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Abstract

We consider a special class of load balancing problems: a centralized job scheduler and several
processors, together with a probabilistic scheduling policy that the scheduler uses to direct an
incoming job to one the processors. We examine the case that no assumptions are made about the
form of the arrival and service distributions and that direct on-line sensitivity measurements are
made in the system. These measurements are typically noisy and thus optimizations algorithms used
to produce optimal scheduling policies must be redesigned to handle the randomness introduced
by these system measurements. Two stochastic approximation schemes, one scheme from the
literature and the other introduced here, are used to augment an optimization algorithm in order
to minimize, on-line, the mean system time of a job with respect to the scheduling policy. The
second scheme, sampling-controlled iteration, provides a method of dealing with biasedness in
estimators, a property present in several relevant estimation procedures. Our main result is that
these iterative mechanisms converge to the optimal policy for this formulation of the problem. A
comparison between the two schemes is made using simulation results for a system of six processors
and additional results are presented in the case that the arrival process may be assumed Poisson.
In addition, we present a technique for the case that the feasibility constraints are unknown and
must themselves be estimated from system measurements.
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1. Introduction

The general problem of load balancing in a computer system has been the subject of widespread
study for several years {24]. In this paper, we consider a restricted class of load balancing problems
[6,19,26,29,42], in which jobs arrive at a central job scheduler at a rate A to be served at any one

of K processors. A job requires an average service time of #l on processor . The central job
s

scheduler dispatches an incoming job to processor queue i with probability z; and once a job is
assigned to a particular queue it remains there until served. The service discipline is assumed to
be first-come-first-served. Stated simply, the objective is to find the optimal scheduling policy, i.e.,
the vector of probabilities X = (z7, ..., z%) that minimizes the expected completion time of a job.

In this paper, we are concerned with systems in which little is known about the stochastic
nature of the job arrival process or job service requirements and in which measurements must be
made to obtain even the basic parameters A and p;. We identify two parts to the problem of finding
the optimal policy, namely estimation and optimization, and examine several approaches towards
solving this problem. It is concluded that a scheme which uniforfnly integrates these two processes is
desirable and in this case, care must be taken to ensure that random errors encountered in estimation
do not greatly impede the optimization process. In this paper, we focus on applying stochastic
approximation techniques to the problem of load balancing. Our contribution is to present an
optimization algorithm and to augment it into a stochastic approximation (optimization) procedure
through the use of two schemes for interleaving an iterative optimization algorithm with the process
of estimation. One scheme is well-established and is commonly called stochastic approximation. In
this paper, we refer to this scheme as stepsize-controlled iteration; we also introduce an alternative
iteration technique which we refer to as sampling-controlled iteration. This second scheme, as we
will demonstrate, has the added advantage of removing bias from estimators, the importance of
this being that several commonly used estimators associated with queueing systems are known to
be biased [18]. One of the main results of this paper is that we establish the theoretical convergence
of the resulting algorithms. We present simulation results that compare the convergence behavior
of the two schemes and, furthermore, also consider the situation in which the feasibility constraints
are unknown and must themselves be estimated from the system. Finally, in the case that certain
assumptions may be made about the arrival process, we discuss the use of alternative estimation
procedures.

In the next section we define the load balancing problem examined in this paper. In Section 3,
we discuss several past approaches towards solving the problem and motivate the use of stochastic
approximation. Section 4 contains a presentation of an optimization algorithm and the two schemes
for augmenting the algorithm into a stochastic approximation procedure. The main theoretical
results are also presented in this section. In Section 5, we examine simulation results, consider
the estimation of unknown constraints and discuss alternative estimation procedures. Finally, in

Section 6, we present our concluding remarks and outline possible future work.
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Figure 1: A centralized load balancing problem
2. Problem Definition

In this section we present a formal definition of the load balancing problem under consideration.
We also introduce the notation used in the remainder of the paper. Consider the system in figure
1. Jobs arrive at a central job scheduler which assigns each job to a processor queue according to
a probabilistic policy. The processors serve their job queues in a first-come-first-served fashion and
jobs that complete execution leave the system. We further characterize the system as follows:

e Arrival process. The interarrival times of the jobs arriving at the scheduler are independent
random samples from an unknown distribution A with finite mean and variance. We denote
the mean by % where A is the unknown arrival rate.

o Service requirements. A job served at processor ¢, 1 < i < K, requires a period of time that
is taken independently from an unknown distribution B; with finite mean and variance. As
with the arrival rate, the mean of this distribution is also unknown and, in the usual manner,
is written as % The collection of parameters relevant to the distributions A and B;, which

includes A and p;, is denoted as ©.

o Scheduling (load balancing) policy. The central job scheduler sends an incoming job to the
ith processor queue with probability z;. Thus, ©X%, z; = 1. The vector X = (z;,...,zk) is

1=1



called the scheduling policy. Once a job is assigned to a particular queue, it remains there
until it is served by the corresponding processor.

» Performance metric. The performance metric we consider in this paper is the mean comple-
tion time of a job, that is, the time between a job’s arrival at the centralized dispatcher and
its completion at one of the K processors. The completion time is also commonly referred to
as the delay or response time for a job. We assume the existence of a continuous mean delay
function D(z,, ...,zx, ©) that is convex in z,, ...,z for every set of parameters ©. We remark
here that the methods presented in this paper are not bound to this choice of a performance
metric. Provided that appropriate estimators are used, the algorithms and theoretical results
shown here apply to any metric.

We are now in a position to formally state the problem:

min D(z,,...zk,0)
140 0lTK
K
s.t. Z ;=1
=1
Vi: z; 20
Viide;<pg (P1)

Let X~ be the solution to the above problem and define the set S of policies such that for each
policy X € §, the constraints above are satisfied. We assume that an initial policy X, € S is
known. Note that the set §, being an intersection of the three convex sets that specify feasibility,
is itself convex. Also note that the second inequality constraint contains A and p; which have been
assumed to be unknown. Initially, we consider the simplified case that Az; < p; is satisfied for all
z; < 1, i.e,, no queue can be overloaded. Later, in section 5, we consider more difficult problem of
estimating the constraint Az; < p; concurrently with the execution of the optimization procedure.
In the next section we examine several general approaches towards determining the optimal control
policy X~.

