis for demanding smoothness along one of these directions, there

25



is at least some justification for not demanding smoothness of the flow field components
perpendicular to the image isointensity contours. Since these contours often (but not
necessarily) correspond to physically meaningful (motion, occlusion) boundaries, it is often
the case that the optical flow field varies strongly—perhaps even being discontinuous—
perpendicular to such boundaries. Consequently, it would seem that the interaction K
should most definitely not be used for a smoothness interaction. (This argument is due
to Nagel [Nage86].) This leaves only the quantity K as a possible smoothness interaction

quadratic in 1** derivatives of the image intensity.

5.2 The Geometrical Interpretation of L2 and L2

In this section we discuss the geometry of choosing L2 or L? as smoothness interactions.

We will show that
tr [nTLG] = A(ul +v?) + A2(ud + vd), (58)
tr [07E0] = A +02) + 2N(u + vd), (59)

where u, and u, are the components of Vu along the principal directions of the intensity
surface corresponding to principal curvatures (proportional to) A; and ), respectively
(with similar definitions for v). That is, the interaction L (L) smoothes the optical flow
preferentially in the direction of maximum (minimum) curvature. Note, in contrast to the
previous section, that L and L are not projection operators. This makes more precise the
remarks of Nagel [Nage86] in this regard.

' The matrix L is just the Hessian matrix of the grey-level intensity function I(z,y).

Since the Hessian matrix appears naturally as the coefficient matrix for the second order
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terms in the Taylor series expansion of I, it is to be expected that the Hessian matrix is
related to the curvature properties of the surface represented by I(z,y). This is because the
second order terms in the Taylor series express the difference between the given function
and its “tangent plane” approximation.

These remarks are made more precise by considering the fundamental object in the the-
ory of curvature [Thor79], namely the Gauss-Weingarten map II which maps the tangent

space Tp of the surface I(z,y) at the point P into itself, via

Im: Tp —Tp

M: v — —(v-V)i.

Here v is a vector in the tangent space Tp to I(z,y) at P, and fi is the unit normal to
the surface at the same point. Physically, [T maps the tangent vector v into the tangent
vector given by ||v|| times the (negative of the) rate of change of the unit normal in the
direction v.

It is physically clear that there are in general two special directions v, namely those
in which the unit normal stays in the plane spanned by v and i (at the point P) as one
proceeds in the direction v away from P. These directions are called the principal directions
of the surface at the point P. According to the definition of the Gauss—-Weingarten map
above, these directions are eigenvectors of the map. The corresponding eigenvalues are the
principal curvatures of the surface at the point P.

We can give a matrix interpretation to this by noting that if the following unit tangent
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vectors are chosen as the (non-Cartesian) basis for the tangent space:

1,0,1;

po= (7’ ),
1+ 12
0,1,1

gy = y)

then [doCaT76] the matrix representation of the Gauss-Weingarten map is just given by

_ L
[+ v

It is clear from this that to within an ISO(2)-invariant factor the matrix L and the matrix
II are the same. They therefore have the same eigenvectors (the principal directions), and
their eigenvalues are proportional to each other.

Let ¥, and ¥, be the normalized eigenvectors of L:

LYy, = )9, (60)
LY, = A%, (61)

with
.70, =6, (a,b=1,2). (62)

If the point in question is not an umbilic point (A, # Az), then the inequality of the
eigenvalues of L guarantees the orthogonality of the eigenvectors. If the point is umbilic
(M= A2), thén appropriate linear combinations of the eigenvectors can be chosen so that
the combinations are orthogonal (the Gram-Schmidt orthogonalization process). At any

rate, we can always assume that (62) holds.
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We now (in analogy to the previous section) define the projection operators:

'Pl = ‘1’1‘1’{; (63)

P, = ¥,¥]. (64)

It is easy to check that the operators {P;,P,} are a set of orthogonal projection operators,

in the sense of (46), and that they have the following effect on the eigenvectors of L:

P1‘1’1=‘I’1, P,¥, =0,

Pz‘I’] - 0, Pz‘I’z = ‘I’z.

