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Abstract

The customer response times in the egalitarian processor sharing queue are shown to be associated
random variables under renewal inputs and general independent service times assumptions.
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1 Problem Description

Association is a type of positive correlation between random variables that allows one to bound certain
of their joint statistics, like the maximum or the minimum, by functions that only require the knowledge
of their marginal distributions. This notion has proved quite fruitful for obtaining bounds on various
queueing systems (see |[BM89) for a survey on the matter).

"The processor sharing queue is a basic model for representing multiprogramming in computer sys-
tems and has been studied in a number of papers, sce [FMI80] and the references contained therein.
However, the purpose of these studies was to determine the mean response time of a customer given its
service requirements, which are known in the case of Poisson arrivals and general independent service
times. Besides these computational results, few structural properties of this queueing system are known.

The main result of the present paper consists in proving that the delays incurred by customers in
the egalitarian processor sharing queue are associated random variables provided the service times and
the negative interarrival times are associated, so that the property holds in particular in the case of
independent and i.i.d. service and interarrival times.

A similar property can be proved for other and more elementary queueing systems, including G/G /s
FCFS quenes ([Bac87]), under the same assumption on the service and interarrival times. However,
the proof for the processor sharing case is far more elaborate and requires the definition of several
intermediate processes. Basic definitions on associated random variables are sketched in Section 3. The
intermediate processes of interest are introduced in Sections 4 and 5. Besides the proof of the main result,
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which is established in Section 6, we illustrate its practical interest by sketching a simple application to
the resequencing queue (([BGP84]) in Section 7.

2 Notation and Assumptions

In the sequel, we shall consider bi-infinite vectors in IR*. We shall denote by e;, j =-+-,-2,-1,0,1, 2,
the natural basis of IR™. The projection of a vector & = (-++, 22, -1, 0, 21,32, " }) in JR® on the

space endowed by the vectors e;, j = J,J + 1,J4+2,-,K,J <K eZwil be denoted by II"¥(z).

In particular, we shall denote by = the projection 11" (z) and by =~ the projection n->="(z). The

leftshift operator will be denoted by 8 with the meaning that = 0= _oTineifz= 3 e oo Ti€i-

The leftshift operator will also be used for one sided infinite vectors with the meaning zo8 = 3 ;2 Ti+16;

if &= Yin,, mici.

Two vectors z and y of IR™ will be said to satisfy the inequality = < yif foralléi=-..,-2,-1,0, 1,2,
the inequality z; < y; holds. We will write z <y if the inequality is strict for at least one coordinate.
Similarly, a function f : IR® — IR™ will be said to be (strictly) increasing if 2 < y (z < y) implies

f(=) = f() (f(=) < f(y)-

For all z in IR*™, let N(z) € IN and Min(z) € IR* 1espectively denote the number of non zero
coordinates in y and the minimal non zero coordinate of y, namely

00
N(z) = Z Ilz; > 0]
and
13 _ . .
Min(y) (i:-u.—'z.—:2{1.2.---|m.~>"|z

where the minimum over an empty set is zero by convention.

IF* will denote the subset of JRT™ the vectors of which have finitely many non zero coordinates:
IF = {z € IR""|N(z) < o0}

¢ will denote the vector with all its components equal to 1 and while for all z € IR, (=)t will denote
the vector of IR™ defined by (z)* = (- -, maz(z_1,0), maz(zn, 0), maz(z1,0), ).

3 Association of random variables

The IR-valned RV’s (Random Variables) {=1,...,2K} are associated if and only if, with the notation
z = (21,...,2K), the inequality

E[f(z)e(=)] 2 Elf(z)]El9(=)]
holds for all pair of monotone non-decreasing mappings f,g : IR¥ — IR for which the expectations
E|f(z)}, Elg(z)] and E{f(z)g(z)] exist. A set of random vectors will be said to be associated if the
collection of their coordinates is a set of associated RV’s.

In order to explain the usefulness of this concept, it will be convenient to say that the IR-valued RV’s
{%1, ...,k } form independent versions of the RV’s {z1,...,zx} if



(i) : The RV’s {Z,,...,Tx } are mutually independent, and

(ii) : For every 1 < k < K, the RV’s zx and zi have the same probability distribution.
The following proposition |[BP81] is an easy consequence of the above definition.

Theorem 1 If the RV’s {z,,...zx} are associated, then the inequalily
r <t]|> Ty <
[Irsr}:agxk zr < ] > P[lg}fxsxx Ty < 1

holds true for allt in IR.

