Event Monitoring and Abstraction Tools

Peter C. Bates

COINS Technical Report 89-17
March 14, 1989

Laboratory for Cooperative Distributed and Parallel Computing
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This research supported in part by the National Science Foundation under grants MCS-8306327, DCR-8318776,
and DCR-8500332.

Event Monitoring and Abstraction Tools

Peter C. Bates

Laboratory for Cooperative Distributed and Parallel Computing
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

ABSTRACT

A collection of tools is described that allows the user of Event Based Behavioral Abstraction to
monitor and control an executing system. The use of the tools and how they are interconnected
is the focus here; rather than the details of their operation. Also described here is the Lisp-like
extension language that serves both as an inter-tool communications protocol and a programming
language that permits users to create sophisticated responses to monitoring activities.

CONTENTS

Contents

1. Overview

11 First,the Glue e e
1.2 Event Sources/Event Sinks
2. Extension Lisp-Like Language and Inter-Debugger Protocol
2.1 Lexical and Syntactic Elements,
211 Comments. it ittt e e e e e e e e
21.2 Parenthesized List i
213 String e e e e e
214 Numbers e e
215 Names (Symbols)
2.2 Wired-in Names (functions and variables), common across elll interpreters
221 Wired-in Variables o
222 ArithmeticFunctions. i i
2.2.3 Bitwise Numeric Functions,
2.2.4 String Manipulation Functions
2.2.5 Relational Functionso e
22.6 Declarative Functions L i e
22.7 ControlOperations it ittt
2.2.8 Environment Access Functions
2.3 Adding New Wired-in Operations,
2.3.1 Execution Environment of Wired Operations
232 Wired-inProcedures i e
2.3.3 Adding Wired-in Variables
3. Linking to a Stream - Event Sources
3.1 Locating and Connecting to an Event Stream
3.2 Posting Eventstothe Stream
3.3 Miscellaneous ibEBBA Routines,
331 Timeroutines.ot vt v it it ittt
3.3.2 Encoding event tuplesasstrings
3.3.3 Event Instance Tuple locationValue
4. End Points to Streams — Event Sinks
4.1 Event Abstraction Componenty
4.1.1 Starting the EventMonitor Component

4.1.2 elll Messages Interpreted by the Event Monitor

A. Error Messages and Recovery (ha!) Procedures

.................

16
17
18
20
20
21
22

22
22
23
24

27

CONTENTS

-A.l errors &om libebba
‘A2 errors fromelll . .

.....................................

.....................................

A.3 Errors from the Event Monitor e

LIST OF FIGURES

List of Figures

1 Basic toolset components

................................

2 Event Source/Sink relations e e e e e e e e e
3 Accessing and sending events using ebbaPostEvent()

1. Overview 1

1. Overview

Event Monitoring and Abstraction is the main operational activity of the Event Based Behav-
ioral Abstraction (EBBA) debugging paradigm. A collection of tools has been created that allows a
user to employ EBBA in order to understand a system with a view to correcting its behavior. The
toolset (figure 1) contains components for creating and maintaining viewpoints and models (Model
Builder and Librarian), abstracting behavior models from actual behavior (Event Recognizer), ana-
lyzing the status of abstraction tasks (Behavior Monitor), and a collection of user interfaces (User)
and graphical information gathering displays.

Model
Builder

L library

Librarian

| Pending User

Event Behavior
List Monitor

4

Event
Recognizer

Event Queue

~0E%rrn2

Figure 1: Basic toolset components

This report describes the use of toolset components that are involved in the creation, gathering,
and abstraction of events. This description encompasses individual toolset components as well as
their integration as a distributed program. Also described here is the Lisp-like extension language,
elll, that serves to bind together all toolset components. The elll is a communication protocol
and interpreted language that permits toolset components to be structured as a message-based
system and provides a mechanism for users to extend the basic functionality provided by individual
components.

The remainder of this section defines what events are and provides an overview of the interaction
of toolset components involved in the event abstraction process. Following sections provide a more
detailed description of the components and how they are used together to provide a functional

1. Overview 2

system. A significant portion of these sections details elll messages and what their interpretation
will effect. The last part of section 2 details how to add new basic functionality to the elll.

1.1 First, the Glue

Event exchange is the medium used for all system understanding in EBBA. Events are used
to represent some significant system transition or interaction of system components. An event
is recorded by a tuple that consists of an event class name and a list of attribute values. The
class places an event into a general catagory while the attribute values serve to characterize and
differentiate specific occurrences of events from the class. All of the events in a class have the same
number, types, and ordering of their attributes. The shape of an event-its class together with its
attribute arrangement-is derived from its EDL modelling language description [1].

Every event class can be represented with a template having the general form:
(event-class ay a,...time location).

The attributes, a,,as,,...correspond io targets of value binding expressions described inm with
clauses of the EDL modelling language description. Each event class has a distinct template de-
termined by its shape. The time and location attributes, characteristic of all events, are implicitly
the last two attributes of any event tuple. time and location represent the system time the event
instance was created and where it originates in the system, respectively.

As a system executes, it creates instances of its event classes to evidence its behavior. The
class of an event instance is determined by where in the executing system the instance is detected.
In the current grand scheme of things, event instances are created by annotations (probes) added
to the program text. All instances of a single event class are (probably) created by the same
instrumentation probe in the monitored system. The values bound to the attribute fields of the
instance are determined from the system state that is available when the instance is recorded.
The time attribute for any event is a somewhat slippery object. Since the time assigned to an
instance is taken while the instance is being recorded, the instance time actually follows the time
the behavior it represents is deemed to have “happened”, but before the next bit of behavior has
begun. One further complication to relying on time is that quantum rundown or other preemptive
system behavior during event instance generation could cause events that have actually occurred
in one order to acquire timestamps that appear to change this order.

For example the concurrent Mandelbrot Set Generator [2] creates a characteristic set of primitive
events, one of which has the following EDL description:

- worker announces its intention to fill a patch
event e_TakePaich is

1. Overview 3

primitive "e_TakePatch"
with

id : inleger;

patchidz : integer
end

The event tuple described by the e_TakePatch description has the template:
(e_TakePatch id patchidz time location)

e_TakePatch is the event class. Instances of the class are distinguished by the values bound to the
id, patchidz, time, and location attributes. Some instances of this class might be

(e.TakePatch 3 26 0:00.17 "min.3")
(e_TakePatch 2 47 0:01.03 "min.2")

The Event Stream (Figure 1) is a merging of the event instances from all of the event generators
contained in a particular set of cooperating components. The instances inserted into the stream
by individual components are interleaved arbitrarily with those generated by other components.
Nothing can be determined regarding the temporal relations of events created on different proces-
sors. The clocks that time stamp individual events on different nodes are at best close and the
statistical access to the physical communication medium confuses internode relations further.

The event Librarian (Figure 1) is responsible for maintaining viewpoints on a system. A view-
point is defined in terms of a set of primitive events. Within a viewpoint, high-level behavior
models may be defined in terms of the basic primitive event set. The librarian contains facilities
for adding new primitive events to the current viewpoint, and for merging many libraries into a
single viewpoint. An interface to the Model Builder helps tool users to add high-level models to
the viewpoint maintained by a library.