3. Approaches to Policy Optimization

Figure 2 shows a tree categorizing various solution paradigms to this load balancing problem.
These may be broadly divided into two categories: methods based on models of the system and
those based on direct stochastic approximation, which is the approach adopted in this paper. We
argue that former are sensitive to assumptions made about the arrival and service distributions

and, thus, consider the latter method, which does not involve solving any such model. Below we
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Figure 2: Approaches to solving problem P,

discuss some of the modeling approaches in detail and motivate the use of stochastic approximation
methods.

3.1 Approaches based on system models

In the first and most prevalent approach, assumptions are made about the distributions A and
B; of the arrival and service processes respectively [26,29] and a queueing model is formulated for
the system in figure 1. If this model is analytically tractable, an expression for the mean delay
function D(X,®) can be constructed and then solved for X~. For example, if we assume that

both the interarrival and service distributions are exponential then it is possible to show that (e.g.
(6,29]):

D(Zl, ,-‘BK,@) Z

1—1

- Az,)

We note that, in many cases, however, assumptions made about the distributions 4 and B; make
it difficult to obtain an expression for D(X, ©). Nonetheless, tractable models are important and

useful and accordingly, we first consider two approaches towards solving problem P; given that an
expression for D is available.

As mentioned earlier, the parameters of the distributions are often not known a priori and
hence, must be estimated using measurements taken from the system. For example, in the case of



the M/M/1 type example above, the arrival rate, A, and the service rates, u; must be estimated.
In the first of the two approaches discussed here, the processes of estimation and optimization
are temporally separated. The relevant parameters are first estimated in order to completely
specify the function D(X, ©) and D(X, ©) is then minimized using some convenient optimization
technique. For example in the M/M/1 case above, estimates ;, ..., ik and X are obtained after
a finite period of observation in the system and then, using these estimates, the delay function

D(zy,...,zK, A i, ..., bk ) is minimized. We use the notation © to denote an estimate of ©.

We note that a closed-form analytic solution of the minimization problem is typically very
difficult [29] (for solutions when the distributions A and B; are assumed to be exponential see [6]
and also the O(K log K) algorithm in [42]) and, therefbre, in order to find minyes D(X, ©), we
focus on iterative methods of optimization instead. Typically, an initial, feasible policy Xo € S is
chosen and at each step (iteration) of the algorithm, a new vector is generated:

x4 = g(x™, 8)

where Q represents the procedure by which X(**1) is computed by the algorithm. In this man-
ner, one may expect X" to converge to a feasible policy. In the case that the estimates of the
parameters are exact, i.e., A = A and fi; = A, it is possible to show that for several algorithms (see
[2,8,20,35,39,43) for example):

lim X = x~

n——oo

i.e. that these algorithms converge to the optimal policy for problem P;. Note that since the

optimization phase begins only after the estimation is complete, the quality of the estimate © is
independent of n, the iteration number of the algorithm.

If the assumptions made about the arrival and service distributions are reasonable then this ap-
proach of separate estimation followed by iterative optimization may be appropriate since one hopes
that the two functions, D(X, ®) and D(X, ©) are approximately equal and thus lim,_,. X ~ X".
However, we observe two major disadvantages with this method. First, note that during the esti-
mation phase, some scheduling policy must be in operation in order to make the measurements. If
this policy is suboptimal, then the resulting performance of the system during the estimation phase
may be poor. The second disadvantage, which from a theoretical standpoint is the more serious
one, is that if the estimates are not accurate, we might not obtain convergence close to the optimal
policy, i.e.,

lim X % x*

n=—00

(even worse, it is possible to converge to an infeasible policy, i.e., lim, 0 X (n) ¢ S). It is interesting
to observe that the two disadvantages described above have diametrically opposed remedies. In
order to limit the use of a poor scheduling policy during the estimation phase. the period of



estimation should be kept small. However, this may result in highly inaccurate estimates and
algorithmic convergence to an unacceptably suboptimal policy. Similarly, if the estimates are
required to be substantially accurate then one would require a protracted estimation phase in
which the system operates under a suboptimal policy. Since the estimation phase must halt in
some finite time, one is faced with the question of judging when © and ©, which is being estimated,

are close enough so that the two delay functions D(X,®) and D(X, ©) are approximately equal.

In order to overcome the two problems discussed above, we are motivated to interleave the
estimation and optimization phases into a single integrated process. Consider the example of

M/M /1 processor queues and an iterative optimization algorithm, Q. Further, let ﬁ(") be an

i
estimate of p; using all the measurements up to the time at which the n** algorithmic iteration
of Q is executed (A is similarly defined). For example, [LS") may be taken as the inverse of the
average of all the service time samples obtained at queue ¢ between the time the system first started

operation and n*” iteration. Then define each iterative step as [5]:
X+ = @(x ), A0 a4l ale)y

Intuitively, the optimization algorithm proceeds using all the information gathered by the concur-

rently executing estimation process. As n increases, we may expect that the estimates A(®) and ﬁg")
get increasingly accurate and thus later iterations tend to use better information. Theoretically,
it is possible to show [5] that, under certain regularity conditions, X{®) converges to X*. More
formally,

lim |X() - X

n-—00

=0 a.s.

where the notation a.s. is used to denote convergence almost surely [34].

We note that the disadvantages of separate estimation and optimization are overcome to some
extent here. Since several iterative schemes gradually improve the objective function with each
successive iteration, it may be reasonable to expect some improvement as the scheduling policy
iteratively changes as a result of the iterative optimization process. Furthermore, from a theoretical
standpoint, it is possible to prove eventual convergence to the optimum.

