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Abstract

We consider a single server queue serving two classes of customers according to a
preeemptive resume head of the line priority discipline. The server is prone to failures
and at the time that they occur, all customers are flushed out of the system. The system
is analvzed under the assumption of a bulk arrival Poisson arrival processe, exponential

service times, general repair times and exponential interfailure times.

1 Introduction

In this paper we studyv the behavior of a single server that serves two classes of customers.
Each customer has a priority assigned to it according to its class and a preeemptive resume
discipline is used to serve all customers. If we label the classes k = 1,2, then we assume
that class | customers have higher priority. Customers receive an amount of service that is
exponentially distributed with a mean that depends on the customer class. The server is
subject to failures. At the time ;)f a failure, all customers in the system are flushed out. The
time between failures is assumed to be an exponential r.v. and the repair time is allowed
to have a general distribution. Last, customers arrive according to a compound Poisson

process whose parameters depend on whether the server is up or down.
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This work differs from earlier work in two ways. First, the typical models of systems
where servers suffer failures usually assume that customers remain in the system during the
failures [1,1]. The only exception known to the authors is a found in a report by Finkel
and Woodside [3]. That report considers a special case of our model when there is only one
customer class, no bulk arrivals, and negligible repair times. Second, most of the work on
priority systems assumes that the arrival streams for the different priorities are independent
of each other. Consequently our work breaks new ground in this direction.

The paper is organized in the following manner. Section 2 formulates the problem when
there is only one customer class. A complete solution of this problem is included in that
section. Section 3 uses these results to solve the original two priority class problem. We
conclude the paper with two applications in Section 4 and a summary of the results in

Section 5.

2 Flush out model

In this section we first consider the case where there is only one class of customers and
where all customers are served in a first come first serve manner. We assume that jobs
arrive to this queue in batches of size D* and D9 according to Poisson processes with
parameter A* and A? during the times that the server is up and down respectively. We
further assume that the batch sizes form a sequence of independent random variables (r.v.’s)
with distributions o} = P[D" = k|, aﬁ = P[D*= k], k = 1,--- and probability generating
functions (p.g.f.s) D*(z) = E[z2"], D(z) = E[zP"]. Job service times are assumed to be
independent and identically distributed exponential random variables with mean 1/p. Last,
the server fails according to a Poisson process with parameter v. When a failure occurs all
jobs are lost from the system. The failure is of duration R with cumulative distribution
Fp(t) = P[R < t|, Laplace transform R(s) = E[e~*F] and mean 1/3. We intraduce V" tn
denote the number of arrivals during a failure period. It has distribution ol = P¥ =]
with (p.g.L.) Y(z) = E[z¥] = R(AY1 — D%(z))). A special case of this problem has been
studied by Finkel and Woodside [3] where jobs are assumed to arrive singly and failure
intervals are of zero length.

Let I/ denote the state of the server, U = 0 if the server is down, and U = 1 otherwise.



Because the combined failure repair process is an alternating renewal process, we can write

Py =i]={ VAL i=0, (1)

Bl(y+8), i=1
We are interested in the statistics of N, the number of customers in the system. We will
obtain the p.g.f. for the distribution of N, N(z) = E[z"] when the system is in equilibrium.
This is most easily done by conditioning on the value of U. In the case that the server is
down, we have

E[zMU7 = 0] = [1 - R(A4(1 - DU2)))]B. (2)

In order to determine the behavior of the system when the server is operational, we study
the behavior of a semi-Markov process (SMP) imbedded at points in time immediately after
arrivals and service completions that occur while the server is up, and after each failure and
repair. In order to simplify the analysis, we shall assume that completion of fictitious
customers can occur while the server is up and the queue is empty. The behavior of this
system is modeled as a Markov chain with state (L;) where L, denotes the number of jobs
in the system after the £-th cvent, t = 0,1,---, when the server is operational and takes
value 0 when the server is down. We are interested in the stationary behavior of L, which
we denote as L = limy..o Le. Let pi = P|I = i], i = 0',0,1,--- denote the stationary

distribution of L. When the system is ergodic, these probabilities satisfy

po = (L - po)/o, (3)
po = p(po+p)/o+ peag, (4)
Pi v P04 N[0 preii +poal, i=1,-- (6)

k=0

where o = A"  p+y.
If we let L"(z) denote 372, p;2', then multiplying the left and right hand sides of eq.