1.2 Event Sources/Event Sinks

The tools that are directly involved in event instance manipulation and exchange (to differentiate
from model creation and maintenance) can be classified as event sources and event sinks (see figure
2). An event source is a program that has been instrumented to generate low-level (primitive)
events for consideration by a sink. An event source is constructed by annotating a program that is
to be monitored with calls to event instance formatting and transmission routines. This is currently
managed manually, but work is in progress that would automate this activity. Other techniques
might also be employed, but the net effect is that sources somehow obtain event instance records
and send them to one or more event sinks.

2. Extension Lisp-Like Language and Inter-Debugger Protocol 4

(oEtoﬁlnff Cnly nodes) (agsls?l!(asction nodes)

] gk,

event movement
Figure 2: Event Source/Sink relations

An event sink is a component that is capable of receiving and possibly abstracting events. Some
event sinks simply accept event messages and present them or some characterization to a tool user.
An event sink that is involved in event abstraction is also a potential event source that sends
representative instances of the events it has observed to other event sinks. }

2. Extension Lisp-Like Language and Inter-Debugger Protocol

Toolset components exchange messages to describe their status and to request services of other
components. These messages are coded as S-expressions using the syntax of the extension language,
elll. All communication among components comprising a toolset is by exchange of elll expressions.
Event instances resemble elll expressions. Requests to components for action are elll expressions.
Information bearing messages passed among components are elll expressions.

elll is normally bound to a toolset component and used as a service by that component. The
basic functionality of elll is determined by its wired-in functions. The basic functionality can be
changed by adding more wired-in functions to the basic elll interpreter or by wired-in functions
provided by the component that is bound to the interpreter. The basic functionality of these wired-

in functions can be extended by defining programs and functions using the elll function definition
routines.

When an expression is received by a component it is passed to the elll interpreter where it
is parsed and interpreted to obtain a value. Interpretation of an expression is carried out in the

2. Extension Lisp-Like Language and Inter-Debugger Protocol 5

context defined by the message receiver. This carries the implicit possibility that different receivers
may use the same expression for different purposes. This simplifies the message passing architecture
and facilitates component interchangability. Users can enter elll expressions to directly control the
activity of a component if the component allows direct entry of messages from type-in windows.
Likewise, user interfaces, perhaps based on mouse inputs and graphical display output, format
messages as elll expressions to be executed by the component they represent.

elll expressions are parenthesized lists of symbols, values, and parenthesized lists. This gives
elll a Lisp-like syntax but interpretation of individual expression arguments has certain context-
sensitive aspects. All symbols must be declared (defined) as either a function, variable, or event
class before any attempt is made to evaluate the symbol to obtain a value.

The extension language makes a clear distinction between names that represent executable
functions and names that are value bearing variables. This is directly reflected in the structure of
an elll expression

(function-name arg, arg,...arg,)

Junction-name must be bound to some executable procedure before evaluation of the expression
is attempted. The list arg;, arg,... may be constant values, variable names, or parenthesized
function invocations.

Execution of elll programs and functions has two phases: a tree building phase where the text
of an expression is parsed and translated into an internal form; followed by an execution phase
that evaluates the program to return a value. elll programs are represented as a tree of object
structures, each of which represents a function invocation or atomic value. Eventually all program
trees arrive at wired-in procedures that actually perform functions on the values defined by the
current execution context. Whenever a function executes it fills in a global “register” with the most
recently obtained value, and returns an interpreter status value. These are accessed by component
routines through wired-in elll functions and global variables.

2.1 Lexical and Syntactic Elements

elll expressions (or statements) are composed from a small number of lexical elements (tokens).
An expression is free-form, any number of space characters may appear between tokens. Space
characters are the usual blank and tab plus all of the text formatting characters such as newline,
form feed, vertical tab, etc.. Structure constructors can result in vectors of atomic typed data,
event tuples, and programs. However, general record structures are not supported as a type. One
effect of this restriction is that there is no real capability for the normal Lisp program-as-data view.

2. Extension Lisp-Like Language and Inter-Debugger Protocol 6

2.1.1 Comments

A comment may be inserted anywhere a space character is permitted. Comment text begins
with a “;” (semicolon) character and ends with the next newline character (\n for those C hackers

out there). Thus, comments do not span lines. For example

; run-model
; Function to get a model running without questions
(defun run-model (model tag queuepos)
; create the recognition context
(recognize tag model)
; add standard responses
(add-rcb tag ’RecyclePendingEvent nil)

)
2.1.2 Parenthesized List

A parenthesized list introduces a function invocation. The list begins with an open parenihesis
character “(” and ends with a matching right parenthesis “)”. The general form of a parenthesized
list (function invocation) is:

(function-name item, ...item,)

function-name must name a function symbol for either a wired-in or an elll-defined function. The
function is applied with the remainder of the list as actual procedure arguments. Each item may
be any of the elll lexical elements, subject to the interpretation constraints of the named function.
In the above example, defun, recognize, and add-rcb are executable function names.

2.1.3 String

A string is a contiguous sequence of characters enclosed between pairs of “"” marks. Any
printable character may be embedded in a string. Single " characters may be inserted into a string
by preceding the " character with an escape character (\), i.e. a string

"ooax\yLL Lt
is represented internally as

X"y

2. Extension Lisp-Like Language and Inter-Debugger Protocol 7

Non-printing characters may be embedded in strings using the \000 form where \000 is the octal
value of the desired character. Since strings are stored internally as nul (character 0) terminated
sequences of characters, inserting the character \0 might terminate the string prematurely. Some
special forms are available for commonly used special characters:

\\ -inserts a \ character

\n -inserts a newline (ctrl-j) character
\b -backspace (ctrl-h) character

\r -carriage return (ctrl-m) character
\t -tabbing (ctrl-i) character

\e -escape (esc) character

A string must terminate before the occurrence of the next newline character in the elll text. There
is currently no simple mechanism for entering multiline strings. Also, comment text (beginning
with a ; character) cannot be inserted into a string.

2.1.4 Numbers

Numbers represent unsigned or negatively signed whole decimal values, floating point numbers,
or bitstrings specified using any of hexadecimal, octal, or binary radixes. Also possible are numbers
specified as single characters. Positive, whole integer values are entered as a string of contiguous
decimal digits. Negative decimal numbers may be entered with a minus sign (- character) preceding
the digit string. (There is no explicit +number form available.) Numbers entered as smgle characters
are specified by enclosing the character between “’» marks, e.g. ’a’ or ’$°.

Floating point numbers are indicated by their containing an explicit fractional part or scaling
exponent part, or both. As with whole integers, an optional ‘-’ (minus sign) preceding the string
indicates a negative valued number. The following are acceptable forms for floating point numbers:

dd.dd

dd.ddEdd or dd.ddE+dd
dd.ddE-dd

ddEdd or ddE+dd
ddE-dd

Where dd is a string of contiguous decimal (0-9) digits.

Bitstrings are entered as unsigned radix-specific strings of characters. The general form is

0<radzz>DDDD

2. Extension Lisp-Like Language and Inter-Debugger Protocol 8

where <radiz> is one of E, 0, or B (or h, o, b) indicating hexadecimal, octal, or binary conversion
radix respectively. The value string DDDD that follows the radix specification must contain only
valid characters for the indicated radix

hezadecimal: 0-9, a, b, ¢, d, e, £(A, B, C, D, E, F)
octal: 0-7

binary: 0,1
Thus, some acceptable radix specific bitstrings might be

0x4e7 Oxf3A
0062243 0077737
0B011011 0b10101

2.1.5 Names (Symbols)

Any other contiguous set of characters is accumulated into a symbol or name string. A name
string terminates at the first space character, parenthesis (open or close), or comment character ().
As name symbols are parsed they are looked up in the name table. If previously defined, a reference
to the name is placed into the parsed expression. If not defined previously a new name table entry
is created and this reference is placed into the parsed expression. Until a name is explicitly (using
declare-global) or implicitly declared (function or lambda block parameter), or assigned a value
(using (setq ...)), it may not be referenced to return a value.

