ON THE RELATIVE COMPLEXITY
OF SOME LANGUAGES IN NC!

David Mix Barrington, James Corbett

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 89-22

On the relative complexity of some languages in
NC!

David Mix Barrington?
James Corbett?
COINS Dept., U. of Massachusetts
Amherst, MA 01003, U.S.A.
March 10, 1989

1. Abstract

We consider the relative complexity of a number of languages known to be in uniform
NC?, using the descriptive framework of Barrington, Immerman, and Straubing [4].
In particular we sharpen several results of Ibarra, Jiang, and Ravikumar [9). We
show that the one-sided Dyck languages, structured CFL’s, and bracketed CFL’s
are recognizable by very uniform families of threshold circuits (are in DLOGTIME-
uniform T'C°). We show that a large class of deterministic linear CFL’s are in

uniform T'C°, but that some are complete for uniform NC*(and thus not in uniform
TC° unless TC°=NC" in the uniform setting).

2. Introduction

The parallel complexity class (non-uniform) NC* consists of Boolean functions
(mappings from {0.1} to {0,1}) which are computable by a fan-in two circuit
family of O(log n) depth where n is the number of input bits. In other words, there
1s some constant ¢ such that for each n there exists a circuit Ch, of depth at most
clog n, computing f on inputs of length n.

Various uniformity conditions can be placed on NC!. We will use the DLOGTIME-
uniformity examined by Barrington, Immerman, and Straubing [4], which requires
that a deterministic Turing machine can answer simple questions about the ntt
circuit in the family in O(log n) time. This type of uniformity turns out to be

!Former name David A. Barrington. Supported by NSF Computer and Computation Theory
grant CCR-8714714.
2Supported by NSF grant CCR-8812567.

very robust, yielding equivalent definitions of scveral uniforin subclasses of NC!
under a variety of computational models including circuits and first order formu-
las. For NC', DLOGTIME-uniformity is equivalent to Ruzzo’s Ug.-uniformity [13)
which has the consequence [13] that uniform-NC? equals ALOGTIME (languages
recognized by an alternating Turing machine with a random access input tape in
O(log n) time).

Ibarra, Jiang, and Ravikumar showed a number of problems to be in ALOG-
TIME or uniform- NC? by exhibiting alternating log time Turing machines. These
include the one-sided Dyck language over two letters, structured CFL’s, bracketed
CFL’s, and deterministic linear CFL’s [9]. We will make stronger statements about
the relative complexity of these languages using the structure theory of NC? devel-
oped in [2,4,5].

Contained in (non-uniform) NC? are three interesting subclasses. The class
(non-uniform) AC® consists of Boolean functions computable by circuit families of
polynomial size, constant depth, and unbounded fan-in. It was shown that counting
modulo a constant cannot be done in AC°[1,7], which motivated Barrington [2]
to define the class (non-uniform) ACC. This is defined like 4C?, except that in
addition to AND, OR, and NOT gates, we allow MOD-m gates (for some fixed
m) which output 1 if and only if the number of inputs that are 1 is congruent to
zero mod m. It was also shown that majority cannot be done in 4AC® with MOD-p
gates where p is prime [11,14] (note this is not all of ACC). Hence the class (non-
uniform) T'C° [8,10] was defined like AC® but allowing MAJORITY gates which
output a 1 if and only if a majority (more than half) of their inputs are 1. This
is equivalent to allowing arbitrary threshold gates (which output 1 if and only if
at least some number of their inputs are 1). Since modulo counting gates can be
built from threshold gates and since majority is in NC?, we have the sequence of
subclasses AC® C ACC C TC° C NC?, where the last two inclusions are not known
to be strict. The DLOGTIME-uniform versions of these classes have equivalent
characterizations in terms of constant depth circuits with special gates, expressions

with special operators, and first order formulas with special quantifiers, as shown
in [4].

