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ABSTRACT

We address the problem of flow control and routing of real-time traffic in a network, where
messages must arrive at their destination within given deadlines; otherwise they are considered
lost. Performance in this case is measured in terms of the probability of losing a message. For the
case of n parallel links, the problem is formulated as one of optimal flow allocation and solved
under general conditions. It is shown that for a FCFS service discipline an admission policy
rejecting messages before link assignment is optimal when the load exceeds a critical value. Thus,
we take advantage of the fact that if some messages will exceed their deadlines anyway, it is
beneficial not to admit them in the first place. An efficient algorithm for explicitly solving the
problem is presented and specific examples are analyzed. We also discuss the applicability of on-
line algorithms for this problem when modeling assumptions cannot be made.
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1. INTRODUCTION

In this paper, we address issues of performance analysis and control for systems with real-time
traffic. Real-time traffic is characterized by deadlines within which service must be completed, and
~ is encountered in at least two settings: communication networks and multiprocessor computer
systems [1],[2]. We will present the problem with a communication network application in mind,
but all results can be applied to analogous problems in a computer system environment. Thus,
when a message with a real-time constraint is transmitted, we require that its destination be reached
by some given deadline, characteristic of the message itself or of the traffic class to which it
belongs. If this condition is not satisfied, the message is useless and is considered lost. In such
problems, the objective of interest is the minimization of the probability of loss, measuring the
fraction of messages that exceed their deadlines.

- Given this framework, we shall consider the problem of assigning messages to n links
connecting a source node to a destination node so as to minimize the fraction of messages that do
not reach the destination node by some deadline. There are two variations of this problem: (a) all
messages are required to be transmitted, and (b) messages are allowed to be rejected instead of
being assigned to a link. We shall consider case (b) only, and accomplish the flow control through
an admission policy. A typical workload consists of voice and/or video packets with a time
constraint by which they must be received to be useful. In current implementations, the scheduling
policies at the link level are very simple and do not allow for deliberate packet rejection. It is,
however, possible to include flow control at the source in the form of an admission policy that
does reject a fraction of the packets whenever it is beneficial to do so.

A similar situation is encountered in static load balancing for a multiprocessor system, where if
we consider messages to be jobs and links to be processors, the same results apply. In past
analysis of computer systems, most work has focussed on the problem of balancing loads so as to
minimize a metric such as average delay [3],[4]. However, a better objective seems to be

minimizing the fraction of jobs whose response times fall above some threshold. Thus, if E{x] is



the average processing time, good performance may be determined by a response time that lies
below some multiple of E[x]. In this application, it would be bencficial to impose a policy that
prohibits admission to some fraction of jobs so as to increase the fraction of jobs that complete
processing within their threshold response time.

To illustrate the potential advantage of an admission policy allowing rejection, we present the
following simple example. Suppose the system consists of a single link. Upon arrival into the
system, a message is either accepted with some probability p and placed in the FCFS queue, or
rejected with probability (1-p). The objective is to adjust p so as to minimize the probability of
loss. A message can be lost either at the source by being rejected, or at the destination by violating
its deadline. The crucial observation here is that a proper choice of p can result in rejecting some
messages that may not have made their deadlines anyway. Note that as p is decreased, the link
becomes less congested, resulting in a larger fraction of messages making their deadline. On the
other hand, more messages are being rejected. Moreover, if we dealt with limited buffering space,
then a third result of decreasing p would be a welcomed decrease in the blocking probability.
Thus, there is a tradeoff between rejecting a message so that others may make their deadline and
serving the message in hopes that it might make its deadline. As we shall show, it is generally
beneficial to reject some fraction of the incoming messages. It is only for the case of lightly loaded
systems that the optimal admission policy is p = 1. |

The paper is organized as follows. In section 2, we formulate the model and the optimization
problem. We then characterize the optimal admission and link assignment policies under fairly
general conditions. In section 3, we present an algorithm for explicitly solving this problem. We
also discuss the problem of on-line optimization when knowledge of the system characteristics is
limited. Section 4 includes some specific examples. Finally, we summarize our results in section

5, and indicate directions for future work.