2.2 Wired-in Names (functions and variables), common across elll interpreters

Wired-in functions are the routines that are linked to the implementation of the elll interpreter
in order to provide the fundamental operations defined by elll and the components that interpret
functions. All components that contain elll interpreters provide a common set of functions, de-
scribed below. Each component might also provide some component-specific wired-in functions.
The wired-in functions group into value-returning arithmetic and logical operations, control func-
tions, declarative and structure constructors, and miscellaneous environmental access operations.

2.2.1 Wired-in Variables

Wired-in variables provide a way for elll routines and function calls to access values maintained
by program components. Wired-in variables also represent commonly used values. The variable
name is created by the component that maintains the value, via a call to the el11DefineVariable()
interpreter function. Available wired-in variables are:

2. Extension Lisp-Like Language and Inter-Debugger Protocol 9

nil - supplies null string, empty list, or number 0 as needed.

InterpreterStatus - contains the most recently set interpreter status value.

2.2.2 Arithmetic Functions

Arithmetic functions accept a list of numeric values, compute their function, and return the
result. The value types can be integers specified as whole numbers or bit strings, floating point
values, or text strings that contain a valid number. The result type will be integer if all the numeric
values are integers or floating point if any of the operand values are floating point. Available
arithmetic operators are:

(+ a1 a2...a,) - adds numbers a; + a3 + ...+ a, and returns the sum,

(- a1 a3...a,) - subtracts numbers @) — a; — ... — a, and returns the resultant difference,
(* a; ay...a,) - multiplies a; x a3 * ... * a,, and returns product

(% a1 a3...apn) - returns remainder of integer division, a; modulo a; modulo ...a,

(/ ay a3...a,) - returns the value obtained from a; divided by a, divided by ...a,

2.2.3 Bitwise Numeric Functions

The bitwise logical functions perform their operation on 32 bit operands. Operands that are
string types representing valid whole numbers are converted to 32 bit numbers before use. The
result value from all bitwise logical operations is a 32 bit integer.

(& a; a3 ...a,) - This function evaluates each g; in turn, performing the bitwise and of the returned
a; value and the previous result. If the result becomes zero at some a;, no more of the
@;41 . ..an are evaluated, otherwise the final result is the bitwise “and” of a, .. .a,

(1 a; a;...a,) - Evaluate a;...a, in turn and return the bitwise “inclusive-or” of a; ...a,. All
of a; ...a, are evaluated.

(" a; az...a,) - Evaluate each of a; ...a, and return the bitwise “exclusive-or” of a; ...a,
(~ a;) - bitwise complement of a,

(<< a; ay) - shift a; left by a, bits, zero filled

(>> a; a3) - shift e, right by a, bits, zero filled

2.2.4 String Manipulation Functions

The string functions manipulate arbitrary length character strings of 8-bit characters. The nul
character (\0) is considered to end a character string. In functions concerned with the position or
index of a character in a string, the index or position of the first character is one (1).

2. Extension Lisp-Like Language and Inter-Debugger Protocol 10

(concat str stry...str,) - returns a string that results from appending strings stry to stry, stry
to that, stry to that, etc. .

(substr str pos n) - copies n characters from str with first at pos, and returns this result. If the
value of pos is negative, the source string is indexed from its end. If the effective starting
position is after the end or before the beginning (|pos| > length(str)), the result is a null
string (after) or a substring beginning at the first character position, (before).

(length str) - counts the characters in str, not including the nul-terminator character.

2.2.5 Relational Functions

The relational operators return an integer valued false (0) or true (1) value depending on the
relation of their operands. All of the relational operators operate on integer, double length floating
point, or string values. Implicit type conversion takes place to the stronger of the operands,
where the ordering is double, integer, string, with double the strongest. A non-zero relational
expression operand value is considered “true”; zero-valued expressions are “false”.

(< @; a2) - trueif a; less than a,
(<
O

(> a; a3) - true if a; greater than a,

a; ap) - true if a; less than or equal a,

ay a3) - true if @) greater than or equal a,

(= a; a3) - true if a; equal to a,
('= a; ap) - true if a; not equal to a,
(! @) - trueif a is false (zero valued), false if a, is true (non-zero).

(22 a1 a;...ap) - logical “and” connective, true if all of a; and a; and ...a, are true. False if
any of a; ...ay, is false. This function short circuits. Each a; is executed in turn until either
all return true or the current a; returns false.

(11 a; az...a,) -logical “or” connective, true if any a; ...a, are true. This function short circuits.
Each g; is evaluated until the current a; returns a true value.

(" a1 a3) - logical “exclusive-or”, true if a; or as is true but not if a; and a, are true.

2.2.6 Declarative Functions

These functions declare a name to be one of the acceptable kinds, thus permitting its use in
an interpretation context. In general, there are only variable names and function names. Use of
a variable name invokes a typed internal function that accesses the value currently bound to that
name. Name symbols are also implicitly declared as variables if they appear in either the formal
parameter list of an extension function or as a local name in a (progn ...) scoping construct.

2. Extension Lisp-Like Language and Inter-Debugger Protocol 11

Function names may be bound to elll interpreter-defined functions (wired-in to elll) or to user
defined extension functions. Although a function name may be the same as a variable name, defining
one kind does not imply definition or usability as the other (event names are an exception). Wired-
in functions and event names may not be redefined.

Event names may be used in either a variable or function context. When used as a variable
an event name returns its internal library-defined identifier. When used as a function name the
remaining items in its expression are evaluated as attributes and an event tuple is returned.

(declare-event e;...e,)

Declares that symbols e; . . .e, are to be treated as events. Each e; has its definition searched for in
the currently open event library and its description is read (but not its recognizer) into the event
definition cache. An entry is made for the event class in both the global variable table and the
function table. Subsequent use of the event name in a variable context returns the event library
internal identifier. If invoked as a function, the actual parameters must agree in number and kind
with the formal argument list from the event definition.

Global variables maintained by elll routines must be declared before they are used. These
variables are given values using the (setq ...) elll function.

(declare-global v;...v,)

creates persistent global variable names v; ...v, with initial values 0 or NULL. These names are
accessible to elll expressions to serve as operand values. Variables (or other value bearing items)
contained in a component can be made visible to extension language routines by binding a global
name in the elll domain to the storage holding the value.

The most powerful use of the extension language comes from the ability to define functions and
routines that add functionality not wired into the protocol. The form

(defun fn (a, de,...a. de.) W ...lu, ezp; ...eTpy,)

declares a function, fn, with ¢ arguments a; ...a.. Each of the lv; ...lv, are local variables given
empty bindings when the function is invoked. When the function is called with actual parameter
arguments p; ...pj each actual parameter p; is bound to the corresponding formal parameter a;.
If the number of actual parameters is greater than c, extra actual parameters are discarded. If the
actual parameter count is less than c, each a; that has no matching p; is assigned the value resulting
from the evaluation of its corresponding default expression, de;. The de; for formal parameter a; is
optional for the function definition. If no de; is specified, and no actual parameter is available, an
empty variable binding is attached to a; when the function is entered. Execution of each exp; takes

2. Extension Lisp-Like Language and Inter-Debugger Protocol 12

place in the context of the global variable environment, the variables defined by formal parameters,
and local variables.