3.2 Direct stochastic approximation

The approaches discussed above require that assumptions be made about the nature of the
distributions A and B; and further, that an expression for the mean delay D(X, ©) be obtained in
terms of the parameters, ©, and the scheduling policy vector, X. This expression is used in the
algorithm @ where, typically [2,20], partial derivatives, g—f:, are used in the computation at each
iteration. As discussed in the above section, if the modeling assumptions are valid then the above
iterative method is a reasonable option. However, in some cases, even if the assumptions are valid,



the resulting model can be intractable and therefore, it may not be easy to obtain an expression
for D(X,0).

We are thus interested in the case in which no modeling assumptions are made about the
distributions A and B; or that, even if they are valid, the corresponding queueing problem is not
amenable to analytic solution. We restrict our attention to a situation in which no model of the
system is solved and, instead, derivative information is directly estimated from the system. In this
paper, we focus on a particular iterative mechanism, Q (described below), and present two schemes
by which this mechanism may be augmented into a combined estimation-optimization procedure.

Stochastic approximation refers to an algorithmic technique that is used to handle noise or
randomness in data. Since its inception [33], several iterative optimization algorithms have been
augmented to stochastic approximation procedures and many new procedures have been proposed
[21,44). The technique provides a method based on strong theoretical foundations in which noise in
the data is systematically masked out in the process of iterating towards a solution. This procedure
has found applications in a large number of research and applied problems [44]. In computer science,
the stochastic approximation technique has been applied in the area of multiaccess communications
[9], learning [23] and, in addition, to centralized load balancing [19].

There are several differences between our work and the research of [19]. We apply the standard
stochastic approximation technique to a different optimization algorithm, and more importantly,
introduce a new stochastic approximation technique for this optimization algorithm. This new
technique, sampling-controlled iteration, has the desirable property of being able to handle bias in
the class of estimators useful here, most of which are, in fact, known to be biased. In addition, we
consider the problem of unknown feasibility constraints. There are other differences [19] as well: in
[19] the distributions A and B; are all taken to be of the exponential type and the minimization of
the mean delay function, D, is reformulated into a problem of minimizing weighted least squares
of processor idle times. An idle time estimator is introduced and convergence to the optimum
is demonstrated. In contrast, we assume very little about the nature of the arrival and service
distributions and use a different estimator, the Perturbation Analysis estimator [14,15] for the
derivative of the delay with respect to the scheduling policy. We note that this estimator together
with others [32] have been used in problems concerning load balancing [31] and routing [4].

In the next section we present an iterative optimization algorithm together with two stochastic
approximation schemes and we discuss their convergence properties.

4. Two Stochastic Approximation Schemes

For the reasons discussed in earlier sections, namely better performance during estimation and
eventual convergence, we have observed that it is important to interleave the processes of estimation
and optimization. In this section we describe an iterative procedure in which successive algorithmic



computations are separated by periods of estimation. At each computational step n, the current
scheduling policy, X ("), is updated to X (n+1) ysing the measurements accrued in the observation

period between the current time and the time at which X (") was computed.

The computational procedure at each step uses estimates of the partial derivatives, g—:ﬁ’ in

updating the scheduling policy. We use the Perturbation Analysis technique [14,15] in order to
obtain these estimates from the queues. In this paper, we assume that this technique can be
implemented in the system and only briefly outline the procedure for obtaining derivatives; for
further details the reader is referred to [14,15]. The main idea behind Perturbation Analysis
is simple: by tracking each incoming job through the system, it is not only possible to collect
statistics such as the average completion time, but also to collect, in parallel, the statistics that
would correspond to a hypothetical increase in the arrival rate. For example, consider processor
queue i and let D;(r;) denote the delay at that queue corresponding to some input rate r;. By
simultaneously obtaining estimates of D;(r;) and D;(r; + Ar;) at input)rates r; and r; + Ar;, one
D,'(r.'+AA1'.')—D§(r.').

Ti

obtains an estimate of the derivative as

Clearly, it is easy to obtain estimates

of Di(r;) when the queue is operating with an arrival rate of #;, What is not obvious is that the
Perturbation Analysis technique allows one to obtain estimates of D;(r; + Ar;) simultaneously with
those of D;(r;) while incurring little extra overhead [14,15].

In the load balancing problem discussed in this paper, if D; represents the expected delay at
queue 7, then D = 1K 2;D;. Therefore,

8D 0D;
-5;; = Z{E‘;’ + Dg (1)
If we take r; = Az;, then
dD; _0D;
Pa: o @)

Now, as discussed above, the Perturbation Analysis technique provides a means of obtaining esti-

mates of %—ﬁ_‘ and thus, by additionally using estimates for A and D;, we may, through equations

(1) and (2), get an estimate for gfi. We introduce now some of the notation used in describing the

computation at each step:

t - denotes time. Therefore, t > 0; we assume that the system is started at time ¢t = 0.

n - the iteration number of the algorithm.

Tn - the random time at which the n®h iteration of the algorithm starts execution or, equivalently,
the end of the n** measurement interval. We assume that the computation itself, which
uses the measurements accrued in this interval, requires negligible time and therefore, its
contribution to the duration of the interval may be ignored.



M,-(") - the (random) number of samples obtained of -g—f; since 7,1, i.e., since the (n—1)* iteration.
We assume that each estimation of the derivative is performed over a busy period for that

queue and that the measurement obtained from a single busy period constitutes a sample.
J A INPY sequence of positive integers to be described later.

fi(z:) - for convenience of description, we use the notation f;(z;) to denote the partial derivative,

aD
oz;°

£

f‘.(;()")(z;) - an estimate of % constructed from M,-(") samples of gg since T,—;. These estimates

may be very noisy (possessing a high variance) when Mi(") is small, but are nonetheless used
in the schemes to be described below.

gmin - @ small positive number arbitrarily close to but not equal to zero.