2. MODEL DESCRIPTION AND PROBLEM FORMULATION

Consider a stream of messages arriving to n parallel links according to an arbitrary arrival
process with rate A, as shown in Fig. 1. The rate of transmission at link i is y;> 0, and all links
are independent. We will assume that there is the option of rejecting messages before they are
assigned to any link; let Ay denote the corresponding flow. In addition, let 4; be the flow to link i,
for i = 1,...,n. Finally, let D be a random variable that denotes the deadline associated with a

random message.
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Figure 1: Link Assignment Model with Admission Policy

2.1. Problem Formulation

We wish to determine a flow allocation (Ag,...,4,) so as to minimize the probability of loss,
where a message is considered lost if it is either rejected upon arrival or accepted but is delinquent
(i.e., misses its deadline). Let P"(Ag) be the probability that a random message is rejected, and let
P4(),,...,A,) be the probability that a message is delinquent given that it is accepted. Then the total
probability of loss is

P, = [P" + (1-P")-P4).

We shall assume in what follows that a message is delinquent if its total delay T exceeds the
dcadline D, i.e. P4 = P|T > D]. However, the analysis also applies to other definitions of
delinquency, such as the event that the queueing time of a message exceeds the deadline. For

example, see section 4.2.



At this point, we translate the problem from one of minimizing the probability of loss to one of

minimizing the loss rate, L, where

L=A-[P" +(1-P"-P4).

Clearly, for a fixed load A, the two problems are equivalent. Note that

AP =dg,  AQ-PIPY= D A:PAA),
i=1

where P4(A;) is the probability that a job is delinquent given that it is routed over link i. Thus, the

performance metric can be written as

L) = Ao+ Y, APHA).
=1

Furthermore, let
f,(Aq) = A,"P?(li), i= 1,. .oyl (1)
foAg) = Ay. )
Then a general statement of the optimal flow allocation problem is the following:
n
min_ Y f(4)
(g2 ‘o

subject to
n
Yu=1
i=0

Aiz 0, i= 0,...,”;

Note that the flows A; are not constrained to be less than the corresponding link capacity p; this

will naturally emerge as a property of the optimal flow allocation. Also note that by introducing the

additional constraint A = 0 to the problem above, we can obtain a formulation where no rejections
are allowed, as in variation (a) presented in the introduction. The analysis in this case would

proceed along the same lines.



2.2. The Optimal Solution

We will make the following assumptions regarding the functions P4(-) and f(-), i=1,...,n

Al Pf’(x) is increasing for all x & [0,4;).

A2 P{u) =1.

A3 fi(x) is increasing and strictly convex for all x & [0,1,).
Ad If A; < p;, then f(A) < A;.

Most of our subsequent results depend on A3 only. Al simply requires that increasing the load to
a link must increase the probability that messages on that link exceed their deadlines; this is natural,
since increasing the load causes longer average delays. A2 requires that waiting times become
infinite at capacity. It is satisfied for the FCFS service discipline and possibly by RSS, but it does
not hold for a LCFS service discipline. Finally, from (1), A4 is equivalent to the requirerﬁent that
if A; < ;, then P4(A;)) < 1. This assumption is not critical, since we can always determine some w
< y; such that P4(p) = 1, and treat 1’ as the effective capacity of the link.
Let
hiA) =of(A)IdA;, i=0,...,n,

where the derivative is defined for ;€ [0,4;). Then, from A3, h{(x) is monotonically increasing

for all x € [0,u), i=0,...,n. Moreover, h(A;) has the following properties for i=0,...,n:

Lemma:
(@ 0<sh(0)<1,
(b) hu) > 1.
Proof: From the definition (1):
oP4(A;
)= 2 = Pl + 3, .

Hence, h;(0) = P%(0), where 0 < P4(0) < 1. Statement (a) then follows from Ad4. Similarly, h,(u;)
=1+ u(0P%0u;) > 1, by Al and A2. QED



The following result identifies conditions satisfied by the optimal solution to the flow allocation

problem (see also [3]).

Theorem 1: (a) The optimal solution (4§,...,A}) to the above problem satisfies the

following necessary and sufficient conditions:

hA)=a if A >0, 3)
rAD2a if A =0, @)
such that:
Z K e)=4, a>0. 5)
i 5.t. 450

(b) All optimal flows satisfy A} < g, i = 1,....n.