2.2.7 Control Operations

The control operations implement simple conditional iterative and selection constructs. Each
control function returns a value in the result register and returns an evaluator status.

(progn vam ...varn, ezp,...exp,) - creates empty local bindings for the list of variables
vary...var, and then evaluates each expression ezp; ...ezp, in turn. The returned result
is the value of the last expression ezp; evaluated. Following execution of all the ezp;’s, the
bindings assigned to war, ...var, are released. Use this construct as a compound statement
with local variables might be used.

(if bey true;...be, true, default) - evaluate each selection expression (be;) until the result of be;
is non-zero; then execute the corresponding true;. Zero result from all be; evaluations will
cause the defoult statement to be evaluated. The result is the value returned by the exe-
cuted statement. If no default is supplied, the if form simply exits. The status returned is
STATUS.Success if no errors occurred during evaluation; STATUS_Failure otherwise.

(vhile be ezp;...ezpn) - The conditional expression beis evaluated. If evaluation returns a non-
zero result, each expression ezp, ...ezpy, is executed. The test-execute loop is repeated until
be returns a zero value. The result is the value returned by the last ezp; to execute.

2.2.8 Environment Access Functions

(getenv environment-variable) - returns the string associated with the argument environment
variable. If the environment variable is not defined, nil is returned.

(gethostname) - returns the host name associated with the local node.

(current-time) - returns a 26 character string containing the local day, time, and date. The form
is the following:

Thu Mar 12 09:28:09 1987

(time-stamp) - creates a time value by accessing the current local system time, returns a time-
typed expression value in the EBBA time format.

(location-stamp) - returns as a string the component location for events created in this process.
The location string is set by a call to the libebba function, ebbaSetOrigin().

2.3 Adding New Wired-in Operations

Wired-in operations are useful for complex functions exported by a component or in situations
where some limited capabilities of elll must be overcome. Adding a new wired-in procedure or

2. Extension Lisp-Like Language and Inter-Debugger Protocol 13

function is not hard, just involved. Wired-in variables are a bit simpler. A wired-in procedure
must be bound to the image that the basic elll interpreter is part of. There is currently no way
to dynamically load executable procedures so the wired-in procedure must be compiled and linked
when the component is built. A newly added wired-in procedure must be made known to the
interpreter at runtime so that it’s name is accessible in the elll interpreter domain.

2.3.1 Execution Environment of Wired Operations

elll programs are represented as a tree of ProgramNode structures. Each tree node represents a
function invocation or an atomic value. Each ProgramNode has an attached structure that describes
how to execute the node to obtain a value. A name-procedure binding structure implements the
actual mechanism for obtaining values in the extension language. For function calling nodes the
program node holds pointers to the actual argument list for the function invocation and a reference
to the code that executes the function.

An executable procedure can currently be one of two types described by a name-procedure
binding descriptor:

ProcBound - a wired-in procedure written in the implementation language (C, or compatible) and
bound to the elll interpreter,

LispBound - a user defined function (program) written in the extension language in terms of wired-
in and other lisp functions.

Bound procedures of ProcBound type are declared by the component that supports their func-
tionality by calling elllDefineProc(). Arguments to elllDefineProc() include the name of
the procedure to be bound, a reference to the executable procedure, and the type of binding the
name-procedure pair represents.

elllDefineProc() searches for an already defined version of the name; if not found a new
name-procedure binding structure is created. A reference to the name is added to the procedure
name table. If the search through the names table finds a previous definition for the name the new
procedure body binding will replace the old one only if the old binding is not already ProcBound
(wired-in). LispBound bindings can be replaced at any time, but after a name-procedure binding
is ProcBound it can no longer be replaced.

Constant values are represented in a program as a single ProgramNode structure. The de-
scriptor attached to the program node indicates a procedure that can extract the value from the
ProgramNode. For each atomic data type (integer, double, time, string, location) supported by elll
there is a corresponding predefined name-procedure descriptor.

Variables are similar to constant values. The parsed program node points to the variable

2. Extension Lisp-Like Language and Inter-Debugger Protocol 14

descriptor of the referenced name and refers to a wired-in procedure that can extract the value

from its storage.

All extension language programs are presented to the elll interpreter as coded text strings. To
create an executable version of an elll program the elllParse() routine is called with a single
argument, the name of a routine which to be called to obtain the next character from the input
text.

ProgramNode *elllParse (void (*nezichar)())
Will parse a text representation of an elll expression and return the resulting program tree.
nezichar is a callback routine used by the parser to obtain the next character of the text
being parsed. The routine should reply with -1 to signal the end of the text.

Status elllExecProgram (ProgramNode *tree)
The elll program rooted at treeis executed. Its final return value is found in the ResultValue
global and the interpreter status is returned as a function result.

elllExecuteFile (char *filename) :
Opens the file indicated by filename, parses and executes each expression contained therein.

A ProgramNode-represented expression is executed by sending the root of the expression tree to
the e111ExecProgram() routine. The results of the most recent ProgramNode execution are stored
in the global result register structure ResultValue. elllExecProgram() saves the old executing
node and defines a new current execution context. elllExecProgram() calls an internal interpreter
dispatcher with the name-procedure binding given by the current ProgramNode to invoke the ap-
propriate interpreter code that implements the procedure. If the current executing program node
refers to an elll program the interpreter execution stack will be pushed and elllExecProgram()
called back with the ProgramNode that is the root of the called elll program.

Eventually all program trees arrive at wired-in procedures that actually perform functions of the
values defined by the current execution context. Since there is only a single, global, value return
structure (ResultValue, mentioned earlier) to hold the most recently obtained value, wired-in
functions that must execute several ProgramNode’s to obtain a final value (e.g. a binary operator)
must arrange to keep the intermediate evaluation results somewhere during multiple ProgramNode
evaluations.

Actual procedure argument list values are available to the wired-in function through the calls
described below.

elllEvalArg(int n)

Evalutates the n** argument in the current actual procedure argument vector and stores the
value into the global result register.

char *elllStringArg(int n)
evaluates the n*# argument of the current actual procedure argument vector and attempts to

2. Extension Lisp-Like Language and Inter-Debugger Protocol 15

return its value as a text string

int elllNumericArg(int n)
Evaluates the n*h argument and attemts to return its value as an integer.

Globally declared variables represented by names in the elll environment may be accessed through
the interpreter function el11AccessGlobal(). This mechanism would be used to access variables
whose values are not explicitly passed through an argument list.

elllAccessGlobal (char *variable-name, int *size, caddr_t *value)
variable-name is a nul terminated string that has the name of the variable to be accessed.
value is given a pointer to the value container. size should be a pointer to an int that will
receive the number of bytes in the value.

A properly formed value should be returned to the elll interpreter (so that it might be used in
subsequent function calls). The elllStoreValue() and elllCreateLispObj() routines provide
mechanisms to do this.

elllStoreValue(int binding, int count, caddr._t *value)

’ creates an elll expression value from the supplied scalar or structured value and stores it
into the value result register. Binding is the kind of object that the Lisp expression result
object is to be, one of: ExprVoid, ExprInteger, ExprDouble, ExprTime, ExprString,
ExprLocation, ExprEvent. countis the value to be stored if the binding is ExprInteger.
For all other bindings, count is the length of the value referenced by the value argument.