We say one problem A is DLOGTIME-AC® reducible to another problem B if
and only if there is a DLOGTIME-uniform AC? circuit, with oracles for B, solving
A. A language is said to be NC*-complete if and only if it is in uniform- NC? and
all other languages in uniform- NC?* are DLOGTIME-AC® reducible to it. Both the
Boolean formula value problem [6] and the word problem for nonsolvable groups
[2] are known to be NC!-complete. The existence of these complete languages

suggests that TC%# NC" for the following reason. The constant depth circuits of
TC® are naturally parameterized by depth: T'C} is defined as the class of languages
recognized by threshold circuits of depth at most k. Then TC? C TC? C ... C
TCP...and TC°= U, TC}. 1t is known that the first three levels of this hierarchy
are distinct [8] and that the analogous hierarchy for monotone threshold circuits
does not collapse [16]. If TC°= NC?, then the two complete languages would be in
TCY for some k, thus collapsing the hierarchy above that arbitrary depth [3].

In section 3 we show that the one-sided Dyck languages are in DLOGTIME-
uniform T'C?. In section 4 we show that structured and bracketed CFL’s are both
in DLOGTIME-uniform TC°. In section 5 we examine which deterministic linear
CFL’s are in DLOGTIME-uniform T'C°. We conclude with some open problems.

3. One-sided Dyck Languages in T'C"

The one-sided Dyck language on two letters, which we shall denote D,, is the
balanced parenthesislanguage with two types of parentheses defined by the following
grammar.

S - §§

S - LSh
S - [25).
S — ¢

D; can be parsed using the well known level trick [12]. Assign a level to each
parenthesis, starting with one and ignoring the differences in parenthesis type. The
level of a parenthesis equals the number of opening parentheses to its left (including
it) minus the number of closing parentheses strictly to its left (not including it). A
right parenthesis is said to match a left parenthesis if it is the closest parenthesis to
the right on the same level. A string is in D, if and only if all parentheses have a
positive level and each left parenthesis has a matching right parenthesis of the same
type (this is easily proved by induction on the length of the strings).

The only part of this which requires nonconstant depth is determining the level
of each parenthesis (which requires counting). However, arbitrary threshold gates
can count in constant depth, hence the problem is in (non-uniform) T'C°. To show
uniformity, we will express membership in D, with a first order formula [4] with
majority quantificrs.

In our formulas, variables range over positions in the input string (from 1 to n),
which is read with the predicate m,(i) = “the i** input is a”. Variables can also be
compared. For example, the regular language 0"1* can be expressed as

JzVy[((y <) = mo(y)) A ((y >) — m(y))]

Majority quantifiers are a generalization of existential and universal quantifiers de-
fined as follows: (Mz)y(z) is true if and only if ¥(z) is true for more than half of
the possible z’s. It is easy to see how such an expression can be converted into a
TC° circuit by replacing universal, existential, and majority quantifiers with AND,
OR, and MAJORITY gates respectively. The resulting family of circuits will be
DLOGTIME-uniform by the results of [4].

Theorem 1 D, is in DLOG TIME-uniform TC®.

Proof: In [4] it is shown that we can express y = fz : ¢(z) (i.e. y is the exact
number of z’s such that ¢(z) is true), in first order logic with majority quantifiers.
Hence we can express LEV EL(3,l) (i.e. parenthesis i is at level 1), MATCH(4,j)
(i.e. parenthesis 7 matches parenthesis j), and D2 (i.e. the input is in D,), as
follows:

OPEN(i) = m,(3)V m,(3)
CLOSE(1) = m,(2) Vm,(2)
LEVEL(i,l) = 3yly=fz:2 <iANOPEN(z)) A
Jz(z =fz : 2 <i ACLOSE(z)) A
y2zAl=y—z
MATCH(i,j7) = i<jAOPEN()ACLOSE(5)A
(LEVEL(:,l) N LEVEL(j,l) A\Vk(i < k < j » ~LEVEL(k,1)))
D2 = Vi3l LEVEL(i,l) A

Vi(OPEN(3) = 3j(MATCH(i, 5) A (m, (5) = m,(5))))

In general, a one-sided Dyck language may have any fixed number k of paren-
thesis types. Such a language is denoted D,.

Corollary 1 D, is in DLOGTIME-uniform TC® for all k > 1.