This result can be viewed as a statement on the stochastic ordering between the maximum of the
RV’'s {z1,...,zx } and the corresponding quantity for the independent version. More precisely, if z and
y are two IR-valued RV’s, then the (distribution of the) RV z is said to be greater than the (distribution
of the) RV y in the stochastic order if and only if

Ply>t] < Plz > t]

for all ¢ in IR; this is denoted in short by y <,. . With this notion, Theorem 1 can be restated simply
as saying that
max i <o ln}cztsxx %

The elements of a “calculus” for associated RV’s are provided in [BP81, pp. 28-31]. Some of these
facts, which are often used in the discussion, have been collected in the next theorem for easy reference.

Theorem 2 Assacialion of r.v.’s ezhibils the following properties.

1. Independent RV's are associated;

e

The union of independent collections of associated RV’s forms a sel of associated RV'’s;

Any subsct of a family of associated RV’s forms a sei of associated RV’s, and

a0 W

Any monotone non-decreasing function of associated RV’s generates a set of associated RV’s.

4 Egalitarian Processor Sharing

Consider an egalitarian processor sharing queue with renewal inputs and general independent service
times. At time 0, which is supposed to coincide with the arrival date of customer Ch, there is an initial
vector of residual service times y = (-++,¥-2,¥-1,¥,0,0,--:) € IF, where y_;, i > 0 is the residual
workload of C/_;, the i-th customer that arrived in the past. In particular, the residual service time of
¢, at its arrival date is exactly its service time, which will be denoted by ou.

New customers Cy, Ca, - - - arrive at dates 0 < &y < tz < - - -, respectively, which define the inter-arrival
sequence {7, = tyn — tu_1}cy, Where tn = 0 by definition. Customer C, (n > 1) requires service time
0w > 0. More generally, in the sequel, a (resp. 7) will denote the bi-infinite vector with coordinates
(' 0 _2,01,00,01,02," ") (WSP- (s To2e 7oy Ty 1,y T2y ))

4.1 The process with blocked arrivals

Fory = (- ¥-2,4-1,%0,0,0,---) € IF, let Y(y,t) € IF denote the value of the residual service times
vector at time ¢ ¢ IR* under the assumption that the arrival process is blocked from time 0. Observe
that there arc initially N(y) customers in the system and that some of the non-zero coordinates of the
¥ vector will eventually vanish as time increases and keep on being equal to zero from that time.



Lemma 1 The function Y(y,t) : IF x IRY —+ IF is increasing in y and decreasing in L.

Proof

Consider two initial residual workload vectors y = (+++,¥-2,Y-1,¥0,0,0,---) and vY=0vav-n¥
0,0,.-) in IF satisfying the inequality y < y'. Consider two processor sharing queues with blocked
arrivals and respective residual service times vector y and y'. We shall refer to the system with initial
vector y as to the first system while the second system will be the one with y’. The first departure in
both systems takes place at time min(N (y)Min(y), N(y')Min(y'). Let z and z' denote the the residual
service time vector at this date, in the first and the second system respectively.

If N(y)Min(y') < N(y')Min(y'),

z = (y — Min(y)e)?

and N ()
2 = (o — Ny

L)

Since v -. ¥’ it follows immediately that N(y) < N (y'), so that the decrease of residual gervice time is

smaller in the second system than in the first one. We have hence z < z.
If N(y)Min(y') > N(y')Min(y'),

Min(y)e)*

z=(y- Mﬁlin(y’)e)*

N(y)
and
2 = (y - Min(y)e)*

Since N(y) - N(y'), it follows that the dccrease of residual scrvice time is larger in the first system than
in the sccond one. We have hence again z < 2'.

Onc immediately gets by induction that the residual residual service times vectors are smaller in
the first system than in the second one at all departure epochs. Since the components of the residual
gervice times vector decreage linearly in both systems between departure epochs, it also follows that the
ordering extends to continuous time as well.

4.2 The embedded residual service times process

Forn = 1,2,--- let Y*(y,0',7") € IF denote the vector of the residual service times of customers in
the system just after the arrival epoch of the n-th customer, with the convention that coordinate j keeps
track of the residual service times of customers C; for all j € Z.

Lemma 2 Foralln=20,1,2,---,
},-n.l»l(y' (T' , T‘) = y(-’.vn(y' 0" , T*) o ou, Tu+1) o g—n + Ont1€ntl
with Y"(y,0°,7') = y by convention.