Given the above definitions, we can now more formally define 7, as

Tw= inf {Vi:M™ > L™}

t>Tp)

Thus, 7, is the time at which at least L(*) samples have been obtained from each queue since the
last iteration.

In order to discuss the updating algorithm and the stochastic approximation schemes that we
present, it is necessary to distinguish between the algorithm and the stochastic approximation
techniques that are incorporated into the algorithm handling the noisy estimates, fi(;;'()ﬂ)‘ Below,
we present the combined procedures that result from applying the techniques to a particular op-
timization algorithm. The optimization algorithm itself is based on general gradient projection
methods [2,35] and was first used in the context of microeconomics as an alternative to the pric-
ing mechanism [10]. Since then it was introduced into computer science literature in the area of
general resource allocation by [13]. In {13], a framework is introduced for distributed resource allo-
cation mechanisms and mappings are described that permit decentralized execution with different
communication structures. We note that the construction of the feasibility set, Aln) (described
below), in [10] was found to be incorrect. This was corrected for in {20] and in addition, in {20},
the use second derivative information and constant-order communication was considered. We also
note that related gradient-based approaches have been used in several routing and load balancing
problems [2,4,24,31] and also in the area of learning automata [36].

We now describe the computational procedure at each step. Note that an algorithm for updating
the policy, X(), at each step may be described by the equation: X("+1) = X () 4 @, AX("), where

an is a scaling factor or stepsize. Thus, expressions for Aa:gn) are sufficient to completely describe



the computation at each step:

P ) ! (n)
Az )= (f.L(n) |4(n)| Z fL(n)) (3)

jeA(n)

where Azsn) =0,Vi ¢ A®) and A(™ is the set described below:

/* Algorithm for computmg the set A(®) */
(i)  For all 4, sort f ()
(i) Set E = {m|f), = min; f i
(iii) Do step (iv) for each j,j ¢ E in ascending order of f L
(iv) ©¥ z(") + a.nA:c( ") > Gmin as a result of
the realloca.t:on defined by equation 3 above with A = Bu {5},

then set E = E U j. The use of gmin is discussed below.
(v) Set AM=E

The following intuitive explanation of equation (3) may be given. The probability of sending a
job to a particular processor i is increased (Az; > 0) if the estimated marginal expected completion
time is less than that of the estimated average (over all processors) of the marginal expected
completion time. In contrast, if this estimated marginal completion time for processor ¢ is higher
than the measured average, then the probability of sending a job to that processor is decreased

(Az; < 0). The set A(™) is used to maintain the feasibility constraints, zsn) > 0. Note that if
we were to allow mg") = 0 then no jobs would be sent to that queue and hence for m > n we
would not obtain any samples from the ith queue. To ensure that zﬁ") remains positive, we thus

force zg") > gmin and add this as a constraint to problem P;. Furthermore, it is assumed that the
feasibility constraint, Az; < u;, is satisfied whenever z; < 1. Later, in section 5, we consider the
more general problem of arbitrary processor utilizations.

Due to the noise in the estimates, ff;()n), the update algorithm described above would not
ordinarily converge to the optimum policy, X*, unless some care is taken to mask out the effects
of the noise. We now present two such methods and thereby, describe how the basic optimization
algorithm is augmented into a stochastic approximation procedure. The first of these schemes is
based on the standard stochastic approximation technique [21,33] and we call this stepsize-controlled
iteration. The second technique, introduced here, is called sampling-controlled iteration. The two
schemes are presented implicitly by stating the assumptions required for convergence. Thus, the

first scheme is captured in statement A1 of the assumptions for Theorem 1 whereas the second one
is described in statement A4 below.

Stepsize-controlled iteration:

10



Al . The stepsizes satisfy the following conditions: Vn : a, > 0, limp—ean = 0 and

limy, o 3-7; @i = 00. Furthermore, ¥n :-L(") = L where L > 1.

A2 . We assume that a strong law of large numbers exists for the random variables Azsn) in the

sense that if Vn : E[Azgn)j > & for some § > 0 then limp_.0 37y Az,(j) = 00 a.s.. Note that
if the queues have a regenerative property when the queue is empty then successive random

samples of Az( ")

strong law.

A3 . The estimates f ;L(n) are independent, unbiased estimates of w1th finite variance.

are independent samples and thus, we may apply the standard form of the

THEOREM 1: Under assumptions stated in the problem definition and A1 — A3, we have

lim X™ = X~ a.s.

n—oo

PROOF: (see appendix).

Sampling-controlled iteration:

A4 . The sequence of integers L("™) satisfies the following conditions: L(®) > 1 and Vn :

L™ In addition, Vn : a, = a where a > 0.

A5 . We assume that the estimates fi(;()n) are strongly consistent in the following sense:

oD
lim f (“,(z,) =% 5

n—oo H

A6. Since £ <p(n) 15 strongly consistent, Pr(lim,_o f lL(“)(:o:,) — fi(z;)] = 1 for fixed X.

L{n+1) 5

Consider

those sample paths for which f(") (z:) — fi(z:). Then, for a given such sample path,

iL(n)
Ve > 0,3M such that Vn > M,

;(2()'-)(2:) fx(z.)' <e

We assume that for each z; and each such sample path, there exists an open neighbourhood

of z;, denoted by N(z;), such that Yn > M and Vz € N(z;),

(@) - filz)| < ¢

11



We demonstrate that this assumption is not overly restrictive by showing that additive white
noise satisfies this condition (and thus, the work of 5] falls within this framework). Consider
the following model:

) (23) = fil@s) + n

where £, is the measurement noise such that E[{,] = 0 and {, — 0 almost surely. Then, for
a given sample path on which the estimate converges, choose M as above and select M’ such
that Vo > M’ : |€a] < €. Then, Vn > max(M, M') and Vz,

|75 (2) - fi(z)| < e

Intuitively, this assumption states that the underlying model of randomness is such that for

a particular sample path, the accuracy of fg‘)ﬂ)(zi) is approximately the same for values of
z in a small neighbourhood of z; using the same sample path. Stated differently, the rate at
which noise is removed in estimating f;(z;) through measurements of f;(z;) along a particular
sample path is approximately the same as that for f;(z; + §) for small enough §é.

