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ABSTRACT

We consider a G/G/1 queucing system where the objective is to maximize the probability that a
customer's system time does not exceed a given deadline. The deadline is defined to be the
maximum amount of time the customer can spend in the system. We show that for deadlines that
are i.i.d. random variables with concave cumulative distribution functions, LIFO gives the highest
probability of success, and FIFO the lowest, over the class of all work-conserving non-preemptive
service disciplines that are independent of service time and deadline. Extensions to policies that
allow preemption in G/M/1 systems, deadlines imposed on queueing (rather than system) time, and
multi-server queues are provided. Results are illustrated by the simple example of an M/M/! queue
with exponential deadlines. In addition, the case of a G/G/1 queue with constant deadlines is
considered.
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1. INTRODUCTION

We consider a G/G/1 queueing system where every ai'riving customer is characterized by a
deadline D. A customer's deadline is defined to be the maximum amount of time the customer can
spend in the system. Deadlines are assumed to be i.i.d. random variables with a cumulative
distribution function G,(-). If a customer's system (sojourn) time exceeds the assigned deadline,
then the customer is considered to be lost. (Note: a customer that exceeds his deadline is not
removed from the system.) This model is particularly useful in communication systems where
messages are required to reach their destination within a specified time interval, and in computer
systems where tasks must be executed under real-time constraints.

Let nnp denote the class of work-conserving, non-preemptive service disciplines that are
independent of the scrvice times and deadlines. Thus, when the server adopts a policy e I'[np, it
- selects at every service completion instant a customer among those presently in the queue without
any information regarding service times or deadlines of the customers. Letting R, denote the
ergodic system time of a customer under ne ITnp, the problem is to determine a policy #* optimal
in an such that the probability Pr[R_ < D] is maximized. Our main result in this paper is that the
Last-In-First-Out (LIFO) policy is optimal, as long as Gp(9) is concave in 1. Moreover, the First-In-
First-Out (FIFO) policy provides the worst Pr[R, < D] in this case.

The result is particularly interesting in view of the fact that for the common case of constant
deadlines (D = 1), no such universal claim about the optimality of a certain policy can be made
without specific knowledge of the parameters of the system and deadline. For example, although
LIFO outperforms FIFO in the case of tight deadlines (small 1), FIFO provides a higher Pr[R, < D]
than LIFO for loose deadlines (large 7).

With our key result as a starting point, it is possible to provide éxtensions to the class of
policies allowing precmiption, and to the problem of maximizing Pr[Q, < D], where Q_ is the
queue waiting time. In addition, we extend the results to single-server queues with bulk arrivals,
and to multiple-server queues. Furthermore, the result raises a number of questions pertaining to

the properties of the LIFO policy in models where deadlines play a critical role in determining



system performance. For instance, can the LIFO policy still be optimal if G(7) does not satisfy the
condition above? It is also possible that LIFO outperforms FIFO even when the latter policy is used
in conjunction with state-dependent admission control to the queueing system.

This paper is organized as follows. Section 2 defines a convex ordering and states some
existing results. The main result is derived in section 3; extensions to this result are provided in
section 4. In section 5, we present examples of queues with (a) exponential deadlines, and (b)

constant deadlines.

2. DEFINITIONS AND PRELIMINARY RESULTS

Our main result is based on the idea of establishing a certain type of partial ordering between two
random variables X and Y defined over all non-negative real numbers. In particular, we shall use

the following definition of a convex ordering [1]:

Definition: X is smaller than Y in the convex ordering, denoted by X <.Y, if and only if:

E[g(X)] < E[g(1)]

for any convex function g: [0,00)—-R.

The following Theorem, due to Shanthikumar and Sumita [1], establishes a convex ordering
for the ergodic system time in a G/G/1 queueing system. Recall that an is the class of work-
conserving non-preemptive service disciplines that are independent of the service times and

deadlines. Clearly, the FIFO and LIFO policies belong to this class.

Theorem la: For any me an, let R, be the ergodic system time in a GI/G/1 queueing system

under . Then:
Riro S Rz < Ruro

Shanthikumar and Sumita [1] derive a similar result for the G/M/1 queue and the more general
class IT of work-conserving service disciplines that are independent of the service times and
deadlines. In this case, preemption is allowed, and we use LIFO-P to represent the LIFO

preemptive/resume policy, which belongs to IL

o



Theorem 1b: For any me I, let R be the ergodic system time in a G/M/1 queueing system

under . Then:
- Rupo S Rz S Rurop

The proofs of these Theorems in [1] are based on interchange arguments applied to sample
paths of the queueing system under consideration. It can be shown, for instance, that if some
policy e an other than FIFO is used in a G/G/1 system, then interchanging the first customer not
served under FIFO with the customer satisfying the FIFO policy results in a lower value of the

ergodic system time in the convex ordering sense.

3. NON-PREEMPTIVE G/G/1 QUEUES

The following theorem establishes the optimality of the LIFO service discipline; furthermore, it

shows FIFO to be the worst.

-]

Theorem 2: Let deadlines be i.i.d. random variables with a cumulative distribution function
Gp(-). For a GIG/1 queue and any service discipline me I'Inp, if Gp(r) is a concave function of t,
then
Pr{R,;z0 < D] 2 Pr[R;<D] 2 Pr{Rpzo <D]. (1)
Proof: Define the following function:
h(ry = PrlD 2r] = 1-Gp(r).

But h(r) is convex since Gp(r) is concave; therefore A(R,) is convex and it follows by Theorem 1a

that
Elh(Rir0)l 2 E[A(Rp)] 2 E[ARzr0)].