Proof

The proof is by induction on n. If the residual service times vector at the n-th arrival is Y*(y, 0", 7"), it
will be equal to Y(¥Y™(y,0",7°), Tu+1) just before the n + 1-st arrival. Hence the formula of the Lemma.

Lemma 3 Foralln=1,2,---, the random vector Y™ is an increasing function of the veclors y, o",—T".



Proof

1)Increasingness in y.
The proof is by induction on n. The property trivially holds for n = 0. Assume it holds up to rank n.
Choose y and ¢/ in IF with y > y. From Lemma 2, we get

‘,-ll-i-l(y’o_",r‘) - y()vﬂ.(y,a-,‘r.)0011’1'”.4.1)00—" +Un+len+1
V(10" 7) 08, 7ass) 087" + G sents
}",l+1(yl10"y T‘)

I/

where we used the induction assumption in order to get the inequality.

2)Increasingness in o .
The proof is by induction on n. The property trivially holds for n = 0. Assume it holds up to rank n.
Choose o* and ¢'" in IF with ¢'" > 0*. We get

YR (ge, ) = Yo 7)o" Tuer) 087" + Ontiens

“ y(Y"(y: o s T') of", Tn+l) of™" + U,n+len+l
Yu+l(y, o_r' , - )

where we used Lemma 2 and the induction assumption in order to get the inequality.

3)The proof for the decreasingness in 7' is similar.

4.3 The residual service timmes process in continuous time

Forn=0,1,2,--,andy= (", Yo2,Y-1,¥n0,0,--) € IF, let X(n,y,t, o*,7") € IF denote the residual
service times vector at time ¢ if the initial workload was y, when taking into account the customers that
were initially present in the system and the first n arrivals, with the usual convention that coordinate j
is concerned with the residual service time of customer C; .

Lemma 4 The function X~ (n,y,t,0°,7") : IN > IF x IR*™ x IRt™ — IF is increasing in n, y and
o' and decreasing int and 7'

Proof

1) Increasingness in y.
We prove by induction on n that the whole function X(n,y,t,0°,7") is increasing in y. For n = 0,
X(0,y,t,0°,7") = Y(y,t) and does not depend upon the variables ¢, 7*. ‘The property is hence a mere
rephrasing of Lemma 3.

Assume now the property holds true for all 0 < n < m. Take initial conditions y and y' in IF with
y > y. Forall 0« t< ¢, we have

X(myt, o, 7)== Y(y,t) < V(' t) = X(m, y,t,o',7)
where we used Lemma 3 again, so that the increasingness is immediately obtained. For t > {1, we get

X(m,ut,o', 1) = X(m -1, (Y t) bojer)od,t—1t,0 of, 7' 08)00"l
< X(m- LYY t1) + o1e1) 06, — ty,0 08, 1° 00)09'1
= X(m,y,t,a,7)



where we used the induction hypothesis and Lemma 3 to get the inequality. 1t then follows that the
increasingness property holds for all t € nt.

2) Increasingness in n.
We prove that the whole function X(n,y,t,0",7") is increasing in n. For all 0 < ¢t < t,,, we have

X" (myto,r')=X"(m- 1,y,t,07,7")
Forall t > t,,, we have

Y(X(m - Ly tm,0",7") +0Omem) 06, t - ty)od™™
V(X(m~1,y,tm,0',7") 00"t - tin)o 8™
= X(m-1lLyteo,77)

X(m,y,t,0",7")

It

(\Y2

where we used Lemma 1 to get the inequality. Hence, the property
X(m,y,t,0’, 7)) > X(m - 1y, t,07,7")

holds for all t ¢ IRT.
Observe that the increasingness is strict for ¢ > t,, whenever there exists an index i =0,-1,-2,--- such
that

Xi(m,y,t, 0", 7°) >0

3) Decreasingness in /.
‘This property is obvious from the very definition of the policy: the residual service time of a customer
cannot increase with time.

4) Increasingness in 7.

The proof is by induction on n. We prove that the whole function X(n,y, t,o", ") is increasing in o*.
For n == 0, the property is trivially true. Assume now the property holds true for all 0 < n < m. Take
o' and o' with o' -. o' Forall 0 <t < &, we have

x(m: yit)a" ' T.) = y(yr t) = 4"(m1 y'f‘,U" ) T')

For all £ - t;, we get

X(m-1,(Y(t) +01e1) 08,k — 11,07 00,77 00) 0!
X(m—-1,(Y(t1)+ole1)o0b,t —t1,6"00,7° 06) 097!
X(m—=1,(V(y,t1) +0te1) 08,t —t1,0"" 08,77 060) 067?
X(m,y,t, 0", 1)

X(myy,t,o',7")

iN A

I

where we used step | to get the first inequality and the induction hypothesis to get the second one. The
increasingness property holds then for all t € IR*.

