Generalized Recursive Structure Combinators
Tim Sheard

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 89-26

April 3, 1989

Generalized Recursive Structure Combinators *
Tim Sheard

Department of Computer and Information Science
University of Massachusetts, Amherst, MA 01003

April 3, 1989

Abstract

A recursive type describes a data structure that contains substructures of
the same type as itself. Such types are often given the semantics of the least
fixpoint of a recursive type equation. Manipulation of the instances of recursive
types are often expressed as recursive functions. Such functions can be quite
complex, especially for types needed to model complex objects found in many
modern applications. We show how the definition of these manipulations can be
simplified by the automatic definition of a class of general combinators of which
the usual mapping and reduction functions of lists are special cases. These
combinators are automatically defined as a byproduct of type declaration.

Languages which support the definition of recursive structures can easily
be extended to define these general combinators automatically. This extension
greatly simplifies the specification and implementation of complex algorithms
dealing with these structures, while maintaining support for a functional pro-
gramming style.

1 Introduction

Recursive types are those types whose instances have subcomponents of the same
type as themselves. For example, binary trees are a recursive type, since the left
and right subtrees of a binary tree are themselves trees.

Recursive types are usually defined as the least fixpoint of recursive type
equations [1], and constitute an important class of types. Many important data
types, such as lists, stacks, trees, etc., can be defined as recursive data types. Such
structures are generally manipulated by recursive functions. The definition of these

*This research was supported by NSF grants DCR-8503613 and IST-8606424 and by the Office
of Naval Research University Research Initiative contract number N00014-86-K-0764.

functions can be tedious and error prone, especially if a type has many recursive
subcomponents occurring in different contexts.

In this paper we describe an implementation of recursive types that, unlike
any other implementation we are aware of, automatically generates a class of func-
tions (tailored to each recursive type) which provide for very simple specification
and implementation of complex operations on values of these types. We call such
functions generalized recursive siructure combinators.

Consider for 2 moment a type for complex machine descriptions. A machine
is made of parts. Every part has a name, a weight and a cost. Some parts are
themselves composed of parts. Thus part descriptions will be the building blocks
for composing machine descriptions. Part descriptions will be of two basic forms:
descriptions for base parts having components name, cost, and weight; and for
composite parts with name, assembly cost, and a list of subparts. We assume that
the assembly cost of a composite part includes only the cost to put the subparts
together, not the cost of the subparts themselves.

How does one write functions which perform the following queries and up-
date?

1. What is the total cost of a part?
9. What are all the subparts (both composite and base) of part P?

3. What is the increased cost of replacing parts named N, with part Y, in part
P?

4. Update every subpart of P, having name N, by adding a new subpart S to
each of them.

Each of these can be realized by a recursive function which answers the query
or performs the update. These functions are naturally expressed recursively since
the computation for any part requires the same computation to be performed on
that part’s subparts (if it has any).

What is the nature of the recursion? Detailing the correct form for the
recursion is complicated because the subparts component is a list of parts rather
than just a part. The form of the recursion would be even more complex if a
part description had several other components that were records, arrays, or other
composite types containing part descriptions. Expressing such recursion correctly
can be tedious, time consuming, and error prone. Fortunately the recursive equation
that defines the type uniquely determines the form of the recursion. Function
templates that express this recursion can be automatically generated.

This paper identifies a class of function templates (in terms of combinators
which take other functions as input) which are particularly useful in that they
are widely applicable, (the list mapping and reduction functions are special cases),

2

can be automatcially generated, and provide a concise yet surprisingly transparent
and understandable mechansim for describing a wide class of recursive structure
manipulations.

These function templates can be most easily understood by considering that
every instance of a recursive type could be modelled as a tree. Each node in the iree
represents the non-recursive components of the type. Each recursive component
corresponds to an arc from node to node. To perform a computation on such
a structure a “walk” of the tree must be performed. The control mechanism to
coordinate such a walk is different for every recursive type, but is determined by
the recursive type equation defining the type.

In general a walk computes some value from a node, N, and then combines
that value with the values obtained by recursively walking all the nodes reachable
through the arcs originating at N. Reiterating, there are three basic components to
such a walk.

1. Computing the value from each node.
2. Coordinating the recursive walks from every arc originating at the node.
3. Combining the computed value with the values from the recursive walks.

The system we describe provides automatic assistance for specifying some or
all of the three components. Our general recursive structure combinators coordinate
the recursive walks and are automatically generated from a type’s defining equation.

If the combining function combines the values into another instance of the
same type as the original tree, we call such a walk a map. The combining functions
for maps are also automatically generated.

If the combining function combines the values into a scalar value or any other
type other than the type of the original tree, we call that walk a reduction. The
user must specify the combining function for reductions.

Computing the value from each node differs depending upon what the par-
ticular walk was intended to compute. Our system simplifies this by providing an
expressive pattern directed interface.