Proof: We can easily adapt the above predicates to any fixed number of parenthesis
types. O

4. Structured and Bracketed CFL’s in TC"

Ibarra, Jiang, and Ravikumar proved that two subclasses of CFL’s are in NC*
[9]. Their techniques suffice to prove the sharper result that these subclasses are
actually in TC®. As defined in [9], a structured context-free grammar (CF G)G =
(¥,V,P',S) is induced by an arbitrary CFG G = (X,V,P,S) as follows:

¥ LU {(a,]uld eV}

P' = {4 - [40)4]A> € P}
Structured CFL’s are those generated by structured CFG’s. A bracketed CFG
is similar but the productions are numbered arbitrarily and the parentheses are

labeled with the number of the production rather than the nonterminal. We denote
the substring of the input from position 7 to position j by W;.5.

Theorem 2 Structured CFL’s and bracketed CFL’s are in DLOG TIME-uniform
TC®.

Proof: We adapt the basic proof method of [9] and show that it yields a uniform-
TC® solution. Let G be a structured CFG. Then we can check membership in
L(G) as follows. First make sure the parentheses are balanced correctly just as we
did in the proof of Theorem 1 (i.e. all parentheses have positive level, each left
parenthesis has a matching right parenthesis of the same type). Then verify that
what is contained in each pair of matched parentheses could have been produced
by the nonterminal which labels the parentheses. For example, if we see

[Amo[A,ax]A, Ly... [Agak]Ak‘ck]A
with z; € ¥7,a; € (£'), then there must be a production
A - [Aﬂ’:oAl.’Bl oo Aka:k]A

which produced it. The OPEN, CLOSE, LEVEL, and D2 predicates defined above
are easily modified to check the first condition. The second condition can be checked
by constructing predicates FROM,(z, j) for each k which are true if and only if w;;
could have been produced by rule k (number the rules arbitrarily). By OR-ing a
fixed number of these we can easily construct predicates FROM,(<,5) which are
true if and only if w;.; could have come from nonterminal A. Below is an example
for a CFG in which

(1) A — [4eaaBbcCcdDddd),
(2) A — [abed)s

(2) pue ‘uoryonpoid £ue jo yySu ayy ur sreadde [eUIULIISJUOU U0 jsowr je () yorgm
Ul rewrwreld 3213-1X33u0d ® £q pajersusd suo st g0 Iedul] JUSMUMIINPP V “(ON
Ul 31 S TJD Tesulf S1SIUMMLIIeD jey) pamoys os[e Jewnyiaey pue ‘Suerp ‘eireqg

S TAD IedUur] JIISIUNUILIS(] °Q

(v -2+)H0IV I

V(T = OTev(z+)%ey (1 +2)uwy (2)%)

ANOTwv(1=C2+0)goIVIN
V(I=0%v(@+)lev(t+2)uy (@) = (F9)Swoyg

se passa1dxs aq pinom (£ 2)epy Oy g oyestpaid Yy

et — g (g)

ord] — v (2)

‘]~ v (1)
04D
pateyorlq Suimoroy ayj uaai8 ‘sidurexs 104 ‘TeuruIsjuou UdAL3 ® dnpoid pnoo
Porgm sad£y stsayjuared ay3 [[e 10} L[pArgoun(sip 1591 jsnur sayedtpaxd (L) oy g
Y} peajsu] “Aressadau jou axe sayedrpaxd (£2) Yoy g YT, “TR[ruuis st (IaquInu uor}
-onpoid 3y} §}im pa[aqe] 21e sasoyjuared 31} aIoYm) s, TJdD pajeydeiq 10§ jooid ayJ,

(Cimwodd ALY woud = (C9"woyd
(Oevi=p+rv(i+9Puv (@)l = (C990yg
(Oev(e-0Frny (v — O v (5 - e+ A)FOIV WV
(e +A)Nuv (1+ Ry v (A)°le v (Ag + 2) g oLy I)fc
V(g +e)lev(1+2) v (2)%ey (2% + 1) oLV)zE
VI +2)e v (1+)™y (1)

(w+2)™ v (T+1) v (1) ®evuSwts

(C)'woug
(:5) mv...onH

Jndur 5y ur 2 vorpsod e
Burpre)s “p - 0 Junys e jo svussaad Iy 10) 8159 31 (lem [eInyeu ayy ut (2)%x oYy jo
uotyeziferouad e se (1)"”" " syestpard 3y suysp apy 'y 10f suorponpord £[uo ayy are

if any two of the rules 4 — z;Byy;, A — z2Byy;, A — z3 occur in the grammar,
then z; is not a prefix of z; for i # j [9].