THEOREM 2: Under the conditions described in earlier sections and A4 — A6, there exists a
stepsize a > 0 such that

lim X™ = X~ a.s.

n—odo

PROOF: (see appendix).

A few comments are in order here. First, most of the known estimators associated with queueing
systems such as the derivative estimators [14,32,41}, the estimator in [19] and the estimator of
equation (4) in this paper are known to be biased [18]. The bias is usually due to the correlation
present in a single cycle of a regenerative system [18] or due to small sample bias (for example, the
estimator in [41]). In these cases, assumption A3 is not satisfied. However, we note that, in using
stepsize-controlled iteration, there will still be convergence to a stable, albeit possibly suboptimal
policy. In this case one may hope that the bias is small enough not to matter or that there is some
cancelling effect due to symmetry (such as when the service distributions are identical).

Secondly, we note that sampling-controlled iteration does not require that the estimators be
unbiased, only that they be strongly consistent. It is known that the likelihood estimator of [32] and
formula-based estimators, such as the one in equation (4) in this paper, are strongly consistent. We
note that the Infinitesimal Perturbation Analysis estimator, described in [41], is strongly consistent
for the M/G/1 queue.

Thirdly, we do not know whether assumption A6 is satisfied by any of the known estimators
and instead, make the following intuitive appeal. The arrival and service distributions may be
assumed independent of the scheduling policy and therefore, the degree of noise present along a

12



particular sample path for fixed X should remain independent of X. Thus, for that sample path,
if we change z; to z; + §, then the rate at which noise is filtered out in estimating f;(z;) should be
approximately the same as that for f;(z; + §) for small enough §. We have certainly observed this
to be true whenever measured in our simulation system. Note also that a third algorithm scheme
results from taking stepsizes according to A1 and the number of samples according to A4. For this

case assumption A5 is sufficient to prove convergence. However, we believe that convergence will
be too slow for practical use.

Finally, we note that, for experimental results in this paper, we use the Finite Perturbation
Analysis estimator [14] instead of Infinitesimal Perturbation Analysis [41]. Theoretically, Finite
Perturbation Analysis, is only a heuristic from which an estimate can only be made arbitrarily
close but not equal to the true derivative. However, we find that it is simple to implement, requires
no assumption to be made about the distributions and, in our simulation results, appears to be the
best estimator for the load balancing problem among those studied here.

5. Experimental Results and Discussion

In the sections above we have seen that there are several approaches towards solving problem P,
and we have focused, in particular, on two stochastic approximation schemes that augment a proven
optimization algorithm. In this section, we present some simulation results using these schemes in
a system consisting of six processors. In addition, we consider the problem of unknown inequality
constraints We note here that in addition to the Perturbation Analysis estimator considered in the
previous sections, there exist several other estimators that might possibly be used, provided that
certain assumptions may be made about the arrival distribution. We thus also introduce, in this
section, a new estimator based on measurements of delays and also examine its use in our load
balancing problem. |

5.1 Comparison of the Two Schemes

For our simulation results, we considered a homogeneous system of six processors and took
the interarrival and service distributions to be exponential with parameters A = p; =,...,ux = 2
(Thus, 27 =, ...,z = 1 and D(X",0) = 0.6). The initial vector, X(®) was taken to be X =
0.3,0.2,0.1,0.1,0.15,0.15. Next, we took the perturbation constant to be Ar; = 0.001. Each point
plotted in each curve is the result of an average taken from 50 simulation runs. The confidence
intervals, computed from tables of Student-t distributions, were found to be less than one-hundreth
of each y-axis unit and are omitted from the graphs.

Figure 3 shows a plot of D(X (™), ©) at various values of 7, i.e., a plot of the expected job delay
for various policies generated through the progress of the algorithm. In order to study the progress
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Figure 3: Convergence profiles

made through time, we plot the performance metric after every 500 departures from the entire
system. The two curves plotted in figure 3 may be characterized as follows:

¢ C): Stepsize-controlled iteration (standard stochastic approximation) with a, = 0.1/n, a9 =
0.1, L(® = L = 50. Although in standard stochastic approximation, L is usually taken to be
unity, we have observed that it is possible to obtain slightly better performance with higher
values of L and, certainly, for a given choice of system parameters, there is likely to be an
optimal value. A search for an optimal value of L is extremely time consuming and since
L = 50 performs at least as well as L = 1 and our primary purpose was to make a comparison

between sampling-controlled iteration and standard stochastic approximation, we settled on
the chosen value of L.

e C;: The second stochastic approximation scheme, sampling-controlled iteration, with a,, =
a =0.01, L™ = L("=1) 4 10 and L(® = 10. As with the above scheme, the performance here
also depends on the choice of a and the recurrence relation for L("). We mention that the
stepsize ¢ was chosen after a 4-iteration binary search in the interval {0.005,0.1] and, in lien
of the cost of searching for an optimal recurrence relation, the choice of 10 entirely arbitrary.

We observe, from figure 3, that sampling-controlled iteration results in poor performance in the
initial stages of the procedure and then rapidly gains on standard stochastic approximation, with
clearly better performance towards the middle and later stages.

We are not only concerned with the mean performance of a stochastic approximation scheme
but also with the variance with which successive policies are produced in the course of algorithmic
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iteration. That is, the curves in figure 3 reveal an average trend but do not indicate how an
arbitrary single run might perform in comparison with the mean performance. We attempt to
capture this variability in performance in figure 4 which plots the variances of mean delay for the
policies produced by the two stochastic approximation schemes:

e C3: Stepsize-controlled iteration with a,, = 0.1/n, ap = 0.1 and L = 50.
¢ C4: Sampling-controlled iteration with a, = a = 0.01, L(®) = L("~1) 1 10 and L9 = 10,

We observe that the variance in policies produced by stepsize-controlled iteration is significanly
higher than in the policies produced by sampling-controlled iteration. While we cannot state
conclusively that sampling-controlled iteration is better than stepsize-controlled iteration, we seek
to provide an intuitive explanation of the better performance here and attempt to chararacterize
situations in which sampling-controlled iteration may be preferred over the standard method.