Proof: Using a Lagrange multiplier a > 0, we adjoin the flow conservation constraint to

L(Ag,...,A,) to obtain

L(Ag,....A,0) = Z fA) + a-[l - Zn', /1,-].
=0

=0

Thus, the necessary (Kuhn-Tucker) conditions require that at 4; = A}

oL :
51_‘; h{A)—a=0, i=0,.,n

provided A} > 0, and (3) is obtained. On the other hand, if the constraint ;2 0 is active (i.e. Al =

0), then at the feasible region boundary, defined by 4; = 0, optimality requires that

oL
— > =
Y 0 at 4,=0,
which yields (4). Finally, for an optimal allocation (43,...,Ay), the flow conservation constraint

‘o

‘becomes

n
Y=Y A=2
i=0

is.t 2.:>0



and since all A} such that A} > 0 must satisfy (3), we immediately obtain (5). Note that A}}(-) is
well-defined in (0,k;(1;)), and, as we show in part (b), h}(0) = A% < ;.

The sufficiency of these conditions follows directly from the convexity assumption A3. This

guarantees that a unique o is determined through (5), and hence unique A} > 0 are determined
from (3).

Part (b) of the Theorem is trivial if A} = 0. Thus, we consider only the case A} > 0. First,
note from (2) that ag(Ag) = 1 for all A9 2 0. Since (3) and (4) imply that hy(Ag) 2 ¢, it follows that

a < 1. Thus, from (3), we get
h,(l’{) =a<l.

From the Lemma above, h;(u;) > 1. Thus, h;(A}) < hy(;). Since h;(4;) is monotonically
increasing for all ;e [0,4,), it follows that A} < ;. QED

Remark. Since ho(1g) = 1, it follows from (3) that if Ag > 0, i.e. rejections do occur, then
we have o= 1. |

An illustration of the Theorem is shown in Fig. 2. For any i=1,...,n, as long as A} > 0, the
optimal flow A} is determined by the point where hy(A;) intersects the constant & line. Otherwise,
hi(4;) lies above the constant & line and A} = 0. Furthermore, as pointed out above, & = 1
whenever A§ > 0. In the example shown in Fig. 2, o takes on a value less than 1 and k,(4,) does

not intersect the line defined by a. Thus, Ag = A} = 0, corresponding to a lightly loaded case with
link 1 unutilized.

Some interesting properties of the optimal flows are presented below as a Corollary of

Theorem 1. First, we define g;(y) to be the bounded inverse of A;(x), defined for 0 <y < h;(1;).

More specifically,
(y)_{ x if y=hx), x>0,
EV=10 if y<h0).

Thus, (5) can be written as X; g;(a) = A. Observe that since h;(-) is increasing, g;(-) is non-

decreasing.
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Figure 2: Characterization of Optimal Flows

Corollary 1.1: Suppose links are indexed so as to satisfy the following ordering:
ho(0) 2 hy(0) 2 ... 2 h,(0).

Then the optimal flows, A3,...,A}, have the following properties:

;>0 ifandonlyif A> Y A IAO), i=0,...n, (6)
pi
n

A5>0 ifandonlyif A> ) A'(), (7)
&1

A=0 =h0)2a h0)>a =4 =0, i=01,..n (8)

Proof: For any i = 0,1,...,n, suppose A% > 0. Then (3) implies o = h(A}) 2 h;(0) since h(-),

i=1,...,n is monotonically increasing by A3 and hy(-) = 1. Thus, from (5)



A=A+ Z gi(a) > z Ahj“l[h,(O)],
Fi Pi

which establishes the "if" part in (6). We prove the converse by contradiction. Thus, assume that
the inequality in (6) is satisfied and that A} =0. From (4), this implies that 4,(A}) 2 @, i.e. h(0) 2
. Because of the ordering we have established, it follows that

hi0)2 o forallj<i.

Using this fact, gj{(@) =0 for all j < i, and (5) now gives:

A= Y gla)+ D, @) < ) K k(0N
Ki Pi Pi

which contradicts the inequality in (6). This completes the proof of (6).

Since this proof holds for all i = 0,1,...,n, (7) is simply a special case of (6) with i = 0, noting
that hy(0) = 1 from (2).