We can say even more, however. Since ¥, is perpendicular to ¥,, ¥, must be ¥, rotated

by 90°. That is, we can always choose
‘I’z = le.

Furthermore, this implies that

P, = JP,J7, (65)

i.e., the projection operator P is just the dual of the projection operator P;. (Note that
the projection operators P and Q of the previous section are similarly related.)
It is well known [Stra86] that any symmetric matrix can be expressed in terms of its

eigenvectors and eigenvalues. In our case this takes the form:
L = AlPl + Asz. (66)
It is then obvious, upon using (65), that

L =XP,+ )P, (67)
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This then implies that

Le, = )%, (68)

LY, = )7, (69)

Comparing this with the properties (60) and (61), we see that L and L have the same
eigenvectors, but with the eigenvalues switched.

If we use the fact that the square of an operator has the same eigenvectors as the
original operator, but with the corresponding eigenvalues squared, we see that L? and L2

have the expression:

L? = XP,+ AP, (70)

I? = AP, + )P, (71)

An analysis identical to that given in the previous section then shows that
tr [QTL"’Q] = A(u? +v2)+ A(u +3), (72)
tr [QTf;’ﬂ] = A (u? +v2) + A(ud +vd), (73)

where u, (or u,) is the projection of Vu along the principal direction ¥, (or ¥,), with

similar definitions for v; and v,:

Uy = PIVu ) Uy = P2Vu (74)

m = Plv'v i Vg = Png (75)

Owing to the proportionality of the eigenvalues A; and A, to the principal curvatures, it is

clear that the interaction based on L “smoothes” the optical flow field preferentially in the
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direction corresponding to the maximum eigenvalue of the Gauss-Weingarten operator, i.e.,
the direction of mazimum principal curvature, whereas the interaction based on the dual
I “smoothes” the optical flow field preferentially in the direction of minimum principal
curvature. Since the direction of largest principal curvature is often perpendicular to a
physically significant (motion or occlusion) boundary, it would seem that the use of L as
the smoothness interaction would be exactly the wrong thing to do; hence it does not make
sense to use L, and L is the only other possibility.

Combining the results of this and the previous section, we conclude that (modulo
ISO(2) invariant quantities), the approach of Nagel and Enkelmann is the only physically
reasonable one, assuming a first degree smoothness constraint quadratic in either 1** or

ond derivatives of I.

6 Conclusions

We have shown in this work that by using three simple and reasonable assumptions about
the characteristics of smoothness constraints, there are essentially only 4 independent
smoothness constraints that are quadratic in 1** derivatives of the optical flow field, and
quadratic in either 1** or ond Jerivatives of the grey-level image intensity function. Only
two of these four are physically plausible, and they correspond to those chosen by Nagel and
Enkelmann. All other such smoothness constraints can be obtained as linear combinations
of these 4, perhaps multiplied by 1SO(2) scalar functions of the image intensity and its
derivatives.

We also derived generalized versions of the results of Brady and Horn on the possible

performance measures that can be used for surface reconstruction, and found them to be
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simple corollaries of our main results for optical flow.

In the continuation of this work [Snyd89], we investigate the more complicated problem
of classifying smoothness densities quadratic in 27 derivatives of the optical flow field,
and the implications of relaxing Requirement 111, that the optical flow components are
decoupled. Perhaps a coupling of these components in the smoothness constraint can lead
to interesting smoothness constraints. For instance, the physically sensible smoothness
constraint should reflect a smoothness in the three-dimensional flow field. Upon central
projection, this will become a smoothness constraint on the two—dimensional optical flow.
Because of the projection, such a two-dimensional smoothness constraint should be of the
coupled variety. Consequently, perhaps it is the coupled smoothness constraints which are
the most interesting [P. Anandan, personal communication]. We are presently investigating

this idea.
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A The Euclidean Group of the Plane ISO(2)

The group of rigid transformations of the 2-plane R? consists of those transformations
of B2 into itself which preserve the distance between any two points of the plane. As

is well known, this group can be represented as a rotation of the plane around an axis
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perpendicular to the plane, followed by a translation in the plane. Mathematically this
group of transformations is the semi-direct product of the two dimensional rotation group
SO(2) and the group of translations in the plane. The group is denoted by the symbol
1SO(2), which stands for “I(nhomogeneous) SO(2),” also called the Euclidean group of the
plane E(2).