The rest of this paper expands upon these ideas. Section 2 describes the
notation for recursive type equations used to define recursive types. Section 3
describes the use of patterns to specify simple structure manipulations. Section 4
describes the functions and combinators we will use to define function templates and
describes the algorithms we use to generate the templates from the type equations.
Section 5 gives examples in which the structure combinators are used to express the
answers to complex queries and updates clearly and concisely.

2 Notation

Recursive types are those types that have as their semantics the least fixpoint of
recursive type equations. For example lists satisfy the recursive type equation:

list(alpha) = nil | alpha X list(alpha)

Where | is the disjunctive operator between types, x is the conjunctive operator (or
cross product) amongst types, and alpha is a universally quantified type variable.

A list(alpha) is then the disjunction of nil and the cross product of types alpha
and list(alpha). Because of the type variable, alpha, the above equation actually
represents a large class of recursive type equations, one for each instantiation of the
type variable alpha. Thus list(number) and lisi(string) define discrete types, where
the types of the items in the lists are numbers and strings respectively.

In parameterized type equations where the lefthand side of the equation
contains a type variable, we will assume the type variable is universally quantified,
(in much the same way one assumes the formal parameter of a function definition
can take on any value).

Function(t; X 2 X wiln) = i+ 1) denotes the type of a function from the
cross product of (11, t2, ... ta) to Yn + 1). Function() — tn is one way to type a
constant in type T.

A record type is a labelled cross product type with named constructor and
named selectors. The record with type (t1 x 2 X ...tn), that has named constructor
¢, and named selectors s;,82...5, 18 denoted as C|[s; : t1,82 t f2,..8n ¢ t,). Note that
such a expression also denotes that C is a function with type function(t; X iz X
wiln) = B X 12 X ity and that each s; is a function with type function(t; X 2 X
...tn) — t,'.

A discriminated union type is a labeled disjunction. The discriminated union
with type (t1[t2|...tn), that has named discriminants 7;,73...7 is denoted as {r; :
11,7 : 12,...7 : tn}. Note that such an expression also denotes that each r; is a
function with type function(t1|ts]...tn) — boolean, which is used to determine the
particular alternative type of an instance of the discriminated union.

A function definition is denoted by an equation of the form f(z) = value-
ezpression, and a type definition is denoted by an equation of the form T(z) =
type-ezpression.

Using this notation we can refine the recursive type equation for lists which
we call linearlists to distinguish them from LISP lists as follows:

linearlist(alpha) = { lmull:lnil,
lconsp:lcons[lfirst:alpha,
lrest:linearlist(alpha)l }

Lnil is the constructor function with type function() — list(alpha). It is
a nullary function and hence a constant. In our implementation we will define a
constant object as well as a nullary function for bottom objects. Hence 1nil() the
nullary function call, and 1nil the constant denote the same value. Lcons is the
constructor function with type function(alphax list(alpha)) — list(alpha), Lfirst
and Lrest are the selector functions with types function(list(alpha)) — alpha, and
function(list(alpha)) — list(alpha). The discriminants are 1null and lconsp and
have type function(list(alpha)) — boolean.

Some recursive types may not be parameterized types, in which case the
parameter on the lefthand side of the equality is omitted.

In general the right-hand side of a recursive type equation does not have
to be a union of types. But a union (where at least one of the alternatives is not
recursive) must occur somewhere in the type equation or the type will have no finite
instances. In a non-lazy evaluation environment this creates problems. We will not
consider the case where the right-hand side of the equation is not a union. Also,
in our implementation, a recursive type may not refer to an undefined type (other
than its type parameter) in its defining equation. This disallows mutually recursive
type definitions.’

Recursive types may refer to previously defined recursive types. We will
illustrate this by defining the internal representations of statements of a small im-
perative language. Such representations might be useful in a compiler or interpreter,
and later we will show how they can be used in symbolic processing of expressions
in the language. A statement can either be an if statement, a while statement, an
assignment statement, or a compound statement. Several of these (if, while, and
compound) are records having components that are themselves statements. Because
a compound statement is not a record type our implementation requires the user to
supply the name of a coercion function which is used to coerce an ordinary linearlist
of statements into the compound alternative of the statement type.?

stmt (exp) = { compoundp: linearlist(stmt(exp)) COERCE BY begin,
assignp: assign[leftvar:symbol, rightval:expl,
ifp: ifc[iftest:exp, then:stmt(exp), else:stmt(exp)],
whilep: vhile[wtest:exp, body:stmt(exp)] }

Here begin is a coercion function with type function(list(stmt(ezp))) —
stmt(ezp). In this definition we have chosen the expression type to be a parameter
to the stmt type definition.

1Mutual recursion can generally be avoided by constructing a single type comprised of an alter-
native for each of the original mutually recursive types.
2For record types the constructors play the role of both constructor and coercion function.

