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ABSTRACT

Althongh prototyping has long been touted as a potentially valuable software engineering activity, it. has
never achieved widespread nse by developers of large-scale, production software. This is probably due in
part to an incompatibility between the languages and tools traditionally available for prototyping (e.g., Lisp
or Smalltalk) and the needs of large-scale-software developers, who must construct and experiment with
large prototypes. The recent surge of interest. in applying protolyping to the development ol large-scale,
production software will necessitate improved prototyping languages and tools appropriate for constructing
and experimenting with large, complex prototype systems.

In this paper, we explore techniqgues aimed al. one central aspect of prototyping that we feel is especially
significant. for large prototypes, namely that aspeet concerned with the definition of data objects. We
characterize and compare various technigites that might be useful in defining data objects in large prototype
systems, after first discussing some distinguishing characteristics of large prototype systems and identilying
some requirements that they imply. To make the discussion more concrete. we deseribe our implementations
of three techniques that represent different possibilities within the range of object definition techniques for
large prototype systems.



1 Introduction

Although prototyping has long been touted as a potentially valuable software engineering activity [12],
it has never really fulfilled that potential. In particular, prototyping has not achieved widespread use by
developers of large-scale, production software. This is probably due in part. to the dubious suitability of tra-
ditional prototyping languages aud tools (c.g., Lisp or Smalltalk) for use in constructing and experimenting
wilh large prototypes.

Recently there has been a surge of interest in applying protolyping to the development of large-scale,
production software, and a corresponding increase in cfforts to create suitable languages and tools for this
purpose (e.g.. [3]). This is a response to the fact that software systems are getting larger, more complex, and
costlier to build. In addition, the organizations acquiring these systems are demanding more, and carlier,
involvement in the development process and, therefore, need to be “shown™ something sooner. Crealing
appropriate prototyping languages and tools for responding to these needs will depend upon achieving a
better understanding of how to support prototyping. In particular, we sce a need for techniques that
support the development. of large. complex protolype systems, since prototypes of large, complex systems
are likely to be themselves large and complex.

In this paper, we explore techniques aimed at one central aspect of prototyping, namely that aspect
concerned with the definition of data objects. We seck to characterize and compare various techniques that
might. be useful in defining data objects in large prototype systems. Our characterization and evalualion
address questions such as: how those definitions are made, what form they take, where they are located,
how they are used, how they are changed. and what can be done to control the effects of those changes.
Section 2 first discusses some distinguishing characteristics of large protolype systems and identifies some
requirements for object. definition techniques that can support such prototyping. Section 3 then characterizes
a range of object definition technigues that fulfill those requirements to a grealer or lesser extent. ‘Lo make
the discussion more concrete, Scetion 1 contains descriptions of implementations that we have constructed
for three techniques that represent. different points within the characterized range. A single example is used
to illustrate and compare those impletentations and, by extension, the techniques they represent. Section 5
presents a comparative evaluation of the techniques laid out in Section 3. We conclude with a summary of

the results presented in this paper. a look at related work. and a prospectus of future work.

2 Requirements for Large Prototype Systems

The motivation for protolyping in software development. is the same as in other engineering aclivitios:

the prospect. of gaining information about. and experience with, the hehavior and structure of a system



before Lhat system is actually buill. 'T'he sooner and more thoronghly a prototype can be experimented
with, the more information and experience it. will provide, and the more valuable it will be. ‘Thus, there are

two fundamental requirements for prototyping of soltware systems:

e Rapid Development. A first version of a prototype software systemn should be up and running as
quickly as possible. ln other words, a developer shonld experience minimal delay hetween conceiving
of a system and being able to experiment with a first prototype ol that systemn.

o Easy Modification. (hanges in the prototype, often suggested by the results of previous experiments,
should be easy Lo incorporate. In other words, a developer should experience minimal delay betaween
experiments.,

Small prototypes of small- to medium-seale programs, constructed and used by a single developer, have
often been able Lo micet these goals rather easily. Since they have Ly pically consisted of relatively lew distinet.
components that are relatively loosely coupled, and since efficiency, in terms of execution speed or space
consnmmption, has generally heen of little importance, it hag been acceptable to construct small prototypes
using interpreled, weakly typed languages such as Lisp or Smalltalk. Indeed, the Smalltalk environment. was
explicitly developed to provide a language and Lools for prototyping, and has proven nseful in imany small-
to medium-scale prototyping efforts.

T'he development. of large prototype software systems seems to require approaches qualitatively different
from those used for smaller protolypes. In general, large protolypes are distinguished (rom small prototypes,
not only by their greater number of modules and lines of code. but also by their higher cost, longer lifetimes,
and the involvement of multiple developers. Consequently, they seem to require more extensive and siricter
management. Large prototypes are by nature complex and highly interrelated collections of components. In
addition, partly due to their size and partly because of the kinds of experiments they are to be used for,
efliciency in both time and space is significant, although not as significant. as for the final product.

A good example of a large prototype system, and one that we are currently involved in developing with
a number of other researchers, is a protolype of a software development enviromment [14]. A full-fledged
software enviromnent prototype will consist of a large number of components interacting with one another in
a variety of complex ways. Those components include tools. such as editors, compilers, testing and debugging
support systems and the like, and also data objects. such as source text., abstract syntax trees, load modules.
symbol tables, test data scts, test results and many others. ‘The components are highly interrelated in
that a typical activity by a user will involve coordinated actions by several tools affecting several (Lypically
shared) data objects. Evaluation of an environment prototype will entail experimentation with individual

components as well as with the integration of those compounents. Becanse a software environment is intended



to be a highly interactive system, cvaluation of the prototype will be unavoidably affected by performance
concerns such as response time.

An important implication of the characteristics of large prololype systems is that they are likely to be
developed and modified “component-wise”. That is, a developer is likely to experiment with one component.
at a time, by adding one or modifying one while leaving the rest of the prototype unchanged. The experiment
itself will not be restricted to assessing the changed component in isolation, however. Instead, the developer’s
interest will be in how the changes integrate with all the other components of the prototype. A developer of a
software environment. prototype might, for example, conceive of a new code-analysis capability. Incorporating
it. might involve adding or modifying one tool and making a few minor changes in the definitions of a few
shared data objects. Experimenting with this new capability will not be limited to use of the new or revised
tool, but. will also address how well the new capability integrates with other tools in the environment. While
experimentation of this kind should be encouraged and facilitiated, the characteristics of large protolype
systems also imply that there must be security against the introduction of inconsistencics into the prototype:
controlled and disciplined change is vital in a multi-developer setting, especially when dealing with a large,
complex system composed of highly interrelated components.

As our experience with prototyping of software environments has demonstrated, a central aspect of
constructing and experimenting with large prototypes is the creation and manipulation of various kinds of
data objects used in the protolype system (and eventually in the “real™ system). Experimentation with a
prototype will often involve defining new kinds of data objects or modifying existing ones, as in the example
cited above. Based on our experience with this aspect of prololyping, we have identified the following

requirements on object. definition techniques for large prototype systems:

e Easy definition and redefinition of object kinds
e [asy reuse

— of object definitions

— of clients of object definitions
o C'onsistency of object definition and usage
— Fasy and reliable consistency maintenance
e Control over the impact of changes to object definitions

The requirement. for casy definition and redefinition of object kinds follows directly from the primary

goals of rapid development and casy modification in prototyping. ‘The implications of this requirement range



from powerful and concise language constructs for object. definition to minimizing the efforl. required for
effecting a modification Lo an object’s definition.