(5) by 2 and summing over i =: |, - - - yields
L*(z) - .
1(z) = LR |y pa) Do ) (o 4 p Y (2) + poufo (6)

which can be manipulated to obtain

® _ PO(Z - 1)# +p0'Y(z)za
L¥z) = = — X D)z (7)




Equation (3) can be used to obtain the following expression for py

" po = (8)

o+

ifrom the theory of SMPs [5] we know that the joint probability that N = i and U/ = 1

. pi/o . /
Pr[N ={,U=1] = = , 1=0,0,1,.-. 9
| ] po/B+X2m]o ’ (®)

We define a new partial generating function N%(z) = Y20 Pr[N =4,U = 1]7*. Standard

techniques yield

u(y) = 1Y (2)2B8/(B + 1) + Pr[N = 0,U = 1)u(z - 1)
N (Z)—. GZ—’L—A"D"(Z)Z (10)
and we can express
EMU=1] = NY(:z)/PiU =1),
_ Y(2)z+ Pr[N = 0,U = l|u(z - 1)(y + B)/8
- 0z -y~ AvD¥(z)z ' (11)

The probability Pr|[N = 0,U = 1] is determined by recognizing that L*(z) is an ana-
Ivtic function within |z| -2 1. Consequently, the numerator takes on value 0 whenever the
denominator does in that region. We now show that the denominator has exactly one real
root within |0, 1) whenever v > 0.

Let A(z) = 72 — p— A*D¥(2)z. 1t is easy to show that A(0) = —p, A(1) = v and that
d*A(z)/dz? < 0 in the region 0 < z < 1. Consequently, there exists one real root within
|0, 1).

In the case that jobs arrive singly, the root, z°, is

oo Ayt p) - VO y ¥ p)T - g
2" N

(12)

Finally,

PN =0, = 1] = 7 :”z(;ﬂz;f 5 (13)

We can now express the p.g.f. of the distribution for N as

N(z) = PrlU/ = 0)E[zM|U = 0] + Pr[U = 1)E[N|U = 1),



= [L—- R(A%(1 - DU2)))IBv/(7 + B)

YBl2Y (2)/(3 4 B) + (2 = WY ()2 /(1 = =7)]

+ (7 + Bloz = = A D*(2)2] (14)
with mean
; _ AyE[R}E[D/)
BN = S AER
Y(z*)z*8 B

T+ B2 T ey TN BV AEIDT - o) (15)

Three other performance measures of interest to us are the system throughput, the
probability that a customer is lost, and the distribution for the number of customers that

are flushed out of the system at the time of a failure. The system throughput, 7, is

n=(B/(y+B)- Pr[N =0,U = l])u (16)
and the probability of customer loss, ¢, is

(B +7)
ﬂz\"E[l)"l + ‘Y/\dE[Dd]

qg=1- (17)

Last, if (! denotes the number of customers lost at the time of a failure, then it has p.g.f.
C(z) given by

C(z) = E|z"|U =1] (18)
with average

()" u - u) _
Bjc) = z)z' ¢ TN VB[] + BE[DY] - o 19)
(Ll - z7) v

We conclude this section with the observation that the case ¥ = 0 corresponds to a bulk

arrival MP /M /1 queue for which the p.g.f. of the queue length distribution is (see [7] for

details
ils) N(e)= Lz D0 - NE[D")/p)
w1l D)+ ulz - 1)