ProgramNode *elllCreateLispObj(int binding, int count, caddr_t value)
Creates and returns an elll constant valued object (ProgramNode) in filled with the appropriate
information.

2.3.2 Wired-in Procedures

In general, to make new wired-in procedures known to the elll interpreter the wired-in interpreter
routine elllDeclareProc() routine is called to make necessary the name-procedure binding:

elllDeclareProc(char *name, void (*routine) ())
neme is the nul-terminated string text for symbol that invokes the function in an elll function
call. routine is the address of the wired-in code that the elll interpreteter is to call.

For example the declaration and definition of the wired-in procedure RecognizeEvent() uses the
following definitions and calls:

static void RecognizeEvent(); -forwerd declare the routine

elllDeclareProc ("recognize", RecognizeEvent); -tell elll about it

3. Linking to a Stream - Event Sources 16

static void RecognizeEvent() -the actual routine definition
{ code for function }

The first line simply declares the name so that the C compiler allows its use in the
elllDeclareProc() call. The elllDeclareProc() call informs elll that function invocations of
(recognize ...) are executed by RecognizeEvent procedure. The third line is the place at which
the actual routine definition must be supplied. No arguments are recognized since the wired-in
procedure is not directly called, but invoked indirectly. Actual parameter values are obtained by
the wired-in procedure code as stated in Section 2.3.1.

2.3.3 Adding Wired-in Variables

Wired-in variables. can be added to the global variable name space with a simple declaration,
below. The component that maintains the variable should keep the value in stable storage, i.e.
either some statically declared program variable or a heap storage location that can not be freed.

Variable declaration and value assignment is a multiple step process. A binding must be explic-
itly created by calling the elll function (declare-global ...), implicitly by entering a lambda or
progn binding block, or argument binding to an elll defined function. A binding created in any of
these ways is a default integer type with value zero (0). Variable names can be created (added to
the variable name table) implicitly by their appearance as an argument in a function invocation.
In this context, the parser recognizes the function argument position of a name and creates a name
table entry that is added to interpreter variable tables. Initially there is no binding associated with
a name declared in this fashion. One must be created through a call to (declare-global ...).
Values can be attached to bindings through the setq elll function, default value assignment upon
entering a lambda block, or by actual/formal parameter binding.

elllDefineVariable(char *name, caddr_t address, enum binding)
Creates a variable descriptor for name and adds it to the global variable list in the elll
interpreter domain. address references the storage container where the value is kept by the
component that declares the name. binding determines the type of the value referenced by
the variable.

3. Linking to a Stream - Event Sources

Programs that are instrumented to supply primitive events need to locate an appropriate stream
for their events and then deliver meaningful events to that stream. The lLibEBBA component of the
toolset contains a collection of routines that handle event stream connection, event formatting, and
event posting to a sink. When an instrumented program begins to execute, the stream connection

3. Linking to a Stream - Event Sources 17

service must be invoked to look for an event sink that will handle the kinds of events generated
by the source. During its execution, as the instrumented program encounters its event generating
annotations, the event posting routines determine if the event to be created is wanted by the sink
and, if so, format the event instance record before shipping it to the sink.

3.1 Locating and Connecting to an Event Stream

An event stream is identified by a triple (location, component, library). The location part
identifies the network host where the sink might be located. The component part indicates the
type of event stream service expected by the source. The library field indicates which event library
contains descriptions for the events created at the source. The named event library is found at the
host indicated by the location field, there is currently no controlled provision for network access to
an event library?.

A text representation of an event stream triple is used by components to establish connections,
supply default values for unspecified parts of a triple, or to pass to other components. The form
of the text representation of a connection triple consists of the values for the triple fields separated
by colon (:) characters:

location: component: library

For example the string "grinch:EventMonitor:1ibpps" specifies a connection to the Event Mon-
itor on the node named “grinch” that is monitoring events from the “1ibpps” event library.
Two routines are available to manipulate the connection tuple text format.
ebbalUnpackConnection(connection, location, component, library)

char *connection, **location, *xcomponent, **library;

examines the supplied connection string and determines which components are present in the string.
ebbalUnpackConnection() then applies default values to supply any missing components. Copies
of each string are made and a reference to each is copied back to the caller. Missing connection
string parts default from left to right as in the following table:

| Form | Supplied | Defaulted Components |
a location=a component, library |
a:b | location=a, component=b | library
a: | location=a component, library
a::b | location=a, library=b component
r:a | library=a location, component

INFS could access the required files

3. Linking to a Stream - Event Sources 18

To obtain default values, ebbaUnpackConnection() interrogates the EVENTSTREAM environment
variable, unpacks the resultant string, and fills in missing parts of the original connection string. If
the EVENTSTREAM environment variable is not defined or is incomplete ebbaUnpackConnection()
will supply the local host name for the location, “EventMonitor” for the component, and “default”
for the library. A completely defaulted string (connection == NULL or “:”, “::”, or“:::") will
return

(localhost:EventMonitor:default).

where localhost is determined by the gethostname(2) service. The complementary routine

ebbaPackConnection(connection, location, component, library)
char **comnection, *location, *component, *library;

simply formats a connection from supplied component parts in such a way that a corresponding
unpack will take the string apart properly.

Delivering events to an event sink requires that an explicit IPC connection to the sink be estab-
lished. The libEBBA routine ebbaConnect() handles all of the details of creating the connection
to an event stream.

ebbaConnect (connection, origin)
char *connection, *origin;

uses the supplied connection string to locate the event sink required by the source. ebbaConnect()
calls the the unpack service to unpack the argument connection string (*connection) and supply
defaults in the normal fashion. The network address for the host given by the location part of the
specified connection descriptor is obtained from the gethostbyname(2) service. The component part
of the connection is used to obtain the port number expected for the service (the only protocol
employed is TCP). An attempt is made to connect to the event sink. A host that is unavailable or
non-existant causes the connect to fail with a message and non-zero returned value.

The origin argument is used to establish the value attached to the location attribute of each
event tuple that originates at this component. This is set by calling the ebbaSet0Origin() routine.

If successful, the library part of the connection descriptor is sent to the sink in a hello message
that requests that the named library is used for further dialog and identifies the source. Upon
successful completion of the ebbaConnect () , the source has a connection to the requested sink
that may be used to send events and exchange elll messages.

3.2 Posting Events to the Stream

Once a connection to an event sink is established the instrumented program can send event
instance records to the event sink. What is generally required for this process are the annotations

3. Linking to a Stream - Event Sources 19

embedded in the program text, the event formatting and delivery routines found in LbEBBA, and
the descriptors for individual event templates. Means to automate this entire process are currently
under development but not yet available.

A primitive event instance is assembled and sent to an event sink by calling the
ebbaPostEvent () routine

void

ebbaPostEvent (descriptor, al, a2, ...)
evtTevent format *descriptor;
caddr_t al, a2, ...;

The descriptor is a summary of the shape of a primitive event. It contains all the information needed
to format an instance of the event class. The formatting routines have no priori knowledge of any
primitive events. The model builder (EDL) assists event source definition by creating, from the
descriptions supplied for a library, a collection of primitive event descriptors. Currently these are
coded as specially formatted #define statements that may be #include'd in C programs. Use of
an event descriptor in a ebbaPostEvent () call will cause the corresponding descriptor to be loaded
into the data area of the program.