Fasy reuse also contributes to both rapid development and easy modification of prototypes. Propertics
such as modularity and understandability clearly affect how casily an object definition can be reused. But
properties of various object definition techniques also affect. how easily other components (i.c., the clients of
objects) in prototype systlems can be reused. For example, certain tools in a prototype software environment.
can he made generic across a hroad class of loosely similar object kinds il the descriptions of objects are
available for interpretation by those tools at run time.

The requirement for consistency of object definition and usage, as mentioned previously, is extremely
important. in large, multi-developer prototyping projects. Not only must it he possible to establish such
consistency when a prototype is first created, but it must also be possible to reliably determine and/or
enforce the preservation of consistency across modifications to the prototype.

Finally, all of the preceding requirements imply the need for controlling the impact of change to a
prototype. ‘The implications of this requirement. include both an ability to clearly identify the paris of a
prototype that will be affected by some modification and the ability to limit the impact of the change to
only those parts that actually need to be affected. We have come to deseribe this in terms of limiting the
impact of the change to only those components of a prototype that are “interested™ in the change.

10 our cfforts to support. the developiient of large prototype systems, we have taken as our statting point
the use of a compiled, strongly typed, and statically typed-checked language, in part hecause use of such a
language generally tends to result in fewer crrors and better officiency than interpreted. weakly typed lan-
guages. Examples of suitable langnages include Ada, C++. Modula-2, and Trellis/Owl [11]. These langnages
provide mechanisms for modularizing a prototype, specifying its data objects and module interfaces, and
checking the consistency of those objects and interfaces. Thus, these languages clearly have the potential to
support. reuse and consistency management. They also provide a basis for controlling the impact of change
through their facilities for information hiding and separate compilation.

Unfortunately, despite their apparent potential, use of compiled, strongly typed, and statically type-
checked languages in the development of large prototype systems can lead to unacceptably slow development
and modification. This is hecause such languages do not. in their native form. provide sufficiently powerful
support. for the kinds of reuse, consistency management or control over the impact of change that are needed
for large prototyping applications. Their shortcomings are especially severe with respect to controlling the
impact of change. Frequently, a small change in a program wriltten in such a language, especially il that

change involves a system component that is widely used by other components, necessitates code regeneration



and a complete consistency check, which are done through recompilation.! This is generally true even if the
change being made actually affects only a very few components.

As stated above, we believe that support for large-scale prototyping requires the ability to limit the
impact of change to only those components of the prototype interested in the change. Clonsider the example
mentioned above of experimenting with a new code-analysis capability in a prototype software environment.
Suppose that the changes required for this experiment are to add one new tool and to introduce one new
field into the definition of one data object shared by many of the tools alrcady populating the prototype.
The new tool and the shared data object are the only components of the prolotype environment. interested
in this change; the other tools need never he aware that the new ficld exists in the data object. The impact
of the change is likely to extend well beyond just the interested components, however. When the interface
to a data object is modified, most language processing systems (typically compilers) for compiled, strongly
typed and statically type-checked languages will perform widespread rechecking of type consistency and
regeneration of code. In particular, all tools and objeets that refer to, or worse, that might possibly refer
to, the modificd object will typically be type-checked again and the code implementing those references will
typically be regenerated, often entailing a complete recompilation. In contrast. il our goal were achieved. at
most only the two interested components wounld he subjeet to type rechecking or code regeneration.

Unfortunately, object definition techniques that are good at controlling the impact of change often have
diminished capabilities for reuse and consistency management, as well as olher benefils associated with
a compiled, strongly typed, and statically type-checked language. ‘I'he difliculty here stems from a basic
conflict in the amount. of information that should be contained in an ohject’s interface. On the one hand, the
desire Lo make an abject easy Lo rense, as well as the desire Lo check consislency, scems Lo argue for having
an information-rich interface- ~that is, an interface that contains a detailed specification of the object. On
the other hand, the desire to limit the imipact of change seems to argue for an information-poor interface so
that the details of the object can change without necessarily affecting all clients of the object. While the
most obvious use of the constructs provided by langnages such as Ada, C++, Modula-2, and Trellis/Owl
(e.g., the programming style implied by the design of Ada and advocated by a variely of texts on Ada) seems
lo favor information-rich interfaces, the languages can equally well support information-poor interfaces, so
there is no answer inherent. in the langnages themselves. In fact, there is probably no one answer that is
appropriate for all prototyping sitnations. What is required, therefore, is an understanding of the range

of possible techniques for ohject. definition and a set of good implementations for those techniques. This

LAlthough “ohject oriented™ langnages such as C+4 and Trellis/Owl provide dynamic binding of operation bodics to
operation calls, they still vely on static, compile-time consisteney checking. Moreover, the set. of possible bindingg, from which
a particular binding ig chosen dynamically, is established statically.



paper attempis to increase that understanding and also describes some example implementations and our

experiences with then.

3 A Range of Techniques for Defining Objects

We are concerned here with the definitional information associated with a data object in a large prototype
system. As mentioned above, we assume the use of a language like Ada, C++. Modula-2, or I'rellis/Owl to
describe that information. Those languages have within them the concepts of abstract data type, module,
and separate compilation, all of which arc important in prototyping. In Ada, for example, modules are
called packages. Packages have a specification part and a body part. ‘The specification part. defines what
is exported from, and imported into, the module and can he compiled separately from the body part. The
body part provides the implementation of the module. ‘The concept of abstract data type (type for short) is
essentially identified with that of package—that is, packages are used to specify and implement types. For
presentalion purposes, we use Ada terminology and examples helow.

The most. basic questions that can be asked about definitional information are: where is it deseribed and
how is il accessed? Of course, different choices could be made for different. portions of an object’s definitional
information, but we will assume for now that all information for a given object. is treated the same. We have

identified three choices and characterize them as follows:

e Specification-described. Definitional information about. an object. is explicitly captured in the
specification part of a package and can be referred to directly by clients of the package.

¢ Implementation-described. Definitional information abont an object. is described in the implemen-
tation of a package and is referred Lo by clients through the values of parameters passed to general-
purpose access roulines.

e Value-described. Definitional information abont. an ohjeet. is encoded in the values of a mntable
data structure. Access to the description and to the object is through a general-purpose interlace.

We can further refine this coarse characterization, al least within each of the three chojces described
above (Table 1). Under the specification-described approach, the definitional information can be presented
in cither an abstract or a non-abstract way. The former usually takes the form of a functional interface, in
the style advocated by proponents of information hiding and data abstraction. The latter usually takes the
form of explicit and visible data structure definitions. Under the implementation-described approach, the
definitional information can be captured cither as an immutable data structure or as code. Finally, under
the value-described approach, the definitional information abont an object cither can reside in a separate

structure or it can form a part of the object itself and therefore he sell-describing.
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" Spectficatron-described _ Implementation-described l Value-deacribed "

——

abstract non-abstract code-hased data-based separately-described  self-cdlescribed

Table 1: Range of Techniques.