Their construction contains a number of steps, all of which are clearly in TC°
except one: the recognition of a regular “prefix language”. The prefix language of
a nonterminal A, denoted L, is defined by

Ly={z] §= zAy for some y € -}

This is easily seen to be a regular language, though its syntactic monoid could
be nonsolvable (in which case its recognition would be NC*-complete [2] and thus
probably not in T'C?). Since the word problem for solvable monoids is in TC® 5], if
all the prefix languages are recognized by solvable monoids, then the deterministic
linear CFL is in TC® by the proof in [9].

It would be nice to show that if the prefix language for any nonterminal were
nonsolvable then the deterministic linear CFL was N C'-hard, but this turns out to
be false. One can easily construct a context-free grammar which generates the trivial
language T~ all of whose prefix languages are nonsolvable. Take any nonsolvable
group G and create a terminal and a nonterminal for each element of G. Then create
productions A — bC for each a,b, c € G such that ¢ = a*b, and finally a production
A — ¢ for each nonterminal. Let the start symbol be the nonterminal corresponding
to the identity of the group. Then the prefix language L, is {9192 - - 9m| 91 * g2 *
... * go = a}, which has syntactic monoid G. We do note that there are some
sp.cial deterministic linear CFL’s which are NC'-complete since this class includes
all regular languages.

6. Conclusion and Open Problems

A number of fundamental questions in this area remain open. Which CFL’s are in
NC'? 1t is unlikely that CFL C NC? since this would imply NSPACE(logn) =
DSPACE(logn) by Sudborough’s result [15). Which CFL’s are NC!-hard? Which
parentheses languages are NC'-hard (Buss [6] showed all of them to be in NC')?
Examples, such as the Boolean formula value problem, are known, but there is yet
no characterization of what makes them hard.

References

[1] M. Ajtai, “Z] formulae on finite structures,” Annals of Pure and Applied Logic
24 (1983), 1-48.

[2] D. A. Barrington, “Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC,” J. Comp. Syst. Sci. 38:1 (1989),
150-164.

[3] P. Berman, personal communication.

[4) D. A. M. Barrington, N. Immerman, and H. Straubing, “On uniformity
within NC',” Structure in Complezity Theory: Third Annual Confer-
ence(Washington: IEEE Computer Society Press, 1988), 47-59.

(5] D. A. M. Barrington and D. Thérien, “Finite Monoids and the fine structure
of NC',” J. ACM 35:4 (1988), 941-952.

[6] S. R. Buss, ‘The Boolean formula value problem is in ALOGTIME,” 18th ACM
STOC Symp. (1987), 123-131.

[7) M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the polynomial-time
hierarchy,” Math. Syst. Theory 17 (1984), 13-27.

(8] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turdn, “Threshold cir-
cuits of bounded depth,” 28th IEEE FOCS Symp. (1987), 99-110.

[9] O. H. Ibarra, T. Jiang, and B. Ravikumar, “Some subclasses of context-free
languages in NC!,” Information Processing Letters 29 (1988), 111-117.

[10] I. Parberry and G. Schnitger, “Parallel computation with threshold functions,”
in Structure in Complezily Theory, Lecture Notes in Computer Science No. 223
(New York, Springer Verlag, 1986), 272-290.

[11] A. A. Razborov, “Lower bounds for the size of circuits of bounded depth with
basis {&,®},” Mathematicheskie Zametki 41:4 (April 1987), 598-607 (in Rus-
sian). English translation Math. Notes Acad. Sci. USSR 41:4 (Sept. 1987),
333-338.

[12] R. W. Ritchie and F. N. Springsteel, “Language recognition by marking au-
tomata,” Inform. and Control 20 (1972), 313-330.

[13] W. L. Ruzzo, “On uniform circuit complexity,” J. Comp. Syst. Sci. 21:2 (1981),
365-383.

[14] R. Smolensky, “Algebraic methods in the theory of lower bounds for Boolean
circuit complexity,” 19th ACM STOC Symp. (1987), 77-82.

[15] I. H. Sudborough, “On the tape complexity of deterministic context-free lan-
guages,” J. ACM 25:3 (1978), 405-414.

[16] A. Yao, indirect personal communication.