Since the coordinates of a point in any two Cartesian coordinate systems are related
by just such a rigid transformation, it is clear that any transformation by an element of
ISO(2) can be described as a change in the Cartesian coordinate system of the plane.

If r is the column vector (z,y)7, then an element (R,t) of this group is defined as
having the following effect:

r—r' =Rr+t, | (76)
where
[t _ cosf sinf \
t_(tz )’ R'-(-—sino cos0)’
8 is the angle of rotation, and t is the translation vector. The 2 x 2 matrix R can be

defined as

R =R(0) =cosf1, + J sinb,

where 1, is the 2 x 2 identity matrix

10
12=(01)$

and J is the antisymmetric matrix

{0 1\ a1 gTy_
J_(_lo)_ 3T 3T =1,
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One easily sees that

R-1(d) = R(-6) = R7(9),

so that R is an orthogonal matrix:
RTR=RR" = 1,.

Since det R = cos? @ + sin?8 = L, it follows that Re SO(2), the group of real orthogonal
2 x 2 matrices having unit determinant.

It is easy to see that

[R,J] = [R,1,] =0,

where [A,B] = AB — BA is called the commutator of A and B. If [A,B] = 0, then we
say that A and B commute. It is easy to see that if a matrix M commutes with R, then

M is a linear combination of 1, and J:

[M,R] = 0 => M = al, + bJ. (77)

A.1 Scalars, Vectors, and Tensors

Suppose that we have a function f defined on the image plane (for instance, f = I, the
grey-level intensity function). Upon making a change in the coordinate system to which f
is referred, we would expect that the value the function takes at the same physical point in
the image plane would be unchanged. However, the explicit function f that expresses the
value of the function at that point will be different. That is, as a function of the position
vector r of the point P, the value of the function f would be f(r), whereas with respect

to the new coordinate system the position vector of P would be r’, and the value of the
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4

function f at P would be f'(r'). Since the value of the function at the physical point is

independent of the coordinate system in which P is represented, we must have that

f(x') = f(r). (78)

where both r and r’ represent the same physical point and hence are related by (76). We
will say that a quantity f which satisfies (78) when the transformation (76) of ISO(2) is
made transforms as a scalar under ISO(2). We will often abbreviate this to the statement
that “f is a scalar.”

We will also denote the fact that a quantity Q(r) transforms, under 1SO(2), into the
quantity Q'(r') by the symbol

Q—Q,
where the arguments r (of Q) and r' (of Q') are suppressed.

We now consider the way that a vector A transforms under ISO(2). Under a change in
Cartesian coordinate system, the physical vector attached to a particular physical point in
the image (for instance, the optical flow vector) does not change, but its representation in
terms of its components does. In the new coordinate system, the vector is represented as
A’(r'), but this vector is also given by the old vector A(r), rotated by the rotation matrix
R: RA(r). Since both of these expressions represent the same physical vector, we have
that:

A'(r') = RA(r).

We express this as

A — A’ =RA, (79)
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or, written out in components:

Al =R A,

We will call a quantity which transforms like (79) an “ISO(2) vector,” or more simply just
a “vector.” We note that the position vector r does not transform like a vector, as one
would expect, since r depends on the choice of origin, i.e., on the choice of a particular
Cartesian coordinate system.