It is important to notice the rather subtle, but nonctheless significant, distinction that we draw between
the value-described techniques on the one hand and the data-based implementation-described technique on
the other, since they are all based on the use of data structures. Ve have found it convenient to differen-
tiate the approaches along two dimensions. ‘The first is concerned with the mutability of the definitional-
information data structure, while the second is coucerned with where responsibility for interpreting the
definitional information lies. Under the value-described techniques, as we define them, the definitional
information is mutable at run time and responsibility for interpreting the definitional information (e.g.,
to perform consistency checks) lies with the clients of an object. Under the data-based implementation-
described technique, the definitional information is immutable at. run time and responsibility for interpreting
the definitional informalion is given to the package providing the object type. The full significance of this
distinction becomes evident in the detailed evaluation presented in Section 5.

‘I'his characterization leaves us with six basic techniques from which to choose. Bul these six techniques
are really only select. points within the range: while they serve as convenient touchstones, it is possible to
develop hybrid (or enhanced, or extended) implementations that lie at other points within the range. In
fact, as our cvaluation cleatly demonstrates, it can be highly beneficial to do so. Examples of such hybrids
appear in the next section. where we illustrate the range of techniques by describing three implementations
that we have both developed and used.

Before introducing the implementations, we wish to preview the specific criteria used in the evaluation
so that the reader can gain a feeling for what we consider to be most important. Here, we formulate the

criteria as questlions.

1. Ease of Definition and Redefinition

(a) How easy is it Lo develop a definition?
(b) How easy is it to understand a definition?
(¢) How casy is it to modify definitional information?

i. To locate the part(s) of a definition that need changing?

.

it. 'To make the change?

(d) How ¢uickly can a change to definitional information take effect?

-3



(¢) How much code needs to he regencrated?
2. Ease of Reuse

(a) How easy is it Lo rense an object (type)?
i. 'l'o identify a suitable candidate for reuse?
ii. "T'o make any necessary modifications?

(h) How easy is it Lo develop general-purpose clients? ‘That is, is there good support for reuse of
clicnts?

3. Consistency Management

(a) llow easy is it to check consistency?
(b) When (how early) can an inconsistency be detected?

(c¢) How reliably can inconsistency he detected?
4. Controlled Impact of C*hange

(a) Uow well can we limit the impact of a change to “interested™ clients?

(b) How accurately can we determine which clients are “interested™?

4 Three Implementations of Object Definition Techniques

As part of our work on a prototype software environment. [14], we have been experimenting with a varicty
of techniques to facilitate our prototyping activities. On reflection, we have recognized that three of Lhese
that we have used most extensively represent distinct. approaches to supporting the development of large
prototype systems, essentially based on the three major categories of techniques deseribed in the previous
section. They are:

o [nis, a graph-based scheme (due to Fisher) for representing the static semantics of computer programs
{1, 13];

e GRAPHITE, a system that generates packages for manipulating directed graphs [2]; and

e PIC, a language framework and analysis technique for precisely describing and analyzing module in-
terfaces [16, 17).

In this section, we describe in detail our implementations for these systems and briefly indicate their advan-
tages and disadvantages, leaving a thorough evaluation for Section 5.
Throughout this section, a single example is used to demonstrate some of the relevant capabilities of

the implementations. The example application is the development of an interface to a directed-graph data



structure for representing static program semantics in a software environment. This is a very realistic
example, since many tools in a software environment would be expected to make use of such an interface.
Of course, it is also a “common denominator™; while this application is the focus of 1r1s, GRAPHITE can be
used for any kind of directed graph and PIC can be used for interfaces o any kind of data object or module.

The terminology for graphs used below is as follows. A graph consists of a set. of nodes, where each node
is of some node kind. A set of node kinds is referred to as a class; a graph consists of nodes from one or more
classes of node kinds. A node kind is associated with a set of atiributes. Attributes are used to describe the
properties of the objects represented by the nodes in the graph and each such attribute has a type, referred
to as an attribute tvpe. An instance of a node kind is a set of values, one for each attribute associated with
that node’s kind. Some of the attribute types are actually node kinds, which makes it possible to connect
nodes into directed graph structures. In the example given here, node kinds are the only interesting attribute
types employed.

To simplify the example, we restrict. discussion to the process of developing a representation for an if-
statement. Definition and redefinition, reuse, consistency management, and control over impact of change
supported by the three implementationsare demonstrated by considering what happens when the developer of
the representation swilches from one form to another. "The first form, referred to below as ify, is the standard
if-then-clse construct. The secoud form, ifs, accounts for the appearance of any number of specialized else-if
clauses. The example is further simplified by assmning that the interface to the representation graph is to be

in the form of an abstract dala type realized as an Ada package. which we refer to as an interface package.

4.1 IRIS

Iris, which stands for Internal Representation Including Semantics, is based on the use of abstract syntax
graphs to capture the static semantics of a program in terms of expressions. IRIS represents the elements of a
program as literals or as operators applied to a set. of operand expressions. For example, the expression 2 + 3
is represented as the application of an addition operator to the literals 2 and 3. The ify form of if-statement
might be represented as the application of an “if™ operator to two operands, the first being an Iris graph
representing the if-then part of the statement. and the second being an Iris graph representing the else part

of the statement. Figurc 1 shows such a representation for the statement

ifX=Ythen.. . else...endif

where if, condition clause. list, and = are operators, X and Y are identifier literals, rectangles denole expres-

sions, and circles denote references to literals,



IS . uifu

=t “condition clause”

—- “Jist" —_—

» n_mn

—— list" e

uY"

nxn

Figure 1: Schematic Example of Iris Representation for if;.
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A key feature of IR1s that distinguishes it. from other graph representations of programs (e.g., TCOL [h
is that all of the operators in IRIS are represented as 1ris graphs. 1n other words, there are no “predefined”
operators. Each use of an operator is represented by a reference to an Iris graph representing the declaration
of that operator, which includes such information as the operator's name, the number of operands it. takes,
and the types of those operands. Thus, in Figure 1, “— “if” * indicates a reference to the Iris-encoded
declaration of the “if™ operator, which would specify its two operands. There is essentially no difference
hetween the declarations for the primitive operators of a given language, such as “if” and “list”, and the user-
defined procedures and functions that have been translated into lris. Iris is therefore a (conceptually) sell-
describing, general-purpose structure for representing programs. ‘To represent. the programs of a particular
language, one must. provide declarations for the primitive operators of that language; different. sels of primitive
operalors would of course yield different languages.

There are only two node kinds in lris; one is used to represent. expressions and the other is used to
represent references to literals. Fxpression nodes include one attribute for referring to the declaration of
the operator and an arbitrary number of other atiributes for relerring to the operands. Literal nodes for
identifiers include an attribute for referring to the declaration of that identifier, while literal nodes for
numbers and strings include an attribute for holding that number or string.

One can consider implementing IRIS in a number of different. ways. For instance, in our implementation
of s [19], we chose Lo use a sel-describing, mtable data structure, where interpretation of the definitional
information is left to clients. ‘Thus, our implementation uses a hasic sell-described value-described technique.

The Ada interface package used in our implementation of IR defines a type for nodes and defines the
operations that allow manipulation of instances of the graph. 'The operations include those that allow clients
lo create and delete nodes, Lo get and put attribute values, and to read and write graphs. Nothing in
this interface package, however, is specific to a particular language (i.c.. a language's primitive operators).
Therefore, it would be possible for a client to use this interface package with any language. Moreover, the
interface package would be immune to any changes to the primitive operators of a given language. For
example, changing from the if; form of if-statement to the ifs forin would involve a change to the declaration
of the “if” primitive operator, but not Lo the interface package, since the second form still uses the same two

node kinds. Figure 2 shows the ifa representation for the statement.

ifX=Ythen .. elsifX=2Zthen.. else...endif

where the first operand of the “if™ operator is evidently now a list. of condition clanses, the first. of which
representa the if-then part. Because the interlace package does nol change, clients uninterested in a change

will not be aflected.
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Figure 2: Schematic Example of 1i1s Representation for ifs.