To establish (8), first assume that A} = 0. Then, by (4), h(A}) 2 «, i.e. h;(0) 2 c. On the
other hand, if 4;(0) > c, then, by the monotonicity of h;(-) we have h(A?) > a, since 112> 0.
Invoking (4), the result follows and the proof is complete. QED

An implication of this Corollary, specifically (7), is that there exists a critical load value, Acrips

given by
n
Aeris = Z K. . )
i=1

The value A,;, defines thé load threshold, beyond which rejection of messages will always
improve performance. This is illustrated in Fig. 3, where the effective throughput, A-(1-Py), is
always higher with 15> 0 than with g = 0 (no admission policy) as long as A> 2., Thatis,
when the load exceeds the critical value, the optimal flow policy will reject some positive flow of

messages.

Remark. For any i =0,...,n, the values of h'}(1) in (9) are independent of the flows

Ags- . -vAn» and the parameter A; they depend only on the structure of the system (the distribution of

10



interarrival times, service times, and deadlines), and on thc parameters fy,...,H, and E[D].

Hence, provided that an analytical expression for h}(-) can be obtained, one can determine 4.,

without explicitly solving the optimization problem .

MI-P,)

4 admission policy

4 1o admission policy

: > )
Acrit H t01

Figure 3: Load Threshold in Optimal Admission Policy

Some additional properties of the optimal flow allocation are stated below without proof. In
expressing these properties, it is convenient to introduce the following definitions. Let (Ag.--»An)
denote a feasible solution to our problem. With respect to this solution, there are two classes of
links, active and idle. Link i is considered active if A; > 0; otherwise, it is considered idle. Let A
denote the set of links that are active and I the set of links that are idle. We now présent four

properties of the optimal solution.

Property 1 The optimal flow A} is a nondecreasing function of A. Furthermore, if 15 > 0
for some A, then as A increases, A} remains constant for all i = 1,...,n.

Property 2 The set of active links A is a nondecreasing function of A. In particular, if the
nodes are ordered according to the rule specified in Corollary 1.1, then as A increases, links join A
in the reverse order.

Property 3 Let A’=A - {j). Then A’ is a nonincreasing function of p;. Moreover, links
transform from active to idle in the same order of h;(0) as Hj increases. Furthermore, j always

becomes active for sufficiently large 1;, and remains active thereafter. Last, A"— @ as ft; — .

11



Property 4 If A > Zu;, then 45> 0.

3. OPTIMAL FLOW ALLOCATION ALGORITHMS

In this section, we address the issue of obtaining explicit solutions for the optimization problem
presented above. Clearly, this depends on the availability of closed-form expressions for the link
loss rate functions fi(), as well as the inverse functions A(-). Such expressions are generally not
easy to obtain, even under reasonable stochastic modeling assumptions [5].

In section 3.1, we present an efficient algorithm (of order nlogn) for obtaining an explicit
optimal flow solution under the assumption that analytical expressions for h;(-) are available.
However, its inverse, h71(-), need not be available in closed form; numerical methods can be
employed to evaluate it.

In section 3.2, we briefly address the issue of op-line optimization, when limited knowledge of
the overall system is available. In this.case, we invoke gradient-based stochastic optimization

algorithms, taking advantage of recent developments in stochastic gradient estimation [6]-[8].

3.1. An Efficient Alggrithm

The following algorithm can be used to obtain the solution to the problem of minimizing the

message loss rate for the system of Fig, 1.

Algorithm.
1. Ordering of links:
» order links so that hy(0) 2 h,(0) 2 hy(0) 2 --- 2 h,(0).
2. Determination of the set of active links, A:
» define A(m) = Z;,, 8i(h,(0)),
« use binary search to find m such that A(m) < A < A(m+1),
oI={1,....m}, A={m+l,...,n}.

3. Determination of link flows:

12



« solve equations (3)-(5) to obtain (Ag,...,A}).

The algorithm is explained as follows. The first step orders the links so that the properties (6)-(8)
will hold. Step 2 applies property (6) to determine which links have positive flow. Forlinks i e
1, we can immediately determine A} = 0. In step 3, we notice that equation (3) holds for links i €
A, so those (n-m) equations along with (5) uniquely determine A; for i € A.

The algorithm is most easily understood by referring back to Fig. 2. In the example shown,
the ordering of step 1 has already been applied. Step 2 determines the region of the constant
line, that is, m is found such that k_(0) 2 &> h,,,;(0). Then step 3 calculates the intersection

point of #,(A;) with the constant ¢ line for all active links; A; at the intersection is optimal.