In order to explain better the performance of sampling-controlled iteration, consider the simple
case in which the inequality constraints are not active at the optimum. We use the notation d(X (™)
to denote the spread of the marginal delays: let

d(X ™) = max|fi(={) - £;(z{)|
¥
Then, as the algorithm converges, d(X(")) — 0, implying that the derivatives get closer and

closer and thereby resulting in the convergence of the policy to a Kuhn-Tucker point. Now, cach

algorithmic step represented by equation (3) uses precisely the above spread of derivatives to achieve
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movement of the current policy in the direction of the optimum. However, noise in the estimates
of the derivatives can obscure the true derivative values and, hence, as dX (")) becomes smaller,
the effect of the noise is potentially more damaging. Thus, as d(X (n)) diminishes in magnitude,
it becomes necessary to obtain more refined estimates of the derivatives and also to remove small
sample bias in order to distinguish them within a ball of radius d(X (")). This, then, is the principle
behind sampling-controlled iteration.

For large n, and hence large L(™) the estimates get progressively more accurate and so we may
expect this scheme to perform better than standard stochastic approximation. Similar observations
have been made by other research efforts in stochastic approximation {3,16] as well as in other areas
[1]. In [3], 2 fixed number of iterations was considered and the optimal selection of stepsizes and
sample sizes was studied in order to minimize mean-squared-error for the particular case of the
Robbins-Munro algorithm {33]. We note, however, that stepsize-controlled iteration is still well-
suited to the problem examined here and may be the better scheme for other problems.

In the early stages of our research, it was thought that the general principle above might
be extended by computing confidence intervals about the estimates of the derivatives and then
determining the sampling period, L™, so that the spread of derivatives could be distinguished
with high probability. In this manner one would sample only as much as necessary. However, in
order to estimate confidence intervals, estimates of the variance are required and we find that the
noise content in samples of the variance is much higher than in derivative samples. Therefore, the
use of confidence information resulted in poorer performance and, in some cases involving fixed
stepsizes, loss of convergence.

5.2 Unknown Feasibility Constraints

We have thus far only treated the case in which the constraint /\zgn) < pi is automatically
satisfied when zE") < 1. However, it is possible that in certain systems, 5 < 1 for some ¢ and thus,

ensuring that :cE") < 1 does not guarantee that Azg") < p;i . Since A and p; are unknown, there are
several problems to be considered when zE") is inadvertently made greater (through algorithmic
iteration) than &i. Firstly, the ith queue gets overloaded and hence queue instability occurs. As
a result, the current busy period may never end and (since derivative estimation is done over
several busy periods) may jeopardize the very execution of the algorithm. Secondly, in the case

that ,\zE") < pi, nothing is known about the properties of the estimators themselves, i.e., whether
they even produce any meaningful results in the circumstances when a queue is overloaded.

We now present a method by which the above problems may be overcome. This involves
changing both the optimization algorithm as well as the stochastic approximation procedure . We
refer the reader to [37] for details and instead, present only an intuitive explantion and simulation
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results here. Let #Sn) and A(™) be estimates of y; and A as defined in section 3, ie., g™ is an

1
estimate constructed from observing all service time samples from ¢t = 0 upto 7,, the time of the

(n)
n'h iteration (A(") is similarly defined). Define bg") = %4, the current estimate of the upper

constraint on z; before the n'* iteration. The algorithm is modified [37] so that at each iteration
0< ::S") < bE") — ¢ for some small { > 0. If { is chosen so that Vi : z; < 4 — ( then it can be
shown [37) that limp e X(® — X~ a.5.. Furthermore, if at any iteration 37 : :cgn) > bg") then a
new policy, X'("), is chosen (using a feasibility operator [37]) in which Vi : z,(") < bg") and such that
the distance |X ) _ x (")l is as small as possible. to

We may offer the following intuitive explanation. We assume that bg") is a strongly consistent

estimator of £i. Consider a sample path on which both f‘.(z(),.)

probability one [37]. Then, for this sample path, 3N such that Vvn > N : Ibg") - %‘l < % Thus,

and bﬁ“) converge; these occur with

Vo> N: zE") < bg") and so fz.(g(),‘, will provide consistent estimates for all n > N. The earlier

convergence results in this paper may then be modified to prove that X(®) — X~ a.s. [37].

Figure 5 shows a graph that compares stepsize and sampling-controlled iteration for the six-
processor system described above with both iteration schemes modified as outlined above (see
[37] for details). In this case the service and arrival parameters were taken to be p; = 2 and
A = 8 and thus we have the constraint xz; < 0.25. The initial policy was taken to be X -
(0.2,0.2,0.18,0.18,0.12,0.12). We note, however, that the initial policy may be arbitrary and not
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even feasible [37].

e Cs: Stepsize-controlled iteration with a, = 0.1/n, ap = 0.1 and L = 50.
o Cg: Sampling-controlled iteration with a, = a = 0.001, L(") = L(»-1) 4+ 10 and L(9 = 10.

We observe that in this case the algorithm under sampling-controlled iteration results in a better
convergence profile.

5.3 Other Estimators

We now turn our attention to the case that assumptions may be made about the distribu-
tions A and B;. When 4 is exponentially distributed, i.e., the arrivals form a Poisson process, a
likelihood-ratio estimator of the type in [11,32] may be used. Our experience with the simulated
system described above shows that, in general, the perturbation analysis estimator results in better
performance. For example, figure 6 shows the convergence profile for the following parameters:

e C7: Sampling-controlled iteration with a, = a = 0.01, (™ = L(»=1) L 10 and L(® = 10 using
the likelihood estimator in [11,31).