5) Increasingness in 7°.

‘The proof is by induction on n. For n = 0, the property is trivially true. Assume now the property holds
true for all 0 < n < m. Take 7* and 7'~ in (IR*)™ where 7* and 7'~ have the same components but for
the k-th one which is such that 7, = 7 — 4, 0 < u < 7. Consider two identical queues that differ only
in their interarrival vector 7 and 7'. We shall refer to the system with the vector r as the first system
while the second system will be the one with 7'.



Consider first the case k = 1.

We want to prove that for 7* and 7'~ as above, where k =1,
X~ (muyt,o, 7)< X (muyt,o,7")

We will prove this by assuming that it is not true and arriving at a contradiction. This can only
occur if there is a time t when X:(m,y,t,0°,7°) = Xi(m,y,t,07, ") >0, and N(X(m,y,t,0°,77)) >
N(X(m,y,t, 0,7 “)). Let v > 0 be the first date at which this occurs. If such a date exists, we show
that

X(myy,v,0,7)=X(myv,0,7")
which must necessarily contradict the relation between N(X(m,y,t,07, 7°)) and N(X(m,y,¢,0", ™).
In order to prove this, observe that all the customers that were initially present in the queue receive the

same amount of service by time v, both in the first and the second system. Hence, the existence of an
index i = 0, —1,- - - such that the relation

Xi(m,y,v,0°,7") = Xi(m,y,v,0",7") (4.1)

is satisfied implies that it holds for all i = 0, —1,---.
Secondly, we prove that if N and N’ respectively denote the number of new customers arrived in the
system by v then

N=N' (4.2)

The only other possibility is N -2 N'. If this holds, we have then

X~ (myvo,7) = X~ (N',yv,0,7")
X_(N:yivfo"’f")
,\'"(N,y,v,a",‘r')
‘x.—(NYy,v’a"T.)

v V

il
i

where we successively used the strict increasingness property of step 2 together with the fact that
Xi(m,y,t,0',7') > Oforsomei = 0,1, for getting the strict inequality, and the induction hypothesis
to prove the second one. This now entails that

Xi(m,y,v,0',7') < Xi(m,y,v,07, ")

for some i = 0, —1,---, which contradicts the fact that relation (4.1) holds for all i = 0,1, The
property that N > 1 is immediate. Hence relation (4.2) is established.
The final step consists in proving that the relation

Xi(m,y,v,a',r‘) = ‘Yi(m’ y,v,a',‘r") (4.3)

is also satisfied for all i = 1,2,---. First observe that because N = N, at time v, X(m,y,0,0°,77) =
X(myy,0,0°, 7" ), and d )2 _ Xi(myy,t,07,7)/dt = d 3724 gy Xi(m y,t,0°,7'")/dt = 1, the rela-

tion
e ke ¢

Z Xi(m,y,v,0",77) = Z X.-(m,y,v,a",r")

i=—rx i=—ox

necessarily holds. Hence, if there exists an index i = 1,2,--- such that

Xy yov,0', 1) £ Xi(myy, vo' 1)



then, we can choose an index j == 1,2,--- such that
Xj(m,y,v,0",7") > X,(myy, 0,07, ")
There must then be a date w, 7y < w < v such that
Xj(m,y,w,0",7°) = X;(myy,w,07, ")
During the time interval (w,v) customer C; received the amount of service time
S =X;j(mywo, ) - Xj(m,y,v,a', ™)
in the first system and
S' = X;(m,y, w07, 7" )~ X;(m,y,v,0°,7")
in the second where S > S'. Observe that all the customers C;, i=0,~1, - that are still present in the
queue at time v receive the same amount of service in the same interval, namely S in the first system
and S’ in the second. Property (1) together with the inequality S > S' then entail
Xi(m1 y,w, 0, T') > ‘Yt'(m) Yy, w, o, T")
for all i = 0, =1, - such that X;(m,y,v,0',7") >0, which contradicts the definition of v.
Under the assumption that such a date exists, the property
X(m,y,v,0,7") = X(m, yv,0,7") (4.4)

is hence established which implies that dXi(m,y,t,0",7')/dtl=w = dXi(m,y,t,0°,7"")/dt]e=y which
contradicts the definition of v.