3 Flush out model with priorities

Consider a system with two classes of customers, i == 1,2, where class 1 customers receive

preemptive priority over class 2 customers. During the time that the server is up, customers
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arrive in bulks where D} denotes the number of customers of class ¢ contained within the
bulk. Let a}; = P[D} =1i,D§ = j|,4,j = 0,1, -- be the joint probability distribution of
the bulk sizes and let D*(w,2) = E[wPVzP?] denote the p.g.f. of this distribution. We
assume that the arrival of these bulks is described by a time invariant Poisson process
" with parameter A¥. A similar process operates during the down periods except that the
arrival rate is A? and the bulk sizes are D¢ having distribution a;{j and p.g.f. D¥(w,z) =
E[wDi'zL’g ]. Service times for class i customers are exponentially distributed with mean
1/p;, i=1,2. Last, failures are generated by a Poisson process with rate v. When a failure
occurs, all jobs are lost from the system and the failure lasts for R units of time with
distribution Fp(t) = P|R < t] and Laplace transform R(s). We let ¥; denote the number
of customers of class ¢ (i = 1,2) that arrive by the end of a failure period. These r.v.’s have
distribution of ; = Pr{}} = i,¥; = j], 0 < i,j and pgf. Y(w,2) = R(X(1 - D¥(w, 2))).
We again define the r.v. I/ to denote whether the server is up (U = 1) or down (U = 0)
with probabilities given in equation (1).

We treat the case ¥ > 0 first in great detail. We then conclude the section with the
main results for the case vy = 0,

We are interested in the statistics of Ny and N,, the number of customers of the high
and low priority classes respectively present in the system. As in section 2, we obtain the
p.g.f. of the joint distribution by conditioning on the value of U. In the case that U = 0,
this conditional p.g.f. is

Elw™M:M|U = 0] = [1 - R(M(1 - D¥(w, 2))))8. (20)

In order to obtain the p.g.f. given that the server is up, we again study the Markov
process imbedded at the points in time immediately after events (except arrivals during the
failure period). The state of this system is (L, Ly, L3;) after the i-th event where Ly;
and Ljy; denote the number of each priority class and L3; denotes whether the server is
up or not, Lz; = 0 if down and L3; = L if up. Note that whenever L3; = 0, then L,; =
La; = 0. We are interested in the stationary behavior of (L;, L2, La;) which we denote
as (Ly, Lg, L3) = limjoo(L1,i, La,i, La,;). This system is ergodic for non-negative values of

Af and p;, i = 1,2 whenever v > 0. Let p;; = P[L; =4,Ly = j,L3 = 1],4,=0,1,--- and



P = P[La = 0]. When the system is ergndic, the stationary probabilities satisfy

o = 7(1-po)/e, (21)
poo = |mi(poo + p1,0) + p2(poo + pPoa)l/o + aa,opo', (22)
j
po; = |p2poj+1 + p1(po,j + prj) +A¥ Z agPo,j-tl/o + ag jpor, §>1 (23)
1=0

i ¢
Pig = (AN af pPictyets + maPis1 + papigl/o + ai;por, 0<i;0<j (24)
=00, =0

where o = A" + py + g + 7.
We define the following partial generating functions L¥(z) = 332, pij2? and L¥(w,z) =
Y20 Li(z)w'. Multiplying both sides of equation (23) by 27, summing over j, adding in

equation (22), and solving for L3(z) yields

La(z) (7 — 1)z - pz - A Dg(2)2] = 2p1 LY(2) + poopa(z — 1) + zYo(2)oper.  (25)

Multiplying both sides of equation (24) by 27 and summing over j yields
(@ - m)L¥(2) = i Lo (2) + AU Y DR(2)Ly(2) + opo¥i(z) >0 (26)
=0
Here D}(z) - E|zP2|D¥ = 1] and Yi(2) = E[2"?|¥, =], 1 = 0,1, -. Finally, multiplying
both sides of equations (25) and (26) by w', summing and performing some algebra yields

La(z) lzw(py — p2) + wpa - zp1] + poow(z — )pa + 20¥(w, 2)ppo (27)
[zw(o - pa) - zpy ~ AzwD¥(w, z)] '