We are using our implementation of an interface to IRIS in the prototype development of several tools,
including front-end tools (i.e., internal-representation gencrators, as well as lexical, syntactic, and semantic
analyzers) for a variety of languages. A particularly interesting Lool beneliting from the approach embodied
in IRIS is a generic interpreter, called ARIES, which stands for ARcadia Interpretive Execution System {20].
ARIES has been designed with two goals in mind: 1o serve as a general-purpose interpretation engine for
any IRis-described language, and to allow the simultancous interpretation of a program using a variely
of execution models, such as symbolic execution and dynamic data-flow tracking, as well as conventional
actual-value execution. Iris has not ounly made it. easier to build and test the interpreter inérmncntally, hut.
it contributes to the generic nature of ARIES by limiting the impact on interpreter components of changes
to language semantics.

There are several advantages to the value-described approach typified by our implementation of Iuis.
Foremost, it limits the impact of change. The language being represented by Iiris can change and, as long
as the client tools always interpret the definitional information, those tools do not need to be recoded or
recompiled. This also facilitates reuse of clients, since some of these tools might. be generic tools (e.g.. ARIES)
that work on different. languages. Of course, there is a price for this much flexibility. In particular, no static
type checking can be done to assure, for exaple, that only “iI" information is put into an “if” node. Also,
unless adequate external documentation is provided, it may be very difficult to understand the information

content. of the object. This lack of visibility can have a negative impact on software reuse.

4.2 GRAPHITE

Many of the data objects manipulated by software environment tools are graphs. For example, parse trecs,
abstract. syntax trees, control flow graphs, and call graphs are all graphs that are likely to be manipulated
by tools in an envirommnent; Ir1s is another such graph. We have therefore placed considerable effort into a
general design for interfaces to graph objects.

Figure 3 illustrates the basic form of the interfaces that we have adopted for some of our graph objects
by showing a skelcton of the interface-package specification part for a version of our representation-graph
example. As can be seen, the interface package implements an abstract data type for classes of node kinds by
providing a set. of general-purpose access routines, such as GetAttribute and PutAttribute. These routines are
tailored by parameters supplied by the clients invoking them. such as a parameter to specify the desired node
kind for a “create” operation. In most cases, these parameters are character strings that must be interpreted
in the body of the interface package. Il we assmine, for example, that there are node kinds for representing

an il-statement and a condition-claunse, then character strings such as 1fNode and ConditionClauseNode might
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package Replinterface is
-- node-handle types
type RepGraph is private;
NullRepGraph : constant RepGraph;

-. user-defined attribute types

-- types for communicating names
type NodeKindName is new String;
type AttributeName is new String:

-~ types for listing a node’s attributes
type AttributeNamePointer is access AttributeName:
type AttributeNameList  is array ( Positive range <> ) of AttributeNamePointer;

-- operations to manipulate a node
function Create ( TheNodeKind : NodeKindName ) return RepGraph;
procedure DeleteNode ( TheNode : in out RepGraph ):
procedure PutAttribute ( TheNode : RepGraph: TheAttribute : AttributeName;
TheValue : RepGraph ):
function GetAttribute ( TheNode : RepGraph: TheAttribute : AttributeName )
return RepGraph;

-- operations to ascertain a node’s definition
function Kind ( TheNode : RepGraph ) return NodeKindName:
function NodeKindAttributes ( TheNodeKind : NodeKindName ) return AttributeNameList:

-- operations to input and output graphs
procedure ReadGraph ( FileName : String: TheGraph : in out RepGraph );
procedure WriteGraph ( FileName : String; TheGraph : in out RepGraph )

private
-~ representations; complete declarations given in body part
type RepGraphRep;
type RepGraph is access RepGraphRep:
NullRepGraph : constant RepGraph := null;

end Replnterface;

Figure 3: Skeleton of Interface-Package Specification Part for Representation-
graph Example (Implementation-described Technique).
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be used to identify them.

Under Ada’s recompilation rules (as for other compiled, strongly typed, statically type-checked languages,
such as C++, Modula-2, Trellis/Owl, etc.), recompilation of the clicuts of a package is avoided only if the
specification part of that package does not itself require recompilation after a change has been made. Toward
this end, the interface-package specification part is nearly devoid of all definition- and representation-specific
information about the node kinds heing managed and so insulates clients of that. package from most changes
in class definitions and representations. For example, in the specification part shown in Figure 3, there is
no mention of particular node kinds, such as IfNode and ConditionClauseNode. Iudirection through access
types allows the details of the representation of a node to be confined to the body part of a package. Once
there, those details can be changed without affecting the specification part. of the package and, by extension,
the clients using that package. In Figure 3, the private type RepGraph is shown to be an access type that
designates the incomplete type RepGraphRep. ‘I'he full declaration of RepGraphRep, whicl defines the actual
data structure for representing nodes, would appear in the body part of package Replnterface.

It is important to point out that although one type (e.g., RepGraph) is used to designate nocdes of all
kinds, the interface package will guarantee at run time that a node is used in a manner consistent with its
kind. For instance, if a node kind has an attribute A whose type is another node kind NK, then only nodes
of kind NK will be allowed as values of attribute ..

It should be evident that in implementing the form of interface packages discussed here, we have pri-
marily used the implementation-described approach. In particular, definitional information is confined to
the implementation part of an interface package and referred to through the parameters of general-purpose
access routines. But it should also be evident that there are certain aspects of the interface package that
are characteristic of the value-described approach, which means that our implementation is in fact. a hybrid.
For instance, there are a set of operations provided to allow a client. to ascertain, although not alter, the
kind of a node and its associated attributes, which amounts to a run-time interpretation of the definitional
information, as can be done under the value-described approach.

As discussed in Section 5, a potential problem with the implementation-described approach is the effort.
involved in developing or modifying definitional information. To alleviate this problem for the interface
packages presented here, we developed the GRAPHITE system. GRarPuere, which stands for GRA P Interface
Tool for Environments, accepts specifications of classes of node kinds wrilten in the graph description
language GDL. Given the GDL specification for a particular class of node kinds, GRAPHITE aulomatically
produces an interface package for manipulating nodes of those kinds.

A given GDL specification defines a particular class by declaring the node kinds, attributes, and atiribute

types making up the class. Figure 4 shows a portion of a GDL specification for some of the graph nodes for



class RepGraph is
package Repinterface:

node ConditionClauseNode is
Operator  : DeclarationNode;
Condition : ExpressionNode:
Statements : ListNode:

end node:

node fNode is
Operator : DeclarationNode:
ConditionClause  : ConditionClauseNode;
ElsePartStatements : ListNode:

end node;

node IdentifierNode is
Identifier : DeclarationNode;
end node;

end RepGraph:
Figure 4: Portion of GDL Specification for Class to Represent ifie

vepresenting ify, the form of if-statement thal. cannol contain else-if clauses. In Figure 4, RepGraph is the
class being defined and Repinterface is the interface package (Figure 3) that is to be generated by Grapnrme.