Consider now the case where k > 1. Assume that the property holds for 0 < j < k.
Forall 0+ ¢ - {g_q, we have

X(m,y,t,0,77) = X(myt, 0, ) (4.5)
For all 1 > 1y ¢, we get first that
X(l,ytk-1,07,77) = X(L,yte-1,0°,7")
We have then
n->"(X(m-1,X(1,y,t1,0",77) 00,1 - t1,0° 00,7 08) 0671
= O ™"X(m- 1, X(L,yty,0", 7" )06, t—t1,0" 08, " 068)o871)
< I X (m - 1, X(1,y,t1,0°,7" )0 b, t —t;,0" 06, " 08)067")

X (myute,T)

= X(myto,T)
where we successively used relation (4.5) and then the induction hypothesis.
The proof of the Lemma is thus completed.
Let X~ (y,t,0",7")) denote the limit
X (pt,o", 7)) = Jl_{nm X (n,pt, 0", 7))
"This limit exists since this is an increasing function of n.

Corollary 1 If the function X ~(y,t,0",7") : IF x IR X IR*™ x IR*™ — IF is finile, il is increasing
iny and o' and decreasing int and 7.

Proof

X~ (y,t,0',7")) is the limit of a sequence of functions that are increasing in y and o” and decreas-
ingin ¢ and 7'.



5 Construction of the limiting residual service times vector

In this section, we show how the stationary residual service times vector, y in the preceding sections,
can be built from the sequence of interarrival and service times ¢~ and 7°.

In order to do so, we consider the initial service times vectors that are obtained when taking into account
the first n customers that arrived in the past only, namely customers Cy, C_y, C_3,'-+,C_,. Denote
this vector as y*(o™,77).

Lemma 5 Foralln=1,2,--,

e, 7)) = (V" (0" o 6-', 77 0071), ) +0ne1) 08
where y" = coen. Furthermore, the sequence of veciors y™(c~,77) is increasing in n,0” and —7.
Proof

1)Proof of the relation.

The proof of the relation is by induction on n. Assume it holds for 0 < n < m. Then, the resid-
ual service time vector seen by customer C_;, when taking into account m customers in its past is

J"(o” 067,77 007)

owing to the induction assumption, so that the residual service time vector at the first arrival epoch
that follows this date is Y(y" (¢~ 08~ !, 7~ 0 67'), ) + one1. Shifting this one unit to the left yields
the residual service time vector seen by customer C,, when taking into account m-+1 customers in its past.

2)Increasingness in 7.

The proof of the relation is by induction on n. The property that y! > ¢ is immediate since y} = ¥ = g0
and y', > 3", = 0 with all other coordinates being equal to 0. Assume it holds for 0 < n < m. Then,

v ie ) = DWt(e” oa‘l?r" 09—1)’7_") +one)of
2 (y(y"_l(a"00",1"oG"),'rn)-l-m.e,)oe
= o)

where we made use of the induction assumption together with Lemma 1.
3)Increasingness in o~

The proof of the relation is by induction on n. The property holds for n = 0 since y® = onen. As-
sume it holds for 0 < n < m. Then, taking o'~ > o~, we get

y e, 77) V(¥ (o™ 06 177 0071), 1) 4+ ouey) o b
(0 7(Citd G 08 17007, ™) +0'wey) 08

- y"((f’_,T—)

where we made use of the induction assumption and Lemma 1.

4)Decreasingness in 7.



The proof of the relation is by induction on n. The property is obvious for n = 0. Assume it holds for
0 < n <. m. Then, taking 7'~ > 77, we get
y"""(a", T7) (Y@ (e~ o 8~ 17 o 9"), T0) + ovey) o é

P (y(yn—l(a,— 09«1’ o 9-1),7'") + O'nel) of

> (y(y"'l(a" 087" o 0"), T0) + oney) o8
y(o™, T )
where we made use of the induction assumption and Lemma 1 in order to get the first inequality and
Lemma 1 to get the second one.

H

This completes the proof of the lemma.

Denote by y(o~, 77) the limit -

ylo~,m7) = "li_‘n; Y (o™, 77)

This limit exists since the function is increasing in n.

Corollary 2 If it is finite, the function y(o~,77) is increasing in 0~ and —1°.

Proof
y(a~,77)) is the limit of a sequence of functions that are increasing in ¢~ and —77.