We observe that, in this case, using the perturbation analysis estimator (curves C; and C,) results
in better performance.

We focus now on yet another estimator that also requires the Poisson arrival assumption, but
uses estimates of the service times, the mean delays and processor utilization (rather than direct
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derivative estimates) in order to estimate the derivatives. Let f)f") , ﬁg") and ﬁf") be estimates

of the delays, service times and processor utilizations at the ith processor queue during a period
T("). The first two estimators may be taken, for example, as the a;verage of all delays and service
times respectively. For /5,(") , We may observe the total busy time, B(*) during 7(") and let ﬁ,(") =
B(™) /T(™), Using the expression for the mean delay of an M/G/1 queue [17], the following estimator,

fi(;(),,) of f; can be constructed:

.(n) 2 2
m _ 1 . B (b(") 1) (-(vo 1)
irm = Ty T\ D - ) 28D -5
T = 2 P N

\ c
1

n 2 aln 2

c(1-8) (5" \ 2x0-p)( &

+ ~(n) (m] T () (n) (4)
K 1-p; I 1-p;

2
The constant, ¢, represents -1—*2—6‘1, where C? is the coefficient of variation of the service time and

B € [0,1] is a weighting factor. Assuming that bf"), ﬂgn) and ﬁsn) are strongly consistent, then

fi(;()n) is easily seen to be a strongly consistent estimator for fi.

We now consider that case that ¢ = 1 and therefore, each queue is an M/M/1 system. In figure
6, we plot the convergence profiles for C; and C2, which use the perturbation analysis estimator,
together with the following curves that use the estimator of equation (4) (with 8 = 0.5):

o Cs: Stepsize-controlled iteration with a, = 0.1/n, ap = 0.1 and L(® = L = 50 using the
estimator in equation (4).

¢ Co: Sampling-controlled iteration with a, = a = 0.05, L™ = L(*~1) 4 10.and Ly = 10 using
the estimator in equation (4).

We note that with both stochastic approximation schemes, the estimator, ff;()”)_, of equation (4)
results in slightly better performance. Our reason for introducing this estimator is for cases in which
the service rates of the processors are known. In this case, if we take 8 = 1 for example, we obtain

an estimator that uses only response time estimates D,(“). This is useful when the centralized
scheduler maintains a timer and the individual processors do not possess timing or derivative
estimation capabilities. Initial results such as those in figure 6 indicate that such estimators may
be useful and efficient in these contexts.

Finally, for the special case of our simulation system, in which each queue is an M/M/1 queue,
we consider the use of an estimator based on the expression for the mean delay for this queue. The
derivative of the mean delay with respect to each z; can be expressed in terms of the parameters A
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and p; and, therefore, an estimator for the derivative can be constructed using the estimates A(")

and ™ described in section 3:

~(n)
(n i
f,'( ) i) = '. 5)
( ) (ﬁsn) _ A(")zi)z (

Figure 7 shows the results in comparing the above estimator in equation (5) with the Perturba-
tion Analysis estimator of previous sections. We plot the convergence profiles C; and C, together
with the following curves: ‘

e Cio: Stepsize-controlled iteration with an = 0.1/n,ap = 0.1 and L(® = [ = 50 using the
estimator in equation (5).

o Ci1: Sampling-controlled iteration with an =a =0.05, L™ = L("-1) 1 10 and Lo = 10 using
the estimator in equation (5).

We observe that, although the estimator (5) uses information collected since t = 0 and appears
to be the natural choice for an M/M/1-based system, the resulting performance is no better than
when Perturbation Analysis is used (curves C; and C,). Interestingly, these results also indicate
that the two formula-based estimators, (4) and (5) result in almost identical performance.
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6. Conclusions

In this paper, we have defined and examined a load balancing problem with centralized schedul-
ing. Our concerns focused on systems in which little is known about the nature of the arrival or
service distributions and each associated parameter must be estimated. Several approaches were
discussed and it was argued that a procedure interleaving both estimation and optimization was
desirable. Two stochastic approximation schemes, the standard method as well as one introduced
here, were presented to augment an optimization algorithm. The convergence of both these schemes
was established and simulation results were presented that provided a basis for comparison. It
was found that the second scheme, sampling-controlled iteration, in addition to its capability of
removing biasedness in estimators, resulted in better performance than standard stochastic approx-
imation. Additional results were presented for estimators in the case that the arrival process could
be assumed Poisson.

We note that there has recently been considerable interest in the use of learning automata
to solve non-linear optimization problems such as call routing [28,38] and scheduling {27]. The
similarities between the control problems of call routing and centralized load balancing suggest
the use of these automata for problem P;. It has been shown [28,38], for example, that certain
automata algorithms tend to equalize penalty probabilities. In problem P, this would correspond,
loosely, to equalizing mean delays across the processors. However, this does not necessarily imply
convergence to the optimum and our experience with simulating these algorithms has shown that
even when convergence is theoretically possible, it is extremely slow.

For future work, we observe that it would be important to study the behavior of stochastic
approximation procedures in the presence of non-stationary environments. In this case, recent
results on weak convergence methods [22] suggest that small but fixed stepsizes may be used to
track a moving environment. Next, in the case that no estimators for the derivatives are available,
Kiefer-Wolfowitz methods [21,44], which are often used in such situations, need to be examined
more carefully for the problem of load balancing. Finally, we note that, in a distributed system, it
is possible to have several interacting schedulers and thus issues such as uniqueness of optimality

and convergence must be addressed.
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Appendix

In this section we present the proofs for Theorem 1 and Theorem 2 of the paper. We note that
while several general convergence theorems have been proved for stochastic approximation algo-
rithms {7,21,25], we believe that the nature of the computation of the feasibility set A™) precludes
direct applicability of these theorems and instead, we prove our results directly. The difficulty in

applying of these general theorems directly is that the sorting operation in the computation of A(™)

causes Azgn) to be discontinuous in X. Also, this projection of the gradient is not the minimum
distance projection and therefore Theorem 5.3.1 in [21] is not directly applicable.