As an illustration of how CirapnITE-generated interface packages can limit impact of change, consider
what. happens as a result. of changing from the iy representation to the ifa representation by replacing the

definition of node kind IfNode in Figure 4 with the following definition:

node IfNode is
Operator : DeclarationNode;
ConditionClauseList : ListNode; -- includes “if” and “else-if's”
ElsePartStatements : ListNode;

end node;

Although the definition of a node kind has changed (the second altribute of IfNode has had both its name
and attribute type changed), the specification part of what would be the new interface package is identical
to that of the old one: the necessary changes are confined to the body part. Thus, clients uninterested in
this change need not. be affected.

GRAPIITE actually produces two different Kinds of interface packages. One, referred to as the develop-

ment interface, is intended to support experimental systems and is the one discussed up to this point. It is
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designed so that when developers modify the definition of a class, there is a minimal effect on other com-
ponents in the system, even on those components that use the modified class. 'The second kind of interface
package, called the production interface, is designed for eflicient. manipulation of nodes. When the definition
“of a class has become relatively stable, the second interface package can be easily substituted for the first so
that a more efficient, although less flexible, version of the system can be created.

The difference between the two kinds of interface packages comes down to the balance between definitional
information captured using the implementation-described approach and that captured using the specification-
described approach. In particular, shifting from the development interface to the production interface means
a concomitant shift of sonme of the definitional information from the body part of the interface package into
the specification part. ‘This happens, for example, to the information about the names of node kinds and
attributes; in production interface packages, these names are represented as enumeration literals defined
in the specification part instead of as character strings defined by clients and interpreted by the interface
package. Placing the information into the specification part in an appropriate form makes it possible for the
compiler to take advantage of that information when petforming type checks and generating code, resulting
in the greater efficiency exhibited by production interface packages. OFf course, production interface packages
also exhibit less flexibility.

GRAPHITE has been used extensively in the development of the graph data structures of several environ-
ment tools, including front-end tools for a number of langnages, a suite of interface analysis tools, a loop
analyzer, and even the implementation of GRAPIITE itsell. One of these tools is Athena, a table-driven
internal-representation generator, lexical analyzer, and syntactic analyzer for Ada. In all, Athena consists of
23 separately compilable units that total over 750 kilobytes of source code. Compilation of a moderate-size
program such as this takes a substantial amount of computer time and, perhaps more importantly, pro-
grammer time. The component of Athena that generates G DL-specificd program-representation graphs was
actually developed incrementally by successively handling larger and larger subsets of the Ada language.
Growth from one subset Lo the next often involved changes to the definition of the program-representation
graph. ‘The only part of the program interested in such changes was the sel of so-called “actions™ thal are
performed by the tool: these actions are embodied in a single compilation unit, called Actions. By using
the development interface package generated by GRAPHITE, we were able to minimize the recompilation
necessitated by changes to the definition of the program-representation graph. In particular, only the body
part of the interface package (and, of course, Actions) had Lo be recompiled: the other units in the program
were insulated from such changes. This reduced recompilation time by over half as compared Lo what would
have been required if the definition of the program-representation graph had heen exposed.

Grarmte facilitates development of large prototype systems in several ways, Most. importantly. the

17



design of the generated development interface package, in which definitional information is confined to the
body, insulates clients from changes in the definition and representation of a class of node kinds. This
approach sacrifices static checking in favor of minimizing the impact of change. It still permits an interface
package Lo enforce the consistency of the specified class definition, however, since the hody part contains all
the information necessary to check at run time the legality of node kind and attribute names as well as the
operations applied to instances. In addition to using the implementation-described approach, GRAPHITE
provides some other capabilities that foster prototyping. Specifically, it facilitates reuse by automating the
creation of an abstract data type for a user-specified class of node kinds and by providing, through GDL,

good documentation of the graphs used in a system.

4.3 PIC

‘The previous two implementations primarily illustrate the value-described and implementation-described
approaches. What remains is Lo illustrate the specification-described approach, where the definitional in-
formation is captured in the specification part of a package. As mentioned in Section 2, there is a sense in
which this is the most “obvious™ approach to use in languages like Ada, C++, Modula-2, and 'Irellis/Owl.?

Figure 5 shows one possible use of the specification-described approach for the interface to our
representation-graph example. Specifically, it shows the technigue bascd on an abstract interface, where
each node kind and each attribute used in the representation graph has associated with it an appropriate
set of subprograms (i.c., operations), such as to create a node of a particular kind or to get a value of a
particular attribute in a node.

As we point out in Section 2, having an information-rich interface means that it is easicr 1o develop and
reuse an object type, as well as to statically check appropriate use of an object by that object's clients, but
it also means that. it severely increases the impact of change. We examine these issues fully in Section 5.
llere we describe an enhancement to the basic technique that can help limit the impact of change. The
enhancement is based on the use of an interface control mechanism that can explicitly distinguish between
clients interested in a change and clients not interested in a change.

Interface control is concerned with describing and limiting the interactions that can occur between the
entitics in different modules of a software system. Entities are named language clements such as objects,
types, and subprograms; a module serves to group together related entities. The interface control mechanism

of a language is used Lo specify what (and sometimes how) entities within one module can he used by another

2T his is the (contraversial) technique used to exemplify interfaces to D1ANAL an internal representation for Ada, that appeared
in [4].



package Replnterface is
type RepGraph is private:
NullRepGraph : constant RepGraph:

function CreatelfNode return RepGraph:
procedure DeletelfNode ( TheNode : in out RepGraph ):

procedure PutConditionClause ( TheNode : RepGraph:
TheValue : RepGraph ):
function GetConditionClause ( TheNode : RepGraph )
return RepGraph:
procedure PutElsePartStatements ( TheNode : RepGraph:
TheValue : RepGraph );
function GetElsePartStatements ( TheNode : RepGraph )
return RepGraph;

private

end Repinterface:

Figure 5: Portion of Interface-package Specification Part for iy Form of Represen-
tation Graph (Specification-described Technique).

module. 'Thus, given a suitably precise interface control mechanisim -that is. one that allows the description
of module interactions to any desired level of detail --the extent to which a particular change to a module
affects other modules can be easily determined. Once determined, this information can then be used, for
example, by a recompilation tool to limit the impact of that change.

PIC, which stands for Precise Interface Control, is a research project. aimed at improving support. for
interface control in large software systems. Results (rom this project include the design of a small sel of
language features for precisely specifying module interfaces and a collection of tools for analyzing those
specifications for consistency. Prototypes of the analysis tools have been iniplemented for a family of PIC-
oriented languages based on Ada [17]; the example below is given in one of these languages, namely P1C:/Ada.

The concepinal foundation for the PIC language features is provided by a general view of interface
control that is richer than views based solely on traditional entity-visibility concepts of declaration. scope.
and binding. This view distinguishes two aspects of visibility:

e requisition of access; and

e provision of access.

Access Lo an entity is the right to make reference to, or use of. that. entity in declarations or statements.
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package Clientlinterface is
request Replinterface.Getldentifier, . . .:

end Clientlinterface;

package Client2Interface is
request Replinterface.GetConditionClause, . . .;

end Client2interface;

Figure 6: Portions of PIC/Ada Specification Parts of Interfaces to Two Clients
that Use the Interface of Figure 5.

Requisition of access occurs when an entity (implicitly or explicitly) requests the right to refer to some set of
entities. Provision of access occurs when an entity (implicitly or explicitly) offers, to some set of entities, the
right. to refer to that entity. Given this view, an interface control mechanism is simply a means for specilying
requisition and provision.