Define X ~(t,, T) to be the residual service time vector of customers «-+,C_3,C.,,Ch at time t > 0
when taking into account all customers that arrive both in the past and the future. It is obvious from
the preceding construction that

X (to,r)=X"(yle”,77)t,o",7")
so that the following theorem is an immediate consequences of Corollaries 1 and 2

Theorem 3 If it is finite, the function X~ (t,0,7) is increasing in o and decreasing in t and T.

6 The Association Property

We make the following assumptions regarding the interarrival and the service times,
HO: —7 U o is a set of associated random variables.

Hl: —7 U o is a stationary and ergodic sequence of integrable random variables satisfying the
stability condition Elov] - E[m).

Owing to condition H1, the queue is stable in the sense that all the quantities that were defined in
Corollary 2 and Theorem 3 are a.s. finite. Indeed, this discipline is work conserving and has hence the
same busy periods as the FCFS single server queue. The classical construction that is commonly used
for this last tvpe of queues ([L062]) immediately entails such finiteness properties.

We define the sojourn time, T, of customer Ci, to be

To = sup{t s Xo (ts g, T) > 0}

10



and more generally, the sojourn time, T,,, of customer C,, to be
T, =sup{t : X, (t,006",706™)> 0}

Theorem 4 The sojourn times, {T,}" ., together with the service and negative interarrival times {on}7%0
and {—1,}5%0, form a set of associated r.v.’s.

Proof

From the above theorem, X, (¢,0,7) and hence T\ are non-decreasing functions of the variables o
and —7. Since 08" and —7 o " are also are non-decreasing functions of the variables o and —7, it
follows that more generally, T}, is a non-decreasing function of these variables as well. The proof of the
Theorem follows immediately from the properties of associated r.v.’s listed in Theorem 2,

7 Application to resequencing queues

Consider the following problem: a stream of customers C, Cy,-- - arrive to a first queuneing system at
time to < &,--- respectively, where each customer experiences some delay. Denote by D, the delay
of C,. Consider the case where this system is such that the order in which the customers leave the
system is not necessarily the same as the order in which they entered it, like for instance in a processor
sharing queue. This output process then feeds some end resequencing queue, where the customers
have to be served in the very order of the initial stream. Such resequencing queues are for instance
commonly implemented in packet switching communication networks using Datagram type procedures:
Voice packets originating from a source are routed independently through a network with several possible
routes between the source and the destination nodes, and may hence arrive at their destination in an
order that does not correspond to the emission order anymore. It is then necessary to resequence the
packets before processing them in the final output device. It was established in [Bac87] that if the delays

{D,}m {tut1 = tu }nin are associated random variables, independent of the service times in the end
resequencing quene, then the end-to-end delays experienced by customers in the whole system can be
bounded above by those in a similar system where the first queueing system is replaced by an infinite
server queue with i.i.d. service times. The interest of snch a bound comes from the fact that this second

system is analytically computable. The interested readers should refer to [BM89)] for more practical

details on the matter incuding the computation of various moments and asymptotics and to [BMTS87]
for further applications to other and more elaborate queueing systems with synchronization constraints.

References

[BP81] R.E. BARLOW, and F. PROSHAN, Statistical Theory of Reliability and Life Testing, McArdle
Press, Inc., 1981.

[BGP84] F. BACCELLI, E. GELENBE and B. PLATEAU, “An end to end approach to the resequencing
problem”, J.A.C.M. Vol 31, No 3, pp. 474-485, July 1984.

[Bac87] F. BACCELLI, “A queuing Model of timestamp ordering in a distributed system”, Proceedings
Performance’87, Bruxelles, 7-9 Décembre, 1987, publ. North Holland, pp. 413-431.

|[BMT87] F. BACCELLI, W. MASSEY and D. TOWSLEY, “ Acyclic Fork-Join queuing networks”,
Internal Report, COINS, University of Massachusetts, 1987. To appear in the J.A.C.M..

11



[BM89] F. BACCELLI and A. MAKOWSKI, “ Queueing models for systems with synchronization con-
straints”, Invited Paper, Special Issue of JEEE Transactions on Discrete Event Systems, L. Ho

Editor, January 1989.

|[FMI80] G. FAYOLLE, 1. MITRANI, and R. IASNOGORODSKI, “Sharing a Processor Among Many
Job Classes”, J. ACM 27, 3 (Iuly 1980), pp. 518-532.

[Lo62] R. M. LOYNES, “ The Stability of Queues with Non-indepenent Inter-arrival and Service Times",
Proc. Cambridge Ph. Soc. 58, pp. 497-520, 1962.

12