A second-rank tensor M is a quantity with two indices 2 and j, represented by the set

of 4 numbers {M;;} which transforms in the following way under 1SO(2):
M — M,

where

I"I:(l") = B.;kRj(ﬁ'Ik[(l‘). (80)

J

If we represen't the 4 components {M;;} of M as a 2 x 2 matrix M:
M;; = My,
then the transformation law (80) can be written succinctly as
M;(r') = R My (r)(RT)sj,

or:

M'(r') = RM(r)R".
This may be then expressed as the second rank tensor transformation law under ISO(2):

M — RMRT. (81)

38



We see immediately that such tensors exist. Indeed, if A and B are vectors,
A — RA; B — RB = BT — BTRT,
then the outer product AB7 transforms as a tensor:
ABT — (RA)(B'RT) = R(ABT)R'.
We now list a number of useful results that are easily proven:

o If A is a vector, then ATA = |A]? is a scalar.

e The gradient V transforms as a vector (operator). Therefore if f is a scalar, V f is

a vector.

e The Laplacian VTV is a scalar operator, and the quantity Vv VT is a tensor operator.

Therefore VT VI is a scalar, and VvV is a tensor.

e If M and N are tensors, then so is MN.

e Since the matrix J commutes with R, if A is a vector, then sois JA = K, called the

dual of the vector A.

e If M is a tensor, then so are JM, MJ7T, and JMJT = M. The latter is called the

dual of the tensor M.

B Some Theorems on Positive Definiteness

In this appendix we derive a number of results related to positive definiteness.
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Consider the ISO(2) scalar © = tr [QTFQ], where 2 and F are tensors, as in the
text. We showed in the text that F could, without loss of generality, be assumed to be a
symmetric matrix.

Since F is a symmetric 2 x 2 real matrix, there exists an orthogonal matrix (i.e., a

rotation) Rq € SO(2) that diagonalizes F:
RFRI =D =% ? (82)
0 4

where 8, and §, are the eigenvalues of F. If we rotate the coordinate system by Ro, we
know that tr [QTFQ] remains invariant. This rotation, however, just transforms F into

the diagonal matrix D. We can, therefore, assume that this rotation has been done, so
that © has the form:

© = tr [07DA). (83)

Now since UT = (u,v), it follows that

0 =vVUT = (Vu, Vo), (84)
which implies that
DR = D(Vu, Vv) = (DVu, DVo). (85)
Hence,
T VTu
tr ['DQ] = | or. | (DY, DVY) (86)
- i ViuDVu * &7
- * vhyDVv (87)
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= VuDVu + VIyDVy (88)

= 6 (vl +v2) + 8(ul + v]), (89)
where we have used (82). It follows that © is positive definite if and only if the eigenvalues
(8, and &;) of F are positive definite.

We now consider when this situation occurs.

Since F is a symmetric matrix, it can be written in the form

F=(Zi) (90)

It is elementary to show that the eigenvalues of F are given by the solutions A., where

20y =a+ctf/(a—c) + 46

Both values for A (i.e., both eigenvalues of F) are positive definite if and only if tr F =

a+c2>0, and
a+c>J(a—c)?+4b? = 4det F = 4(ac — §°) > 0.
Hence we have proved the theorem

Theorem B.1 The ISO(2) scalar © = tr [QTFQ], where © and F are tensors, is

positive definite if and only. if ir F and det F are positive definite.
We then have the important corollaries:

Corollary B.1.1 If F is a real, tracelcss symmetric 2 x 2 matriz different from zero,
then tr [ﬂTFﬂ] is not positive definile.
Proof: If F is traceless and symmetric, then F is of the form (90), where ¢ = —a.

This implies that det F = —(a?® + ?). Since a and b are real numbers not both zero, by
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assumption, it follows that det F < 0. The corollary then follows immediately from the
theorem.

Corollary B.1.2 IfF = M?, where M is a symmeiric real 2 x 2 matriz different from
zero, then tr [QTFQ] is positive and non-zero.

Proof: If F = M?, then F;; = M;M,; = MM, since M is symmetric. Hence,
tr F = F;; = M;M;,.. The right hand side of the latter equation is the sum of the squares
of all the matrix elements of M. But by assumption, not all of these matrix elements are

zero. Hence, tr F > 0. The corollary then follows immediately from the theorem.

C Some Completeness Results

In this final appendix, we prove a number of “completeness” theorems.
Before beginning the statement and proof of the theorems, we quote a number of results

which are easily proven, and whose proof is omitted.