Given that X~ is the optimal policy and the assumptions made about the nature of the mean
delay function D, we write the Kuhn-Tucker conditions at X~ as follows:

D) = fi(s5) viieB
fi() > f;(s;) vi¢BjeB

for some set B C {1,..., K'}. We note that given our restriction that 2{;1 z; = 1, it is easy to show
that Vi € B, ] = gmin. We are now in a position to prove the two theorems.

PROOF OF THEOREM 1: Consider ¢ € B. It is possible to show (lemma 2 in [36]) that 3N
such that whenever n > N and :cf") < z - ¢, then E[Azgn)] > 6 > 0 (assumption A3 is

required here). Intuitively, this is equivalent to asserting that when zﬁ") < z7 — € then the
change at step m is strictly positive in expectation, i.e., there is a tendency to move towards

z;. Thus, since ) 27, a, = oo, the set of sample paths for which zS") converges to some
number other than z] occurs with probability zero.

Hence, we now consider only the remaining possibility that zf"’ does not converge at all. In

this case, there exists a set of sample paths that occur with strictly positive probability such
that 3¢,7,¢ with 7 > £ and integers ny,ny, ng, ... such that :x:S"') < z] -9, zsm) >z - €,
zEM) <zl-7, zsn‘) >z"—¢,.., e, zgn) crosses between the z* — ¢ and z* — 5 boundary
infinitely often. If there were no such % and ¢ then it would mean that zsn) — ;.

Next, let ¥(1),7(2),... be the stopping times at which the z* — 5 boundary is crossed and
6(1).6(2), ... be the stopping times when the z* — £ boundary is crossed. From this definition
we see that y(1) = n,¥(2) = ns,... and §(1) = ny,6(2) = ng,.... Since a, — 0 and

AzS") is bounded in [z} - 5,z — £], we must have §(n) — y(n) — oo. This implies that
lim,,_. o zfr(‘:),y(n) A:r:g"‘) — —oo which contradicts the strong law of large numbers for the

independent random variables Az:‘(""‘) for which E[Azf""‘)] > 0 (assumption A2). Hence the
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measure of the set of sample paths on which these infinite crossings occur is zero and therefore
zgn) -z

Note that above we assumed that crossings occured below z7, i.e., between z — 5 and z;-¢.
We could just as easily assumed that the crossings occured above, between 27 + £ and z} + 9
and a similar proof would go through O.

In order to prove Theorem 2, we first prove a lemma below. In the remainder of the appendix,
we focus on sampling-controlled iteration.

LEMMA 1: We have assumed that the estimator f ;p(m is strongly consistent. We may now

state that for a given sample path on which the estimate converges, Ve > 0, 3IM such that
Vn > M :Vz;,

£t (20) - fi(za)| < e

PROOF: Consider a particular sample path on which the estimate converges. By the strong
consistency assumption, A5, for each z in the domain of z; choose M, such that Yn > M,

;(Z()n) (=) - fr(”)l <e€

By A6, let N(z,€) be the neighbourhood of each z such that Yn > M, and Vy € N(z,¢),

(@) - fiw)| < e

Now, the neighbourhoods {Vn : N(z,¢)} form an open covering of the domain of z (gmin <
z < 1 — K¢min), which is compact. Hence, by the Heine-Borel theorem [30], there is a finite
subcover, N(zi,¢), N(z3,¢€),..., N(2p,€). Let M = max{M_,,..., Mz }. Then Vn > M it is
true that Vz,

5 (@) - f(z)| < €
and therefore we get our result 0.

PROOF OF THEOREM 2: Consider the iteration for the probability associated with a partic-
ular queue. We may write the following

2 = 2™ 4 Az
= ( (f (Z() )T 1 > f (Z()n)>
i 4] it
— (ﬂ) Z £; ) o™
- ! Ta()1 J oy

g7+ 4 gl
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where crlg") is a noise term such that lim,_, o™ = 0 almost surely and 'yg"ﬂ) is defined by

i
the rest of the expression.

We now focus on a particular iteration n and the case that d(X™) > ¢ for some € > 0. We
then examine the difference (at the n'* iteration) between the hypothetical case that there
is no noise in the measurement and the case that there is noise. Informally, the proof below
consists of showing two facts: first, if there were no noise then the iteration would result in a
monotonic decrease in objective function; secondly, the noise can be made small enough (by

considering large n) so that there is a monotonic decrease even when noise is present.

First, consider the deterministic case when ff;gn) = f; and let
d(Xt™) = max|fi(z:) - f;(25)]
i,j€B

where B is defined as earlier, in the Kuhn-Tucker conditions. It was shown in [20] that Ve > 0
there exists a (as defined in assumption A4) such that for d(X™) > e, AD(X (™) < 6. < 0,
ie.,

D(x+1)y - D(X™) < &,
In [20], we proved that since AD < § and € > 0 is arbitrary, monotonic decreases in the
delay function eventually result in convergence to the optimum. This means that in the

deterministic case, d(X (n)) — 0, i.e., convergence to a Kuhn-Tucker point.

We return to the case of interest in this paper in which fi(;:(),,) is a random variable. Now,

since D is continuous,

|p(x(+D) - D(Y+1)| < 7,

where 7, — 0 as ¢ — 0 (since we consider only those sample paths on which fi(g(),) converges

to f;). From Lemma 1, we can then choose M large enough so that o is small enough to
ensure that 7, < |6¢|. Then,

p(x™+) - p(X™) < 5, — |5]

resulting in a monotonic decrease in the mean delay function. Since ¢ > 0 is arbitrary, it
follows that d(X (™) — 0 and hence X(") converges to X* O.