The PIC language features used to capture these lwo aspects of entity visibility are the request clause,
for specifying requisition, and the provide clause, for specifying provision. They can appear only in the
specification parts of modules, and therefore these parts act as a sort. of “module interconnection language™
for software systems.

Request and provide clauses can be used in a variely of ways to express the relationships among mocdules,
In particular, notice that request clauses are akin to capabilitics in operating systems and, similarly. provide
clauses are akin to access lists. Just as there are situations where use of capabilitics is more appropriale
than use of access lists, and vice versa, there are situations where use of one clause is more appropriale than
use of the other. Having both clauses available in a language allows extreme flexibility in the description
of interface relationships. In addition, support for both cau result in a redundauncy that facilitates more
rigorous analysis of the interface relationships of a system’s components. For example, based on this view
it. is possible to formulate complementary descriptions of exactly how two modules are intended to interact,
giving one description from the perspective of each of the modules. and then to analyze those interactions
by checking the two descriptions for cousistency.

Figure 6 shows one possible use of the ’IC language features for describing the relationship between
the representation-graph interface and the clients of that interface. Using request clanses in a “capability™

style, each client’s specification indicates exactly those parts of the representation interface in which it is
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interested. Thus, it is clear that. when the developer alters Replnterface to work with ifs, Client 2 and not.
Client 1 is interested in the change.

Using the basic abstract specification-described approach, hut enhancing it. with the interface control
constructs provided by PIC, has several advantages. Clearly indicating which modules must be recompiled
when a change in a specification occurs makes it possible for “smart™ compilers to significantly limit the
impact of change, recompiling only when a client actually uses the changed object. Moreover, meaningful
static type checking can be performed. Finally, this approach aics reuse by explicitly providing definitional

information in the specification part of the interface.

5 Comparative Evaluation

In the preceding sections we have defined a range of object definition techniques for large protolype
systems and described our implementations of three points within that range. We now offer a comparative
cvaluation of the varions points within the range, based in part on extrapolations from our experiences
in designing and using the particular implementations deseribed in Section 4. We begin with a detailed
evaluation, in which ecach technique is measured against each of the questions listed at the end of Section 3.
We then summarize our observations, distilling the detailed evaluation into rankings of the various techniques
against a sel of more general properties implied by the list of questions. Finally, we consider how extensions
or enhanced implementations, like those represented by onr GRAPHITE system or PIC toolset, can affect.
the suitability of some of the techniques relative to certain of the properties important. for large prototype

systeins.

5.1 Detailed Evaluation

Table 2 presents our detailed evaluation of the six basic object definition techniques identified in Section 3.
The rows correspond to the questions listed at the end of that section. ‘T'he columns correspond to the
techniques. The numerical entries represent. our comparative evaluation of cach technique in teris of cach
question. The numerical scores are intended to express relative, not absolute, rankings and hence are not

comparable across questions (i.e., between rows).

Definition and Redefinition The casiest way 1o develop the definition of an object. is to nse the primitive
mechanisims provided in the Jangnage in which the prototype is being programmed. For the class of compiled,
strongly typed, statically type-checked languages that we have taken as our starting point. this would

typically mean constructs such as array or record. Developing a more abstract definition, with a functional
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Table 2: Detailed Evaluation.

interface, generally requires additional effort, such as writing the procedure bodies corresponding to the
interface functions. Implementation-described or value-deseribed object definitions require even more effort
to develop. Hence the one-two-three ranking of these techniques in Table 2.

A virtue of information hiding and data abstraction is that object definitions are easier to understand
when these methods are used, since irrelevant details of implementation are suppressed. Hence abstract
specification-described object definition teehnigues rank above non-abstract. Humans generally find inter-
preting the information in a code-hased or a data-structure-hased objeet definition much more difficult. than
understanding either of the specification-deseribed techniques. Sinee understanding deseriptions is funda-
mental Lo determining where a change should he made during modification of an object. definition, the same
ranking applies both for ease of understanding and for this aspect of case of change.

On the other hand, changing the values in a data structure is certainly the casiest way to actually carry
out. a modification to an object definition. whether that change is made dynamically, by altering values
in a running prototype, or statically, by changing an initialization statement. Changing a non-abstract.
specification-described definition is next. casiest. while hoth abstract specification-described and code-hased
implementation-described definitions require code modifications. making them the most difficult.

Value-described object definitions also rank highest for how quickly a change to a definition will take effect.

and how little code must he regenerated as a result. of a change. In fact, value-described techniques are optimal



in these respects, since changes can take effect innediately and no code need be regenerated. ¢ ‘hanging the
immutable (during prototype execution) data structures employed in data-hased implementation-described
object definitions simply requires revising an initialization statement, so this class of techniques approaches
the optimum. Changes in specilication-described or code-based implementation-described object definitions

all require significantly more code regeneration and hence are the slowest to take effect.

Reuse The effect of object definition techniques on the reuse of objects® can be separated into their
effect. on identifying suitable ohjects for reuse and their impact. on modifying an object. definition suitably
for use in the new context. The first of these is similar to the casc-of-understanding properly considered
previously, and hence produces similar rankings of the technigues.  In particular, specification-deseribed
technignes make information about the structure and function offered by an object clearly and casily visible
in the specification. and hence they rank highest here. The second is similar to the case-of-change property
considered in connection with definition and redefinition. Hence we distinguish the same two aspects of
modilying for reuse that we did for ease-of-change, and assign the techniques the same rankings for those
aspects.

The value-described object definition technignes offer some unique support. for reuse ol an object. defini-
{ion's clients, since in some instances a client. may be reusable with no changes at all, despite a change in
the definitional information contained in the data structure. Client components of this kind are typically
general-purpose utilities (e.g.. ARIES) that are designed 1o base their actions on the description contained in
the data structure. Such components offer the ultimate in reuse. Among the six basic object definition tech-
niques, neither the implementation-described nor the specification-described technigues offer similar support

for reuse of general-purpose clients, and henee they rank lower with respect to this property.

Consistency Management Clonsistency management is stronger in the specification-described techniques
than in cither of the olher two. Verifying that uses of a data object are consistent with that object’s definition
amounts to type checking. In the specification-described techniques, type checking can be static and strong,
with type errors producing compile-time error notification. jFrom the point of view of the developer of the
object. definition, this provides the easiest. checking, since it does not require the writing of any consistency
checking code. It also results in the carliest posgible detection, since inconsistencies can be detected and

reported at compile time. 1t is the most reliable form of consistency cheeking sinee it depends on established

30r more precisely, reuse of object definitions, since none of the technigues that we ave considering here addvess the difficalt
problem of reusing instances of an object kind, ereated during a previons experiment with a prototype, when the definition of
that object kind has been subsequently modified.
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type checking utilities in the langnage processing system rather than any user-supplied checking code.

Under the code-described approach, consistency management. is not static but dynamic. Thus consis-
tency checking code must be created as part of the object definition. making consistency management. hoth
wmore difficult. and less reliable. Because consistency checking is dynamic, type errors will lead to run-time
exceptions, rather than compile-time error notifications. and hence will not be detected as early as with a
specification-described technique. Since type checking can be centralized in the code that implements the
object's definition (or that interprets the data structure describing the object’s definition), consistency man-
agement. is stronger than in the value-described approach. The fact that specifications are stalic, and hence
cannot change during prototype exccution, precludes the possibility that objects may become inconsistent
with the definition and with each other during exceution.