3.2. On-Line Optimization

Our analysis thus far relies on the availability of analytical expressions for fi(4)), i=1,....n.
This means that specific link models can be developed; in section 4, for example, we assume each
link to behave like an M/M/1 queueing system. Often, however, accurate models are not available
and operating conditions change. In such cases, one is limited to observing actual system data
(e.g. message arrival times at a node) and making admission and routing decisions based on that
information alone. There are several algorithms suitable for such on-line control schemes, mostly
dependent on estimating gradients (sensitivities) of the performance metrics with respect to the
parameters of interest (see [9],[10]). Our purpose here is only to make brief mention of the fact
that stochastic gradient estimation techniques can be developed and used in the context of our
problem, and to illustrate the use of this information for the simple flow control problem

corresponding to n=1.

If a single link is present, the critical load value in (9) becomes A,; = hj'(1). Recalling the
definitions of fi() and h(-), this implies that when A = A, the accepted flow, ], is determined

from

nrzn;n [(-Ap) + A4,P2(4) ],

13



yielding
d
a—l;'[llP'{(ll)] =1,

which implies that

c_ d aP‘{ -1
A=l —Pl(ll)]-(a—ll)

with the right hand side evaluated at 1 = A,;,. If this system is directly observed, an estimate of
P4(A;) can be obtained under any admission policy yielding a flow A;. Suppose that, at the same
time, an estimate of the sensitivity of the delinquency probability with respect to the flow,
(0P§/dA,), can also be obtained. Then, one would immediately be able to determine whether the
load threshold point shown in Fig. 3 has been reached or not, and hence determine the optimal
flow allocation. Furthermore, in an adaptive sense, flows can be adjusted on-line until the optimal
allocation is found. In many cases, this gradient estimation is accomplished without knowledge of
the actual load A or the link capacity g, [10]. The problem of determining stochastic gradient
estimates along a single observation interval is addressed through Perturbation Analysis [7] and the
Likelihood Ratio technique [8]. However, results currently available apply primarily to

performance measures such as throughput and mean message delay. The case of (0P3/94,) is

considered in [9] and is the subject of ongoing research.

4. EXAMPLES

In what follows, we present three examples for the case of M/M/1 link models. That is, we
assume that messages. arrive into the system according to a Poisson arrival process with parameter
A and are assigned to links through a probabilistic rejection and routing mechanism. In addition,

we model all links as exponential servers with parameters A;, i=1,...,n and a FCFS queueing

discipline.

14



4.1 Constant Deadline on Total Delay
Let the deadline always take on the value D =7. In this case P:’ = P[T>1], and
fA) =, e BhT
hiA) = (1440 € BT

for all i=1,...,n, and fo(4g) = A as before. Even though we are unable to obtain an explicit
expression for k7(-), and hence for g;(-), it is easy to show that k71() is the root of the equation
(1+4,0) e M g =0
that lies in [0,4;). This root exists and is unique provided
eFT<a< 14y, (10)

In such a case, g{&) = hl(c). Otherwise, if & < e then gi(a) =0, and the case where o> 1 +
it does not occur because, as we have already shown, < 1.

It is easily shown that A1-A4 are satisfied. Furthermore, the optimal solution results in

rejections if and only if A > Zih',—l(l), where h‘,-l(a) is the root of the equation
(+AD e BT 1=0

that lies in [0,4;), which we know to exist and be unique since (10) holds for = 1.

4.2 Constant Deadline On Queueing Time
We assume that deadlines are deterministic and equal to 7, and let Pf’ = P[Q>1] where Q is the

queueing time of a random message. In this case,

22
) =L i

H;

Ai —(p-A)t
hi(li) = ‘,T (2+),"T) e "t

fori=1,...,n. Assumptions A1-A4 are easily shown to hold for these functions. We are unable

to obtain an explicit expression for h‘,-l(li), and hence for g;(A;). However, we can easily show

15
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that h7}(0) is the root of the equation
A:
— (2+A4D) W50
Hi
that lies in [0,4;). This root exists and is unique provided 0 < & < 2 + A;7, in which case we have

gi/(®) = k7}(a). But since 0 < & < 1, we can conclude that & is in the range, hence the root does

exist uniquely for all choices of system parameters, and A} > 0, i = 1,...,n.