L*(w, ) -

Equation (21) can be used to obtain pyr = v/(o + 7).
We define N(w,z) - E[wM2"?]. Following the same line of reasoning displayed in
section 2, we are able to obtain the following expression for N(w, z),
1801 - R(AY (1 - D(w, 2)))) N [zw(pt1 — p2) + paw — 1 2) N§(2)
v+ 4 zw(o — pn2) — z2p — AtzwD¥(w, 2)

zwyAY(w,z)/(7 + B) + Pr[Ny = 0,N; = 0,U = 1w(z - L)u,)
*.
2w(o - p2) - zpy — AzwD¥(w, 2)

N(w,z) -

(28)

where N§'(z) = X 2o Pr[Ny = 0,Ny = i,U = 1]z'. We are left with the task of obtaining
expressions for Pr| Ny = 0, N; = 0,U = 1] and Ng(z2).



We foens on the derivation of an expression for the conditional p.g.f., E[zN’|U =1,N; =

0]. Once we obtain an expression for this quantity we can use the relation
Nez) - E[2¥0 = LNy = 0iPgl” LN 0 (29)

to obtain Ng'(z)-
The probability Pr{N, = 0,U = 1] is obtained by recognizing that the high priority
customers do not observe low priority customers. Thus we can use the results from the

preceding section to obtain this probability,
Pr[Ny = 0,1 = 1] = y2;(1 - z))m, (30)

where z; is the root of the function (A" + 7 + )z — my — A*D¥(z, 1)z lying within [0,1).

An expression for [ [zN3|] = 1, Ny = O] is ohtained by studying a modified system where
all class | busy periods are removed and replaced by bulk arrivals of the class 2 customers
that arrive during those busy periods. Figure 1 illustrates this modification. Figure la
illustrates the original system and Figure b illustrates the modified system with class 1
busy periods replaced by arrivals. The numbers associated with the arrivals identify the
classes of the arriving customers. This transformation results in a single class system whose
behavior was analyzed in the preceding section. We shall use a ' to denote the parameters
of the model of the modified system, e.g., 7' is the failure rate for the modified system.

Not all of the class 1 busy periods are replaced by bulk arrivals in the modified system.
This replacement occurs only if the busy period completes before the server fails. Let us
consider what happens to those class 1 busy periods that do not coﬁlplete before the server
fails.

We distinguish between two types of class 1 busy periods. Type-1 busy periods are
thr_vse initiated while the server is up due to the arrival of a class 1 customer and type-2
busv periods are those initiated by class 1 customers that arrived during a failure period.
Let I’} and P} denote the probabilities that these busy periods do not complete before the
server fails. We focus on the first of these probabilities. Let B denote the busy period of a
bulk arrival M1P2l/AM/1 queue without failures that serves the high priority jobs. Denote

the probability density function and Laplace transform for B as b(t) and B(s) respectively.



class | bp l class 2 bp | down Iclass 2 bpl
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Figure L: Original System and Modified System.

Then P} can be expressed as

i

Pyo= 1- /ﬂ B(t) e~ dt

1 - B(7y). (31)

In a similar manner we derive the following expression for P?,
PE = L~ RAY(1 - B(y))) (32)

Each failure that occurs in the original system while the system 1) is empty, 2) contains
only class 2 jobs, or 3) is in a type-1 busy period, is represented as a distinct failure
in the modified system. Each failure that occurs during a type-2 busy period is merged
with the failure perind that preceded it. Thus the failure rate in the modified system is
¥ = v+ A%(1-- D¥(0,1)) P} and the average failure period duration is 1/8' = (1/8)/(1 - P}).

We now focus on the bulk size of class 2 customers in the modified system. Specifically,
we derive expressions for D%/(z) and Y'(z). This analysis requires that we study the class
| busy periods in the original system that do not contain failures. These can be shown to

exhibit the same statistical behavior as the busy periods of a M(P11/M/1 queue with arrival



rate A", hulk size DY, and service rate ju; + . D™ corresponds to the number of class 2
customers that either arrive alone or during a class 1 busy period. It can be shown that

the p.g.f for the distribution of D" satisifies the following functional equation,
D*(2) = D*((m1 + 1)/l + 7 + X - X*D*(D*(2), 2)],2) (33)

and the p.g.f. for the number of arrivals at the end of a failure period in the modified system
is
Y'(2) = R(A(1 ~ DYW(2), 2))). (34)
The remaining parameter is ' = pip.
The conditional pgf E[zV2|N; = 0,U = 1] is obtained from equation 11 by replacing
the unprimed parameters with the primed parameters derived above and then solving for

ph as described in the text following that equation. The resulting expression obtained for