Result # 1: If VI = (I, ],)7 is transformed by R(6), then the quantities

a = L+1} (91)
B = L-1 (92)
v = 2L, (93)

are a basis for the space spanned by the products {LI;; i,j = ,y}, and transform under

1S0(2)) like

a — a (94)
(5)—=()
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Result # 2: If we define

a = Ig+1I,=VI (96)
B = L1, (97)
v = 2ly, (98)
then the set of quantities
o + B2 + 42
{azv _—%———7_1 aB, oy, ﬁz - 721 26~} (99)

form a basis for the space consisting of all possible products {I;[;; 1, j = zz, zy, yy} of

second derivatives of I and transform as follows under an ISO(2) transformation:

( a7+ag;+37 ) — ( al !a%z ty? ) (100)
af — R? af
() — »(2 ) (101)
g -~ L ope(F-T
( 26 ) -— R ( 26 ) ) (102)

where we recall that R"(8) = R(n#).

Result # 3: For any matrix F,
9RFRT = [F + F] + cos20 [F - P + sin 2|3, F}.

(This is easily shown using the expression R = cos 01, + Jsin6.)

We now go on to prove our “completeness” theorems.
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Theorem C.1 If A is a vector linear in 1% derivatives of the scalar function I, then
A =aVI+bVI,

where a and b are ISO(2) scalars.

Proof: If A is linear in 1** derivatives of I, then A; can be written as
A; = B;;0;1,
where the B;; are numbers. We can then write this as a matrix equation:
A =BVI.

But A is, by assumption, a vector. Hence A — RA = RBVI under an ISO(2)
transformation. But under the same transformation, V] — RVI, which implies that

BVYVI — BRVI. We conclude that
RBVI = BRVI = [R,B|VI=0.

But VI is arbitrary. Hence, it follows that [R,B] =0.

Therefore, B = al; + bJ. Consequently, A = (a1, + 8I)VI=aVI+ bV I, Q.E.D.

Theorem C.2 If H is a tensor quadratic in 1** order derivatives of I, then
H = 00K + 2, JK + a,KJI7 + a5K,

where the tensors K, ... are defined in Section J. and where the a; are constants.

Proof: From Result # 1, we see that the general tensor H can he written as

H=Ma+ MZ.B + M37’
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where the M; are (constant) matrices. When an ISO(2) transformation is made, we know
that H — RHRYT. On the other hand, a,3; and v transform according to Result # 1.

These two ways of looking at the transformation of H must be equivalent. Hence,

RM;RTa + RM,R78+RM;RTy = (103)

= M, + M,(f cos 20 + v sin 26) + M;(—8 sin 26 + -y cos 20) (104)
We immediately conclude, from the independence of the set {a,8,7},; that
RM]RT = M1 = [R, Ml] = 0,

which implies that

M, = al; + bd.

We then use Result # 3 to reexpress the left-hand side of (103)—(104), equate Fourier
coefficients on either side of the equation, and finally equate coefficients of a, B, and 7.

The result is the following independent set of equations:

Mz = JM;J = {J,Mz} = 0, (105)
M; = JM3J = {J,Ms} =0, (106)
[J,Ms] = 2M,, (107)

where we have defined the anticommutator {A,B} = AB + BA. It is then easy to check

that these equations imply that

d ¢ -c d
Mz:((‘ —-d) ; Ms"(d C)'
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The general tensor H is then of the form:

_ aa +df — ¢y ba + cf + dy 108
H = (—ba+cﬂ+d'y aa — df +cy (108)

_ (a + d)I2 + (a — )] — 2cL.], (b+ )2 + (b — c) I} + 2dI1, (109)
= \ (=b+ )2 = (b+ )} +2dL], (a — d)I2 + (a + d)I} + 2¢L], '

By looking at the explicit form of K, ..., one sees that
H=(a+dK+(b-cJK+(-b- OKJIT + (a — d)K.

This proves the theorem.