Let F,(-) be the cumulative distribution function of R under policy #. Observing that
EIWR)] = j PrD 2R, |R, =l dF (1) = PrD 2R,
0
the result (1) follows. QED

Remark: Constraining the cumulative distribution function to be concave is equivalent to

requiring the probability density function to be non-increasing for ¢ > 0. For example, a deadline



that is exponentially distributed would satisfy this condition, as would one that is distributed

uniformly on the interval [0,b], b > 0.

4. EXTENSIONS

The following results are easily derived as extensions of Theorem 2. We omit the proofs.

GIMI1 Queues with Preemption Allowed. Consider the larger set of policies, I, wherc
preemption is allowed. If we restrict ourselves to exponential servers, then with application of
Theorem 1b, the following ordering result can be obtained for concave Gp():

PriR irop <D] 2 Pr{R,<D] 2 Pr{Rypo < D). @)

Queues with Deadlines on Queueing Time. We can extend the results of of the previous
sections to systems where the deadline applies to queueing time rather than system time. That is.
we can replace R, by O, where Q, is the stationary queueing time, and the results will still hold.
The proof relies on certain propcrticé of convex ordering that can be found in [2, p.272].

Queues with Bulk Arrivals. Here we show that the results presented in the previous
sections can be extended to bulk arrival queues. For single-server queues where the bulk size of
the nth arrival is random, Theorems 1a and 1b still hold [1]. Therefore, it can be shown that thc
inequalities in equations (1) and (2) hold for queues with bulk arrivals assuming that the conditions
on the deadline distributions are met.

Multiple-Server Queues. We can show that the results of Theorem 2 can be extended to
G/G/c queues. The proof entails first extending the convex ordering result of Shanthikumar and

Sumita [1] to apply to multiple-server queues.

5. EXAMPLES

We will look at the two special cases of an M/M/1 queue with exponential deadlines, and a G/G/1
queue with constant deadlines. In the case of exponential deadlines, the required property is

satisfied for Theorem 2 to hold, and we give an example to show the magnitude of the difference



between the FIFO, LIFO, and LIFO-P policies. In addition, we will show that in the case of a
constant deadline, whose cumulative distribution function does not satisfy the concavity property,
no policy is always optimum over all choices of the deadline. In fact, we can show that there
exists a critical deadline, 7_;,, above which one policy outperforms the other, and below which the

converse is true.

5.1. M/M/1 Queue with Exponential Deadlines

Consider an M/M/1 queueing system with all deadlines drawn from an exponential distribution.
Let the arrival rate be 4; the service rate y; and the mean deadline%. Using standard queueing

theoretic techniques, we can show that the analytical expressions for the probabilities of interest

are:
Pr{Ryyro p < D] =Elx(9+l+u-\f(9-|'-)l.+p)—4ilu ), (3)
1
5‘(?;‘;75(9““3#-‘1(9+A+u)—41# ), A<p, 4
Pr[Ru]:oSD] = I ( )
220+ 1) (0+A2+p-VN(O+A+p)~4Ay), A2p, and
u-A4

—_— A<y,
PrlRpro <Dl = { 0tH—4 -

o, Azp

Through algebraic manipulation of equations (3)-(5), one can show that, indeed, the following

ordering is satisfied for any choice of 4, u, and 6:
PR ir0.p <D] 2 Pr{R ;o <D] 2 Pr{Rppo < DJ.

To illustrate the difference in performance under the different policies, we plot Pr[R, < D] for =

LIFO-P, LIFO, and FIFO as a function of A for the case where it = 1 and 8 = 1/2 (see Fig. 1).

5.2. Constant Deadlines

Consider a G/G/1 queue where deadlines are constant and equal to 7. We can show that for two

policies 7, 7€ I'I"p such that R, <; R, there exists a critical deadline, g, such that

(]
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Figure 1: Comparison of LIFO-P, LIFO, and FIFO Service Disciplines for an MIM/1 Queue with
Exponential Deadlines
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The proof comes from the fact that Pr{R; < 7] is just the cumulative distribution function (cdf) of
R, and a result in [3, p.107] stating that if two random variables with the same mean have a
convex ordering, then their cdf's cross exactly once and in a direction consistent with (6).

Remark: The critical deadline, 7, depends on the parameters of the interarrival and service-time
distributions. Therefore, to compare two policies, one needs exact values for (a) the deadline, and

(b) the system parameters.

6. CONCLUSIONS

The LIFO service discipline in G/G/1 systems is often regarded as undesirable, since it results in a
system time distribution with the same mean but higher variance compared to FIFO. In the context
of the problem we have considered, however, this feature can be exploited. Our key result is that

for G/G/1 queues where customers have deadlines drawn from a concave cumulative distribution



function, a LIFO service discipline is optimal over the set of work-conserving non-preemptive
policies that are independent of service demands and deadlines. We also show FIFO to be the
worst policy. In addition, we extend the basic result to policies that allow preemption and to more
general systems.

Our results suggest several interesting questions pertaining to the desirable properties of the
LIFO service discipline. For example, we can ask how a LIFO policy compares to a FIFO policy
with state-dependent admission control. There is, in fact, evidence that LIFO can do better even in
this case. Another idea is to make the same comparisons in a system where customers are removed
from the queue as soon as they are detected to have exceeded their deadline. Further, we can
question whether LIFO is optimal for any deadline distributions that do not satify the concavity

constraints.
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