E|zM|Ny = 0,7 = 1] is

Pr{N; = 0,U = 1[Ny = Olua(z — 1)(7' + B')/B' + 29'Y(2) (35)

EZNzN =01 = =
I I [ ) ” (,\“+[12+7)Z—IL2—AD“'(Z)7.

where
7+ 5B (2)
(1~ z3)p2(y' +B')

and z, is the root of the denominator of the expression in equation (35).

p!" Ng o 0,([ = llN‘ = 0‘ = (36)

We are now left with the task of obtaining Pr[N; = 0, N, = 0, U = 1]. This probability

is

I

Pr[Ny = 0, Ny =0,U = 1 Pr{N, = O|Ny = 0,U = 1] Pt|[N; =0,U = 1],
= E[z"|Ny =0,U = 1)|,=0 Pr{N; = 0,U = 1],

= (7' +8)Pr[N2=0,U = 1|N: = 0] Pr[N1 = 0,U = 1}/6
12;(1 - )y’ + 8'Y'(23))

= 37
AL = z;)pe (37)
The last two probabilities are given by equations (30) and (36).
We denote the throughputs of each class as 5;, i = 1,2. they are
m = (B/(B+7)-PrNy =0,U = 1)), (38)
M = (PT[N]‘:O,U:]]—PI'[N[ =0,N2=0,U=1])[12. (39)
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The probability of customer loss, ¢;, for class i = 1,2is

7(8 + 7)
BA“E[DY] + yME[DF]’

gi=1- i=1,2. (40)

Last, if ('; denotes the number of customers lost of each customer class when the server

fails, then the joint distribution has p.g.f. C(w,z) = E[w® 2€1) given by
C(w,z) = E|lw™M MU = 1). (41)

The moment generating properties of the p.g.f. can be used to obtain the moments of these
r.vV.s.

We conclude this section with a description of the results for the case ¥ = 0. The system
is modeled as a continuous time Markov chain with state (L1, L) at time ¢ > 0 where L, |
and La, denote the number of each priority class in the system. We are interested in the
stationary behavior of (L1, Ly ) which we denote as (Ly, Ly) = limy—.oo(L1 s, Lyy). Slnce
there are no down periods, we will omit the superscript * from A%, D¥, etc... This system is
ergodic for non-negative values of A, E[D;), and p;, i = 1,2 such that AY%, E[D;)u; < 1.
Let pij = P|Ly = i,Ly = j|, i,j = 0,1,---. When the system is ergodic, the stationary

probabilities satisfy

Apao == pi(poo + 1) + n2(poo + o), (42)
J
(At p2)po = p2pojir + p(po +prs) + A aopo-t, i1 (43)
=0

B
MY Y an Picty oty + mPis; + papig, 0<E0< 5 (44)

12:=01, =0

(A + )i

If we define N(w,z) = E[w™ 22| and No(z) = 320 po.i2', then standard techniques

vield

N(uw,z) - [zw(y ~ p2) + paw ~ py2z|No(2) + po,ow(z — 1);12). (45)
zu(A + ) = zpy — AzwD(w, z)

Following the same procedure used earlier for the case ¥ > 0 we obtain the following

expression for No(z),
_ p2(z = 1)(1 = AE[D')/pa)
(At p2)z - p2 - AD'(2)2

No(z) (46)

where

D'(z) = D(p/lm + A = AD(D'(z), 2)], 2), (47)

11



and E[D] = (E|Dy|p2/(p2 ~ AE[D2}).
The moment generating properties of the p.g.f. can be used to obtain various statistics

of Iy and L.