Under the value-described approach, consistency management on uses of a data ohjecl is again not static
but. dynamic. Thus, as with the code-described technigues, type errors will lead to run-time exceplions,
rather than compile-time error notifications, and hence will not. be detecled as carly as with a specification-
described technique. Moreover, since type checking is typically decentralized in this approach, heing left to
cach individual client of a given data object, consistency management. may he non-existent in gome cases.
Although some checking can be built into an object’s interface, in general only a client component can
ensure that it is making correct. use of an object, through interpretation of the definitional-information data
structure. The fact that definitional information is dynamic and may change during prototype exccution
introduces the possibility that objects may become inconsistent with the definition and with each other
during execution, further complicating consistency management. Hence. both ease of checking and reliability

of detection rank lower for the value-described techniques than for any of the others.

Controlling Impact of Change The specification-described techniques are least successful at limiting
the impact of a change in an object’s definition to only those components of a prototype system that are
interested in the change. This is because when the specification of a data object. is modified, most language
processing systemns (Lypically compilers) for compiled, strongly typed and statically type-checked languages
will require that all tools and objects that refer to, or worse, that might possibly refer to, the modified object
he Lype-checked again, which nsually means recompiled. OF course, for non-abstract specification-described
techniques, a change to the representation of an object kind. even if that change does not otherwise alter the
object kind's definition, will have this effect. Hence the non-abstract technigques receive an even lower rating

than the abstract techni¢unes here. On the other hand. determination can he made of what components are

4 . . . . s e . 3 . . . .
Note again that we are discussing instance/definition consistency within a given prototype execution, not consistency of
instances created during one execution with definitions that are in use during some subsequent execution,
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interested in a change to the object’s definition (c.g.. deletion of an information field in a data object) via a
cross-reference analysis, so delermining which ones are interested is straightforward.

The code-described approach limits the impact of change by cncapsulating changes within the code
bodies that implement the object’s definitional information (or interpret the data structures describing the
object’s definitional information). The assumplion is that only interested components will invoke these code
bodies and hence that impact of a change will he limited to interested components. Determination of what
components are interested in a change to the kind of inforimation contained in the data object. (e.g.. deletion
of an information field) ouly requires inspection of the calls to the relevant code bodies and the values of the
parameters to those calls. Although not always trivial, this is simpler than the corresponding analysis for
value-described data objects. ‘Thus, impact of change is limited to only those components interested in the
change, i.e., those who call the relevant code bodies with relevant parameter values, but determining which
ones are interested may be somewhat complicated.

The valne-described approach limits the impact of change by encapsulating all information aboul. the
change within the mutable data structure containing definitional information. The assumption is that only
those components interested in the change will interpret the relevant section of this data structure, and
hience the impact of the change will be restricted to interested components, as desired. Determination of
what components are interested in a change to the definitional information concerning the data object (e.g.,
deletion of an information ficld) may require an interpretive trace of component behaviors to find which ones
refer to the relevant part of the data structure. 1hus, although impact of change is limited to only those

components interested in the change, determining which ones are interested is extremely complicated.

5.2 Summary of Comparative Evaluation

Table 3 represents a summary of the detailed comparative evaluation that we have just presented. llere
we have restricted our atteution to the coarse characlerization of object definition techniques as cither
specification-, implementation- or value-described. We also cluster the properties described by the fifteen
questions of our detailed evaluation into three, more abstract properties. Once again we have used numerical
scores that express only relative rankings within a row, not absolute rankings in any sense.

Ihe first row, labeled Development & Rense Effort, sunmmarizes the properties concerning development.
and reuse except for those that involve modilying an object’s definition. "T'hus, this row ranks the various
techniques according to their ease of development, ease of understanding. ease of identifying candidates for
reuse, and ease of identifying what needs to be changed, whether in the context of prototype modilication

or ohject rense. The only data from our detailed evaluation that does not. fit. with the sunnmary presented

[\
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" Specification-deseribed Implementation-deseribed Value-described

Devclopment & Reuse Effort |
Turnarvound Time 3 2
Consistency Management L 2

Table 3: Summary of Evaluation.

in this row is the ranking on reuse of gencral-purpose clients, an issue that we address helow.

The second row, labeled 'Turnaround ‘Lime, summarizes the properties concerning modifications to object.
definitions. Thus, this row ranks the various technigues according to the ease of actually making a change,
how quickly changes take effect. how much code mmst be regenerated due to a change and how well the
impact of change can he controlled. One aspeet. of controlling the impact of change, namely the ease of
determining which other components of a prototype are interested in a change, is not accurately reflected in
the summary presented in this row, however. While this discrepancy is worth noting. we do not feel that. it
is signficant. enough to alter the overall ranking of the techniques with respect. to turnaround time.

The third row, labeled Consistency Management, ranks the various technigues according to how easily
consistency can be checked, liow early inconsistency can be detected and how reliable consistency checking
can be,

The conclusions that. can be drawn from this summary scem to be the following:

[. The implementation-deseribed and value-deseribed technigues would he more valuable for large proto-
typing eflorts if they could be angmented to make development of object definitions easier.

2. 'I'he specification-deseribed and implementation-described techniques would he more valuable for large
prototyping efforts if the turnaround time associated with them could be reduced.

3. The implementation-described and value-described techniques would be more valuable for large proto-
typing efforts if their support. for consistency management could be improved.

We now consider the extent to which extensions or enhanced implementations can alter the relative

rankings of these various object definition technigues.

5.3 Effect of Extensions and Implementations

Table 4 represents the potential effects of extensions and enhanced implementations on the summarized
comparative evaluations presented in Table 3. Again. we have restricted our attention to the coarse char-
acterization of object definition techniques as cither specification-. implementation- or value-deseribed and

clustered the properties described by the fifteen questions of our detailed evaluation into three, more abstract
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Table 4: Potential Effects of Extensions and Enhanced Implementations.

properties. And again, we have used nuinerical scores thal express only relative rankings within a row, not
absolute rankings in any sense.

The greatest potential effect of extensions and enhanced implementations is on the properties that we
have sunmmarized in the row labeled Developiment & Renge Effort. As noled in our detailed evaluation, the
implementation-described and the value-described techniques do not antomatically provide a clear, casily
visible specification of an object’s definition. Such information can only be obtained by interpreting the
code and/or data structures that embody the object definition. Appropriate support. tools can circumvent
this shortcoming, however, making development and rense of implementation-deseribed and value-described
object definitions as easy as that for specification-described object definitions. Our GRAPHITE system, for
example, is a realization of the implementation-deseribed technique augmented to provide antomatic ereation
of object definition implementations (interface packages) from a human-readable form of the definitional
information, namely GDL. Thus, GRAPINTE overcomes several aspects of the implementation-described
techniques that could impede development and inhibit reuse. ‘The fact that onr current. implementation of
Irts does not. provide similar support. for human-readable versions of object definitions or for generaling
the value-described representations has proven an impediment to both development and reuse of ohject
definitions in our large prototyping efforts. It is clear. however, that such support. could be implemented,
in a manner similar Lo facilities provided in our GrRAPHETE implementation. Hence we conclude that the
properties summarized under the heading Development & Reuse Effort need not influence a choice hetween
object. definition technignes for large prototype systems.