The descriptor is defined by the C typedef

typedef struct _evtTevent format {
ulong library.id; /* its library number (Unused) *»/
u_long event.number; /* ils event number */
short attribute_count; /* number of atiributes */
char format.string(1]l; /= nul-lterminated for encoding procedures =/
} evtTevent _format;

This is the minimum amount of information needed to create primitive event instances using
eBbaPostEvent() and allow control over the monitored component. Figure 3 sketches use of these
instrumentation parts for a portion of the Sequent Parallel Programming library. The routine is
compiled in the normal manner. But since it calls ebbaPostEvent() (and some other component
must call ebbaConnect()) the executable module must be linked with the instrumentation library
libebba.a. For example the invoking the C compiler as

cc -o mandel *.o -1X -lpps.ebba -lebba

links all of the .o files in the current directory, the X interface library (1ibX.a), the instrumented
parallel processing function library (1ibpps_ebba.a), and the libEBBA instrumentation library
(libebba.a).

As the program executes and encounters the event posting annotations, ebbaPostEvent () en-
codes the instance tuples according to the event descriptors described by e_BarrierEntry and

3. Linking to a Stream - Event Sources 20

#include "barrier.h" -gets the event descriptors

s_wait_barrier(b)
sbarrier_t *b;

{

ebbaPostEvent (e BarrierEntry, getpid (), b->useno, b->limit, b->count);
S_WAIT_BARRIER(D);
ebbaPostEvent (e BarrierExit, getpid (), b->useno, b->limit, b->count);

}

Figure 3: Accessing and sending events using ebbaPostEvent ()

eBarrierExit and the supplied list of attributes. Upon entering the ebbaPostEvent() routine
the time attribute is read from the system clock and added to the attribute list. The location
attribute is recovered from the ebbaConnect() call and added likewise to the attribute list. The
tuple formatting routine is invoked and the resulting instance description is sent to the connected
event stream.,

3.3 Miscellaneous ibEBBA Routines
3.3.1 Time routines

Time is stored internally as a struct timeval (see <sys/time.h>). Externally, time is repre-
sented textually in the form

[hours: Jminutes: seconds| . hundredths)

Time typed values use this form to express constant time values that generally represent time
differences or relative times. The hours and hundredths part of the time value are optional. Fifteen
seconds is expressed 0:15; eight hours is expressed 8:0:0.

Two routines are supplied to change the form of at time value from one to the other:

ebbaCvtAscToTime (struct timeval *{ime, char *buf)

change the ascii representation string for a time value found in bufto a binary value referenced
by *time.

ebbaCvtTimeToAsc (char *buf, struct timeval *time)
change a binary time value (*time) to ascii in the acceptable format in the *buf.

3. Linking to a Stream - Event Sources 21

3.3.2 Encoding event tuples as strings

ebbaEncodezzz() is a special version of printf(3s) that formats event tuples in the form used
by all the components. It includes the following alternate formatting characters:

4s format will include double quote marks (") around the output string,
4#s outputs the string without the quote marks,
4t inserts the ascii time value according to:
o if the argument list item corresponding to the %t format character is 0 (or NULL), the
current time of day is obtained and formatted,
o if the argument list item is non-zero, the value is taken as a time value and formatted
into the string.
#h inserts a location string obtained as follows:

e the value of the ebbaGetOrigin() call if the corresponding argument list item is NULL,
e the value in the argument list, if non-NULL.

in both cases, the output string is surrounded by double quote marks (").

There are three versions of the encode tuple routine. However, all have a common calling form:

ebbaEncodezzz (FILE *iop, char *format, va_listargs, int (*rin)())

The tuple encoding routines all take a file buffer descriptor (*iop) as an argument and will fill
the buffer with the formatting results. Encoding the event instance into the buffer is guided by
the *format string. Printable objects are obtained from the args vector for each format item
encountered in the format string. If the buffer fills, the encoding routine will call the supplied
callback procedure (*rtn) for disposition of the full buffer. The tuple coding routines expect that
the called user procedure will modify the file descriptor to reflect its changed status.

The three versions of the routine differ in how they interpret the args vector and the %h and
“t formatting specifications. So, call the one you want.

ebbaEncodeTuple (iop, format, args, rtmn)
always takes its %t and %h values from the environment, i.e. the encoding routine does not
use an argument from the args vector. Time (%t) is taken from when the encode is entered;
location (%h) from the ebbaSetOrigin() call. The args are scalar values or string pointers

ebbaEncodeObjects (iop, format, args, rtn)
expects each of its args items to be pointers to an elll internal object descriptor. This routine
makes the NULL /non-NULL distinction for the %t and %h format characters.

ebbaEncode (iop, format, args, rtn)
expects each of its args items to be plain old scalar data types.

4. End Points to Streams — Event Sinks 22

3.3.3 Event Instance Tuple location Value

The value supplied as the location for formatted event tuples (or for any call to the
ebbaEncodezzz routines) when the argument corresponding to the %h is NULL.

ebbaSetOrigin (char *loc)
Sets the default location string to the argument loc. If loc is NULL, a default string is ob-
tained by interrogating the environment variable EVENTLOCATION. Failing that, the results of
a gethostname(2) are used.

ebbaGetOrigin (int *length)
Returns the value assigned as the default location string. If the string is undefined at the
time of the call, ebbaSetOrigin will be called to set an origin from defaults. If the *length
argument is non-NULL, the length of the returned location string is also returned (at length).

4. End Points to Streams — Event Sinks

Event sinks can be as simple as a message receiver that obtains the records output by a source (or
other sink) and prints them, or as complex as a complete event abstraction component. Becoming an
event sink is a fairly involved process that requires name bindings in the communication domain that
the toolset operates in. Due to the heavyweight nature of an event sink it is strongly recommended
that the author of a new sink reuse existing code to paste a new style of event sink together.

There are two standard sinks available which are generally useful: a standalone event receiver
that will listen to an event stream, and a complete event abstraction component. Both use a version
of the event quening module customized with appropriate compiler-time options. The standalone
receiver contains a copy of the event queuing component and the elll interpreter. It is capable of
listening to a large number of event sources (up to 64, NOFILE in / sys/h/param.h) and executing
any event queue related commands. The standalone receiver is not capable of abstracting high-level
events from the incoming event stream. The other available sink is a complete event abstraction

(event monitor) component capable of abstracting events and passing these results on to other
sinks.

4.1 Event Abstraction Component

The Event Monitor component listens to the event stream and attempts to match user defined
behavior models to the contents of the incoming stream. The Event Monitor is composed from
Event Queuing, Model Matching and instance management, Pending List Maintenance, and elll
parts. Event Queuing is responsible for listening to the event stream, converting any received events
into an internal form, and receiving and executing elll messages sent to the Event Recognizer. The

4. End Points to Streams - Event Sinks 23

Pending List maintenance is responsible for creating model recognition contexts and decomposing
hierarchical models for recognition requests. Model matching attempts to fit the event queue

contents to the pending list models. elll, of course, supplies helpful functions and the execution
model for elll messages.

4.1.1 Starting the EventMonitor Component

The Event Monitor component is located in the EBBA tools directory (/usr/local/ebba by
default). Either add this directory name to the shell search path or create an alias to access the
routine. The Event Monitor is started with some variation on the following command line:

EventMonitor -1 libname [-o location] [-s startup] ...