4 Applications

We describe two applications of our model to the evaluation of performance of distributed
computer systems. The first application is to the problem of evaluating the performance

of a processor which handles requests that arrive over the network as well as requests that
| originate at that processor. The second application is to the problem of evaluating a buddy

protacol for fault recovery in a distributed system.

4.1 Remote Execution of Requests in a Distributed System

We consider a distributed system consisiting of M processors connected by a network. We
assume that jobs arrive at each node either from the outside world or from some other
processor. In cither case, the arrival process is assumed to be Poisson with rate A; for the
external arrivals and ), for the network arrivals. All jobs require an amount of service that
is exponentially distributed with rate u,. Last the processor is required in order to handle
the communications required to transfer the remote joh over the network. In this case the
service requirements are assumed to be exponential random variables with rate p;. Last,
communications is given preemptive priority over job execution.

We have described a two priority queue in which the arrivals of the two job classes are
correlated. Thus the results found at the end of the last section apply here. Our parameters
are A = A + Ag, D(w, z) = (A + A2w)z/A, g and pp. The p.g.f. for the joint queue length

distribution is given by equation (45) where Ny(z) is given in equation (46) and D'(z) is

D'(z) = o+ A+ Az/A - (1 _ 4z [Mpy + Apz(pn + A - /\zz)])l/z
‘ 2/\1 AIA%Z/A bl 13 /\]2 ’

The moment generating properies of the p.g.f. can be used to obtain the moments of the

queue lengths.
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4.2 The Buddy Algorithm

In this section we apply the model to evaluate a simple buddy algorithm that can be applied
to a distributed computer system so as to recover from faults. The algorithm operates in
the following manner. Whenever a job arrives to a processor, a second processor is selected
to store a copy of the job. If the first processor fails before the job completes, then it is
the responsibility of the second processor (buddy) to execute the job. At the time that a
processor fails, it relinquishes control of all jobs within its queue and they are flushed out.
Thus the model developed in this paper can be used to model the behavior of the processor.

The processor must perform two activities for each job, select a buddy node and transfer
the job to it, and execute the job. The first activity has higher priority than the second
activity. Let jobs arrive according to a Poisson arrival process and require an exponential
amount of service with mean 1/y, to select a buddy and transfer the job, and an exponential
amount of time with mean 1/p, to execute the job. We assume the time between failures
to be exponentially distributed with mean 1/y and general service time R. Last, we assume
that jobs are routed to a different processor when a processor is down.

The results from the previous section are directly applicable. The p.g.f. for the joint
queue length distribution is
_zw(p - pa) + paw - py z) NE(2)
ozw(A b+ ) -z - A2w?

} zuyf/(y + A) + Pr{N, = 0,Ny = 0,U = lw(z - 1),
2w(A by +9) -z - A22w?

N(w,z)

(48)

where

Lo rE( = )l + 28)(2 - 1) + 2v'B(1 - 23))]
(e (LR Ty s v Y
Y v EAL - B(>Y)),

YA s - [ty A4 9)? - A+ 7)A]V2

B(s) = 2) ’
D'(z) - - mtAty | — (| - M.)l/z
- 2\ (1 + A +9)? ’
. - At vt m) - VA7 ) - 4
1 - ]

2)
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v21(1 - 2 ) (7' + 238)
B(L - 23)p '

Pe|Ny = 0,Na=0,U = 1

Here 25 is the root of the denominator of equation (49) that lies within [0,1). The function
B(s) is the Laplace transform of the busy period distribution for an M/M/1 queue with
arrival rate A and service rate u; +7. The moment generating properties of the p.g.f. allows

us to obtain the moments of the queue lengths.

5 Summary

In this paper we obtained expressions for the p.g.f.’s of the marginal queue length distribu-
tions for each priority class in a single server queue where the server is subject to random
failures. This system is interesting because 1) there is a correlation between the arrival
processes of the two customer classes and 2) all customers disappear from the system at the
time of a server failure. Furthermore, the arrival processes are turned off during the times
required to repair the server. Further work is required to generalize these results to 1) more

general service times, and 2) more than two priority classes.
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