As noted above, the ranking on reuse of general-purpose clients presented in our detailed evalualion was
not accutately reflected in the summary represented by Table 3. In particular, this was the one properly under
the Development & Reuse Effort. heading that favored the value-described techniques over the others, This
discrepancy disappears when we consider potential extensions and enhanced implementations, however, For
example, onr GRAPIITE implementation is angmented with definitional information that a client component
may choose to interpret, and henee does support. reuse of general-purpose ulilities that. are designed to base

their actions on such a deseription. Similarly, a specilication-deseribed object definition conld certainly be



extended to provide functions that returned definitional information in a form that a client could interpret.
I other words, it is entirely possible to simulate this feature of a value-deseribed object definition in any
of the other object definition techniques. Hence this property, like the others collected under the heading
Development. & Reuse Effort, need not influence a choice between object definition techniques for large
prototype systems.

The other area in which extensions and enhanced implementations can have an effect is turnaround
time. Changes to code, or to the definitions of immutable data structures that are interpreted by the code
implementing an object definition, will necessarily induce some type-rechecking and code-regeneration delays
that simply modifying a mutable data structure will not. Hence. the value-described technigues retain the top
ranking for how easily a change can be made, how quickly it can take effect and how little code regeneration
it causes. Enhanced implementations of the specilication-deseribed  technigues, however, can make their
performance in these areas essentially as good as that of the implementation-deseribed techniques, tying
them for second place. |

In particular, the main reason that the specification-deseribed techniques rank lower in turnaround time
than the implementation-desceribed techniques is that they are not as good al limiting the impact of change.
"Phis can be overcome thirough “smarter” compilation tools that only recheck type consistency and regenerate
code for those clients actually affected by a modification to an object definition rather than, as is currently
standard, all clients potentially affected. Fundamentally, this requires that the compilalion lools have access
to more detailed information about how objects and their clients interact. lu keeping with our terminology
from Seclion 4.3, we refer to such information as interface control information. Given that compilation tools
have available and can exploit more detailed interface control information, developers of large protolypes
can limit the impact of change by restricting the set of clients aflected by a change to only those that are
actnally interested in that change.

We distinguish two different approaches to providing the more detailed interface control information
necessary for this improvement in limiting the impact of change to specification-described object definitions.
One is the explicit approach, represented by our PIC language constructs and tools or by Inscape [9). The
other is the implicit approach, as employed, for example, by Tichy in his work on “smart recompilation” [15).
As shown in Section 4.3, the explicit approach allows the developer to indicate intended interactions among
the components of a prototype. This information can then be analyzed (e.g.. by the PIC analysis tools)
for such properties as consistency. and can also be used by an appropriately “smart™ compiler to restrict
rechecking of type consistency and regeneration of code during a recompilation. The implicit approach is
bascd on a very detailed cross-reference analysis that determines such things as which aspects of an object’s

definition are being refcrenced and how, in addition to determining what system components are making



those references. The results of Lhis analysis can then be used, just as the explicit. information could, by an
appropriately “smart™® compiler to restrict rechecking of type consistency and regeneration of code during
a recompilation. While we favor the greater control over impact of change, and added error detection
opportunities, offered by the explicit approach, obviously both provide the same substantial improvement in
turnaround time.

It must be noted, however, that while these enhanced implementations of the specification-described
techniques can equal the implementation-described techniques at limiting the impact of change, they will
still lag slightly in terms of how quickly a change can take effect. 'This is because they will still involve more
compile-time overhead, due in part to the more extensive Lype checking made possible by their information-
rich interfaces and in part to the analysis involved in creating the interface control information. Of course,
the compile-time overhead is still very much less than wonld accrne in the absence of that information, and
should be only marginally more that the implementation-described techniques will require.

"The differences in the row labeled Consistency Management scem to be inherent properties of the tech-
niques and hence are not susceptible to modification through extensions or enhanced implementations.
Dynamic consistency checking is necessitated by both the implementation-described and the value-deseribed
techniques. As a result, both must detect consisiency errors al run time and hence cannot equal the carly
detection of the specilication-described techniques. ‘The value-described techniques must ultimately depend
ont decentralized consistency checking, performed by the clients themselves. and must also cope with the
possibility of object definitions changing during prototype execution. Both of these factors make consistency

checking more difficult and less reliable.

6 Summary and Conclusions

1n this paper, we have discussed some distinguishing features of large prototype software systeis, identi-
fied some requirements for object definition techniques for such prototypes, and characterized and compared
a range of potentially suitable techniques. We have outlined our implementations of and our experiences
with three such techniques Lo illustrate the range of possibilities and to support. our evaluation.

Our comparative evaluation does notl suggest that any of the techniques we have considered is clearly
preferable to any other. A choice among them must depend upon the relative importance assigned to the
various properties against which we compared them (and possibly some others that we did not inclnde
but. are of special importance for some gpecific prototyping application). For example, those who consider
turnaround time to be of overriding importance might find the value-deseribed techniques irresistible.

For our particular protolyping applications, we find the level of consisteney checking available with the



value-deseribed techuigques to be unaceeptable. On the other hand, we consider the level of consistency check-
ing available with the implementation-described techniques to be a reasonable tradeoll for an improvement
in turnaround time, Finally, we do not have available the enhanced implementation necessary to achieve
a comparable turnaround time for specification-described techniques (e.g., a “smart™ Ada compiler that
could exploit onr PIC'/Ada interface control information). ‘Iherefore, we are currently relying primarily on
an implementation-described technique, delivered through an enhanced implementation that provides good
support for development and reuse, namely Grapurre. Clearly, however, the availability of a different. set
of options (e.g.. a sufficiently “smart™ Ada compiler) counld lead us to a different. choice.

Many languages and tools have been implemented and used to support prototyping. Examples include
such standards as Lisp, Smalltalk, Pro1LoG, and Yace, as well as more recent. efforts such as the Cornell
Syuthesizer Generator [10], the SARA Interface Specification System [I8], DosE [6], and others. Many of
these have included one or more object definition techuigues. For instance, the structure editor generator
DosE essentially uses a value-described technique. for representing abstract syntax lrees, as a means Lo
support. its interpretive/interactive style of editor development. Our goal in this paper has nol heen to
present or argue for specific implementations of technigues. Rather, it has been to offer a basis on which
such techniques can be compared and evaluated. \We hope that this will provide a foundation for improved
understanding and more informed choices among hoth current and future techniques considered for inclusion
in languages or tools intended Lo support prototyping.

Naturally, there are other dimensions to prototyping languages and tools hesides their object definition
techniques. An example is Notkin and Griswold's work on a software extension mechanism [8]. ‘The thrust
of their rescarch is to support the incremental addition of functionality to programs written in a compiled
language, thus attaining some of the henefits of interpreted languages with much less performance overhead.
Their mechanism can be viewed as an approach to limiting the impact. of adding procedures to a prolotype
system, where our work has focused on limiting the impact of change to objects in prototype systemns. T'he
two are thus complementary components of an emerging trend toward support of large-scale prototyping
activities.

Finally, it might. be observed that the object definition technigues presented here, and also our evaluation,
are applicable beyond the realin of large prototype software. We have chosen to focus this paper on large
prototypes primarily because that was the context in which our work originated and hecause of the current.
surge of interest in large-scale prototyping. All nontrivial software systems evolve, however, and it. may well
be that the only significant distinction between large prototypes and other large software systems is the rate

al. which their developers expect them to change. Since many of the propertios that we have discussed here

are relevant to any cvolving software system, we hope that our obscrvations and analysis may find even
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broader applicability.
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