This will start the Event Monitor component executing. As the routine struggles to life it invokes
an initialization procedure that goes to each ma jor component to execute its startup routine. As

each is called a message is output to announce which startup is in progress. The startup message
should be similar to

Init:.. Eval,.. Library,.. Monitor,.. EvtQ,...Interface, done!

Orce the completed message is output, the Event Monitor is ready to accept recognition requests,
events, and other control messages.

The order of initialization should be noted. If the X windows interface was originally configured
into the Event Monitor, an attempt is made to access the server given by the DISPLAY environment
variable. This access precedes the component initialization sequence. A failure here will cause the
Event Monitor to exit with a diagnostic.

The first component to be set is the function evaluator since other components will declare elll
functions that they export. The Event Library indicated by the -1 libname parameter designates
the initial event library to use to interpret the contents of the event stream. Presetting the event
library interface loads all of the events currently known to the library and declares them to the elll
component. If no library parameter was supplied, the EventMonitor would have exited before ini-
tialization began. If the designated event library (or its librarian) is unaccessible, the initialization
fails. Jf supplied, the -o location parameter sets the LbEBBA default location supplied for event
tuples generated by this event recognizer. Without an explicit -1 parameter, the EVENTLOCATION
environment variable will supply this value; failing that the host name will be used.

Presetting the monitor component clears all of the pending event list structures and scalars
associated with pattern matching. Also in the monitor preset, the elll functions exported by the
monitor and pattern matching parts of the Event Monitor are declared.

4. End Points to Streams - Event Sinks 24

Getting to the event queueing module will set the event queue structure and announce the
Event Monitor as a server in the internet communications domain. The Event Queueing component
accepts all event stream events and elll messages that are sent by other components. A common
ailment occurs if a previously executing version of the event monitor is still running on the node or
if some component is still attached to the previously executing event monitor’s event stream. This
is manifest as an extraordinarily long pause in the EvtQ startup as the queuing module attempts to
acquire the event stream port. The user is warned with a message, but if not noticed and corrected,
the startup will eventually time out with a diagnostic message.

If the X Windows interface is configured into the Event Monitor, the Interface preset phase
will create several basic graphics displays used to display activity of the pending event list and
event queueing components. The Pending Event List display has an interactive component that
allows a user to interrogate the status of entries on the list.

The -s startup-file option supplies the name of file containing extension language expressions.
Up to eight startup files may be specified, each preceded by a -s option. Generally, the startup
file will contain any function, constant, or variable declarations needed by the user models, that
are not hard-wired into the elll protocol. (RIGHT NOW it should also contain a (declare-event

eveni-name, eveni-name, ...) for each event in the library. This will get them declared to the
function evaluator cleanly.)

The final step of event monitor startup is to execute each of the startup files given by -s options
by calling the elll interpreter. The startup files are executed in the order given on the command
invocation line. The search path for files is . :~/ebba/.

4.1.2 elll Messages Interpreted by the Event Monitor

The Event Monitor export a substantial number of functions so that users (or other tools) may
make recognition requests, control aspects of recognizer operation, and obtain information regarding
the status of behavior abstraction operations. The primary function of the Event Monitor is to
abstract event stream event instances into user behavior models. Each request for recognition of
some behavior model results in creation of one or more descriptors on the pending event list. In
order to allow users to interrogate the status of a pending event list entry, each is given a short
(or long if you please) string tag. All requests to the event monitor for information regarding a
descriptor are made in terms of the tag assigned to the descriptor. Users supply the tag when they
make recognition requests. The recognizer will derive a tag for any models it requests to support
the original recognition request. The form of derived tags is:

User-tag: derived-tag. indez

4. End Points to Streams - Event Sinks 25

where User-lag is the tag attached to the original high-level model request; derived-tag is the name
of the constituent high-level event that is part of the high-level model; and indez distinguishes
between multiple requests for the same class of model by the higher-level model.

User interface to pattern matcher:

(recognize "tag" (event-class P1 P2 -..)) The event event-class has a recognition context cre-
ated and placed on the pending event list. The parameters P1, P2,. - . should match the formal
parameter list declared in the event model. The event descriptor is created in the suspended
state, so will not participate in pattern matching until it is resumed.

(delete-pe "tag") Changes the status of the pending event located by tag to deleted and bumps
the usage count of its pending event list slot. The next time the pattern matcher examines
the pending event it will be removed from the pending event list. All of its children will notice
that their parent pending event has been deleted and commit suicide.

(suspend-pe "tag") Changes the status of the pending event located by tag to suspended. The
pending event will not take part in pattern matching activity until it is resumed. This does
not affect the status of any children or its parent pending event descriptor.

(resume-pe "tag") Changes the status of the indicated pending event to active. The pending
event is now able to accept input event stream events.

(start-pe "tag") Will change the status of the pending event given by tag to active, and also
change the status of all of tag’s children to active. This function is usually invoked following
creation of a new request (via (recognize ...)).

(add-rcb "tag" ’fn arg) Creates a response control block that will invoke frn with argument arg.
The RCB is attached to the end of the list of responses for the pending event attached to tag.

(set-queue-position "tag" position) The pending event located by tag has its current event
queue position set to the entry indicated by position. Unfortunately this is currently the
address of the event descriptor. Fortunatly, there are two variables defined that will supply
common positions: EventQueueBeginning is the first event in the queue; EventQueueTail is
the last event in the queue.

(reset-PEL) Clears the pending event list of all descriptors.

Event attribute fetch/store

(fetch-local inder) indez is used as an offset into the LocalContext event instance descriptor.
The expression node found at that offset is stored into the elll result register. If the attribute
slot given by indez is NULL, the evaluator status is set to STATUS DontKnow.

(store-local indez ezpression) ezpression is evalutated and the resultant expression result node
is stored into the LocalContext instance descriptor at the indexz slot.

(fetch-attribute index name) The event located by indez of the GlobalContext instance de-
scriptor has the attribute binding slot for name accessed and returned in the elll result register.
If the slot is NULL, the expression evaluator status is set to STATUS DontKnow.

4. End Points to Streams — Event Sinks 26

Library/librarian communication

(reload-event event-name) The current definition for event-name (if it exists) is removed from
the library interface, the library information file entry for event-name is read and a new
version of eveni-name is read.

(merge-library background-library merge-library) The merge-library is read and its contents
added to the current open background library. If background-library is non-nil or not the
same as the current background library, the library interface shifts to use the new background
library.

System control

(quit-now) Causes the Event Recognizer to broadcast a shutdown message to all of its clients and
then exit gracefully.

(clear-eventq) Checks to see if there are any outstanding pending events that might be attached
to event queue event instances, and if there are none, clears the queue pointers and returns
all of the resources attached to the event instances.

(go-idle) Changes the operation mode of the event recognizer from its round-robin polling mode
to blocking on the client connections.

(become-active) Changes the operation mode of the event recognizer from blocking on client
connections to round-robin.

Routines that display information:

(List-PEL) Displays the status of all of the current entries on the pending event list.

(list-completed) Displays all interpretations of each pending event that has completed and been
moved to the completed event list.

(list-pe "tag") Looks for the pending event with the attached tag and will display its current
status.

(display-pe-inputset "tag") Lists all of the events under consideration by the pending event
located by tag.

(display-pe-partials "tag") The pending event descriptor attached to tag is located and for
each interpretation the current event set (guess at what will satisfy the model) is displayed.

(list-eventq) Lists all of the events on the event queue.

(list-eventq-stats) Simply prints the running summary statistics of event queue activity.