We now note that if, instead, we were to demand that H be a scalar, rather than a
tensor, all the properties of H that were used in the theorem would still hold, except that
the matrices M; would now be only linear combinations of the matrices 1, and J. The
theorem then implies that My = M3 = 0, and hence that if H is an ISO(2) scalar times a
linear combin;tion of the matrices 1, and J, H must be of the form H = (alz +bJ)a. We
therefore have the corollary:

Corollary C.2.1 If H is an ISO(2) scalar which is quadratic in 1* derivatives of the
image intensity I, then H is a maultiple of IZ + I.

This is identical to the result (Proposition 2) of Brady and Horn [Brad83], but with
“rotationally symmetric” replaced by the more general “ISO(2) invariant.”

Lemma If H is a tensor quadratic in ord order derivatives of I, then
H= (loLz + G.]JLz + dszJT + Go3flz + ((1412 + asJ)A + (aslz + G-7J)Q,
where L, .... are defined in Section 3, and the quantities A and Q are defined to be:

A = (Le+Ly) = (V) (110)
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Q = L+l +12,. (111)

We note that the quantities A and Q have been called the “squared Laplacian” and
the “quadratic variation,” respectively, by Grimson in his work on surface reconstruction
[Grim81].

Proof: Since H is, by assumption, quadratic in 2°¥ order derivatives of I, we use Result
# 2 to write H in the form:

o + 4% +9°

H=M102+Mz( 2

) + M;af + My ay + M; (8% - 7°) + Ma(287),

where the M; are matrices. Proceeding in a way identical to that for Theorem C.2, we
make an ISO(2) transformation on H, and express this transformed H in two ways, one by
transforming the matrices M; to RM,R7, and one by transforming the variables al,....
We equate these two expressions for the transformed H, use Result # 3 as before, and then
equate Fourier coefficients on either side of the equation. We then equate coefficients of
the independent polynomials (99). Finally, we arrive at the set of independent equations

which must be satisfied if H is to transform as a tensor:

Ms = 0, (112)
M = 0, (113)
M, = -IJM,J= M, =al,+bJ, (114)
M, = -JM,J=M,=cl,+dJ, (115)
M; = JM,J, (116)
oM, = —[J, M) (117)
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The latter two equations taken together imply that

(3 2)e (77
po—v v op
We therefore have found that H can be expressed in the form

o’ + f* 49"
2

H=(a,12+bJ)a2+(c12+dJ) ( ) +M3&ﬂ+M4a‘Y, (118)

where M3 and M, are as given above.

Using the explicit forms for the tensors L?,... one easily checks that the quantity
H= aoLz + quJIJ2 + aszJT + a:,f:’ + ((1412 + an)A + (aslz + (1-7J)Q,

is equal to the quantity (118) where ao, a1, a2, and a; are arbitrary numbers subject only

to the conditions:

ap—as = 2v, (119)
a +a; = —2p, (120)
and a4, a5, ag, and a7 are given by:
a = a, (121)
a; = b, (122)
a = c—a°+a3, (123)
2
e = d— 2 5 =3 (124)

We then have the following Theorem
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Theorem C.3: IfO = tr [QTFQ] is a tensor-based ISO(2) scalar, then F is of the

form:
F = aoL? + 0, JL? + a,L2J7 + a5L2, (125)

and if © is a scalar-based ISO(2) scalar, F is of the form
F = (al, + bJ)A + (c1; + dJ) Q (126)

Proof: From the Lemma, the general tensor satisfying the conditions of the Lemma is
of the form (118). We showed, in the Lemma, that the difference between this tensor and
a tensor of the form (125) is just a matrix of the form (126). But a matrix of the latter
form transforms as a scalar under an ISO(2) transformation, as discussed in Section 2.2.
Hence, we have proved the theorem.

We now show that Proposition 6 of the paper by Brady and Horn [Brad83], generalized
to 1SO(2) inva;riance, is an immediate corollary of this theorem:

Corollary C.3.1: If H is an ISO(2) scalar quantity which is quadratic in second

derivatives of an ISO(2) scalar quantity I, then H is of the form
H = ay(lee + L) + a2 + 2L, + 1),

where ag and a, are constants.

Proof: We see from the theorem that A and Q are necessarily ISO(2) scalars. Q.E.D.
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