4.3 Exponential Deadlines on Total Delay

We assume that D is an exponential random variable with mean 1/y, and, once again, P¢ =

P[T>D]. Then
() = My
JEA) = Hi—A;
h,'(li) = '&i‘
(ru—2)

fori=1,...,n. Itis easy to show that P4 is such that A1-A4 are satisfied. Furthermore, we can

write the following expression for g{a),

gilo) = ‘ * 7"‘#;1
0, a —
YHi;

If the optimal solution has A = {m+1,...,n}, and 4§ =0, then

n -12
* 7'"”‘1
A =7+ - (wz,-)m( ) ————;]
mme1 (PI=A)

for i = m+1,...,n, and O otherwise. If A§ > 0, then
* 1/2
A =1+ = (rrp)

The optimal solution results in rejections if and only if
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n

A> ) [+ =P

=1
For the special case of a single link with capacity £, the optimal flow control policy, (A AL is

. { A—(y+p—-VEp), Azy+p-VeL,

0 otherwise ,

Ve { y+u- VAR, Azy+p-Vep,
-

A otherwise .

If we do not apply an admission policy (i.e. never reject), then the optimal loss rate is

Ay
. ASpu,
=1 ru- #
A otherwise .
but allowing rejection gives
Ay o
' — ASy+u— ,
. AR YU - VU
l_[ (?‘*#-‘/ﬂu)-(\’%#‘)’)] .
, otherwise .
ey
5-
) N
“ 3
g e
— S
E o
.ED E
] ~ ]
E ¢ < -
s 5 4 5
link flow rates load (messages/sec)
Figure 4a: Marginal Loss Rates Figure 4b: Effective Throughput

In Figures 4a and 4b, we have plotted the marginal loss rates, ho(Ag) = 1 and h;(4;), and the



effective throughput, A-(1-Py), for the case where yt =3, y= 1. Note that Fig. 4b is similar to Fig.

3, and clearly shows the existence of a critical load threshold for this model.

S. CONCLUSIONS AND FUTURE WORK

We have shown that when the performance metric of interest is the probability of losing
messages which exceed a given deadline, it is advantageous to apply flow control that deliberately
rejects part of the incoming traffic. Thus, some messages which might be lost anyway are
prevented from accessing the system, a fact which contributes to increasing the &acﬁon of the
accepted messages making their deadlines. The optimization problem we have studied applies to
networks supporting real-time traffic, a situation which is expected to be commonly encountered.
The solution to this optimization problem and its structural properties were analyzed in section 2.
A specific criterion for determining load conditions under which it is indeed optimal to apply flow
control was also provided (equation (9)). Approaches towards developing explicit algorithms to
implement flow control and routing for the case of n parallel links were presented in section 3.

The analysis presented in this paper appears to be the point of departure for a variety of
interesting extensions. First, as mentioned in the Introduction, we have considered the case where
~ flow control is applied in the form of probabilistic message rejections at a source node. However,

our analysis can easily be applied to the case where all messages must be assigned to a link.

--.Se:cond, we can introduce weights for the components f;(1;) of the performance metric so as to
_ penalize rejection more than delinquency in some desirable fashion. This setup would model
systems where messages are of some use when delinquent. Third, it is possible that our explicit
results for the M/M/1 link models may be extended to more general situations, so as to obtain
analytical solutions using the algorithm in section 3.1.

As discussed in section 3.2, of great interest is the wide applicability of stochastic gradient

estimation and on-line optimization techniques that take advantage of observed system data with

little or no information concerning parameters or distributions involved in an analytical model.

18

Motivated by the results in [10],{11], we believe that such techniques will indeed be useful in this .



framework, in order to develop adaptive schemes for flow control and routing in networks with
real-time traffic.

An obvious extension of great interest is the generalization of our results to more complex
networks. Consider, for instance, a virtual circuit model, consisting of several links in tandem.
Since a link is often shared by many virtual circuits, flow control at a source node presents the
opportunity to improve performance for all real-time traffic sharing that link. Moreover, it is
possible that rejection of messages can be implemented not only at the source node of a virtual
circuit, but also at intermediate nodes. This appears to be a fruitful area for further research. In
addition, the presence of finite buffers provides yet another opportunity to benefit from rejections
by simultaneously reducing blocking probabilities.

Another challenging problem concerns the extension of our flow allocation problem for real-
time traffic to the case of dynamic policies, i.e. policies taking into account some system state
information (e.g. instantaneous queue lengths in making link assignments). Some of the

techniques used in [9] seem promising for this situation.
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