A. Error Messages and Recovery (ha!) Procedures 27

A. Error Messages and Recovery (ha!) Procedures

A.1 errors from libebba

No service component
The component specified by the final connection string was not found by getservbyname(2).

The component should be in the /etc/services file or configured into the appropriate Yellow
Pages map.

No host location for event stream service (system-error-message)
There was no host found by gethostbyname(2) to match the location part of the connection
string. Either the /etc/hosts file or the Yellow Pages map needs to be fixed.

No socket for event stream (system-error-message)
ebbaConnect was unable to establish an endpoint for the client to communicate through.
system error message should provide a decent reason.

Could not connect to event stream (sysiem-error-message)
The attempt to attach the client to the event stream failed. system-error-message should
provide a cryptic reason for the failure.

A.2 errors from elll

Too many procedure and event definitions
Overflow of an internal table of procedure names. Nothing simple can be done to rectify this.

name is already bound to a wired procedure!
An attempt to create an external hard-wired procedure is about to redefine an existing hard-
wired procedure or event name. The previous definition stands.

Unexpected end-marker (parens mismatched?)
Output by the token reader when it is trying to read a new elll token and it meets nothing
but end of file (or end of string) on the stream.

Improperly formed character constant.
A character constant (’c¢’) does not have any of the acceptable forms.

Unterminated string constant.
An opening quote (") is not closed before the end of line (the next \n) character. It is
implicitly terminated by the \n.

A. Error Messages and Recovery (ha!) Procedures 28

List Syntax -- function symbol expected
The first symbol in a list must be a function name.

defun syntax -- missing function name
A (defun ...) call is missing the function name for the function that is being defined.

defun syntax -- incorrect arg list
The argument list for the function being defined by the (defun ...) call is missing.

Reference to an unbound variable: "wariable-name"
variable-name is used as an argument to a function but has yet to be declared.

"function-name" has not been defined yet.
function-name has not been defined via DefMac() or (defun function-name....
few

Too many arguments to "function-name", n supplied, m required.

function-name was called with the wrong number of arguments. n and m tell the whole story.

Missing argument argument-inder to function-name

The EvalArg() function that accesses the i* argument to the wired function function-name
that was just invoked could not find the argument given by argument-indez —too few argu-
ments.

"function-name" didn’t return a value; "calling-function" was expecting it to for
argument argument-indez.
EvalArg() evaluated the argument for calling-function given by ergument-indez and did not
get a value back. function-name was the function invoked at the index.

Insufficient args to lambda.
A (lambda ... needs at least one argument.

Insufficent arguments and no default initializers
Call to a defun’ed function with two few arguments and the original defun does not have
enough initializers to supply values for the missing arguments.

Bad argument index: (arg argument-indez)
Internal error? attempt to access a non-existant argument for a function.

"naeme" is bound to a wired procedure and cannot be rebound!
Attempt to bind name to a wired-in function or event.

A. Error Messages and Recovery (ha!) Procedures 29

setq first argument must be a declared variable name.
form of the setq function was improper.

setq to unbound variable "name"

name is not declared as a variable and given an empty binding.

InCompatible types to arithmetic-function
Tried to add apples to oranges.

Division by zero, Mod by zero
The usual.

There is no environment variable named name
getenv looked for, but did not find name in the execution environment.

Can’t read file-name
Eval ExecuteFile() could not load file-name before attempting to execute it. Needless to
say, file-name was not executed!

A.3 Errors from the Event Monitor

Too many startup files (max = n)
Tooooo many -s options have been specified. n is the number that may be specified. This
causes the Event Monitor to cease to get started; the solution is to combine one or more
startup files.

usage: emon [-1 libname] [-s file] -offending arg: s
the string given by s is not recognized as a valid Event Monitor argument.

Couldn’t connect to X
If the Event Monitor has the X windows interface compiled in, it must be able to access the
server designated by the DISPLAY environment variable. Either the the environment variable
is not set, or the server will not accept the connection.

Need to specify a library with -1.
The Event Monitor requires a library to start things off with. Although libraries may be
merged in later, starting requires a library.

Could not establish event stream RFC listener socket - sysiem-error-message
For some reason or other, system-error-message will hopefully tell us, the Event Queueing
component could not establish the socket it needs for the event stream.

A. Error Messages and Recovery (ha!) Procedures 30

Wait for bind....
If the Event Queueing component cannot bind the event stream socket it will issue the “Wait
.. .message, then on each retry output a new .. After about 10 dots it will give it up and
will issue the next message

Could not bind event stream RFC socket - sysiem-error-message
The Event Queueing module could not bind the Event Stream connection socket to the event
stream port. There is another process using the port number. Either an old incarnation of
the Event Monitor, or some other component that was attached to the old incarnation of the
Event Monitor, is still running and holding the port that the socket attempts to bind.

Error accepting RFC - system-error-message
A client has tried to join the event stream, the Event Queueing component has attempted to
accept the client, but to no avail. Maybe system-error-message will be helpful.

Clear Event Queue? There are outstanding Pending Events
A (clear-eventq) has been sent to the Event Monitor, but the clever monitor will not get
rid of the events while there are outstanding pending event requests. No action is taken on
the event stream. If you really want to clear the queue, delete all of the outstanding pending
events. This should be made more rational in a future release.

CreatePending: Late tables being created for event
This reflects an attempt to correct a possible internal error. A recognition request was made
for event, but the tables that describe the recognizer for the event were not attached to the
.description. The event monitor attempts to get the tables at this point.

Constituent name not defined for event event-name.
A recognition request was made for event-name and implicitly (by model decomposi-
tion/reconstitution) for its constituent event name. Too bad, name has no definition at
this point. Sub parts of the high-level model are being parceled out for recognition, this one
will cause a problem. Define the constituent event.

Defective recognizer for event-name
This is caused when the event monitor requests that the recognizer for the event event-name
be cast into interpreter tables and for some reason it does not happen. There is probably
something wrong with the event library entry for event-name, or some error occurred when
the library interface tried to read it. Best bet is to recompile the model and try again.

EventInstance: (event-class atiribute atiribute ...)
Was noticed by the Event Monitor.

A. Error Messages and Recovery (ha!) Procedures 31

Wrong number of arguments event eveni-name; n supplied, m needed.
A recognition request for event event-name did not contain the number of event parameters
specified in the model definition. This causes the machinery that is building the recognition
Tequest to grind to a halt and the request fails. This should be made reasonable some other
time.

Request for undeclared event event-name, ignored.
Either the Event Recognizer has not been informed via a (reload-event event-name) elll
message that the event is available
-or-
It needs a (declare-event event-name) to be issued so that the elll evaluator can know
about the event. Next release fixes this.

Constituent event-name not in event library
A constituent event-name of a high-level event model is not in the library. This is issued when
the Event Monitor is examining the structure of a model that it has been asked to recognize.
The event name will be treated like a primitive event and given a temporary identity in the
Event Monitor. So that if someone comes up with an instance, or a definition, things will
proceed smoothly.: The event event-name will still get its pending event descriptors created.

REFERENCES . 32

References

(1} P.C. Bates. The ebba Modelling Tool, ak.a Event Definition Language. Technical Report
87-35, University of Massachusetts, April 1987.

[2] P.C. Bates. Tracking the Elusive Mandelbrot Set Error Using Event Based Behavior Abstrac-
tion. Technical Report 89-06, University of Massachusetts, February 1989.