Each alternative to the union is implemented by defining its recognizer func-
tion. The discriminant of each alternative is used to name these functions. In
the statement example the recognizers are compoundp, assignp, ifp, and whilep.
Given any stmt, the user can test what alternative form it is by using these func-
tions. Each alternative of the recursive structure type that is a record type has its
constructor function and selector functions defined as well. Non record types have
their coercion functions defined. Thus statements are built by the functions begin,
assign, ifc and while. Given an ifp alternative, x we can decompose it into its
subcomponents using its selectors iftest, then and else, e.g., iftest(x) returns
the test subcomponent of the if statement x.

3 Manipulating Recursive Structures

In addition to constructing and decomposing operations, recursive structure objects
require some mechanism for taking different actions depending upon which of the
alternatives the object is. This can be done with a case-like statement, or by some
sort of pattern-based mechanism.

3.1 The Recursive Case Expression

Our implementation provides the rec-case expression. This expression takes differ-
ent actions for each of the type’s alternatives. The syntax for a rec-case statement
is.

rec-case form
{ discriminantl => actionl; ... ;
discriminantN => actionN }

Form is any expression with a value that is a recursive structure having discriminants
discriminantl to dicriminantN. The discriminant others can also be used, the
action for others will be repeated for all the missing alternatives. For example, if
x has type stmi(ezp), the rec-case

rec-case X
compoundp => length(x);
assignp => rightval(x);
others = 4
end

transforms into something equivalent to the following (though the actual form may
be optimized).

if compoundp(x) then length(x)
elseif assignp(x) then rightval(x)

elseif ifp(x) then 4
elseif whilep(x) then 4
else ERROR

3.2 Pattern Directed Manipulation

The recursive case statement can be awkward to use when the ob Ject being inspected
is complicated. For example, consider a recursive type that models expressions.
An expression is either a binary operator with expressions as operands, a unary
operator, a constant, or a variable.

expr = { variablep string COERCE BY var;

constp number COERCE BY const;
binaryp pair[left:expr, bin-op:string, right:expr];
unaryp prefix[unary-op:string, unary-operand:expr] }

Using this recursive type the infix expressions on the left could be represented by
the value of the expressions on the right.

(X+Y) pair(var("x"), "+", var("y"))

(z*y+3) pair(pair(var("z"),"*",var("y")), "+", const(3))
0+ (x * 1)) pair(const(0), "+", pair(var("x"), "*", const(1))
)

(o * (X +0)) pair(const(0), "*", pair(var(x), "+", const(0)))

Suppose we wished to determine if some expr, x, had the form (0 + Y) where Y
could be any other legal expression, (0 + (Z + 2)) or (0 + A) for example. The
recursive case statement for this is

rec-case X
{ binaryp => if bin-op(x) = "+"
then rec-case left(x)
{ consp => (= x 0);
others => false }
else false;
others => false }

A rather clumsy statement for a very simple idea. Pattern directed ma-
nipulation allows a pattern to be matched against a value and different actions to

be taken depending upon whether the pattern matches the value. This provides
a simple means of specifying alternate actions. These actions can be based upon
values determined during the pattern matching. If a pattern contains a variable,
then that variable is bound to the corresponding part of the value being matched.
This variable can be used in the action with its pattern-determined value. This
simplifies the expression of complex case based computations even further.

Many functional languages such as ML(2] supply pattern directed manip-
ulation of objects. Here we will use pattern directed manipulation with pattern
expressions of the form:

pattern form
{ pattern1l => actioni;
pattern2 => action2;

patternN => actionN }

The semantics of the pattern statement is to match the patterns from left to right,
against form, returning the value of the action for the first pattern that matches.
If no pattern matches a runtime error occurs. Remember pattern matching is also
a binding construct. Variables are bound in a successful pattern match, and may
be referenced in the pattern’s matching action. Patterns obey the following rules.

1. Any constant is a pattern. Constants of the primitive types string and number
are patterns. For example "A string", and 45, are patterns. Bottom objects
such as Lnil are also patterns. Constant patterns match equal constant ob-
jects.

2. Any constructor or coercion function call, where all of its arguments are legal
patterns is a pattern. For example lcons(4, 1nil) is a pattern.

3. A variable is a pattern. Variables match any value and are used to bind
values that are subpatterns in other patterns. The pattern lcons(4, x), for
example, matches any list with lfirst component equal to 4. The value of the
Irest component can be anything and is bound to x. The bindings of variables
are available in a pattern’s matching action.

4. The wildcard pattern is a pattern. * is the wildcard. Wildcards are like
variable patterns except that no binding is done. * matches any expression
and the value it matches is thrown away, i.e. not available for reference in the
action paired with the pattern.

5. A value pattern is a pattern. The value pattern format is ¢form. A value
pattern matches if the object matching against it is equal to the value of
form. For example @y is a pattern. It matches values that are equal to the

8

value of the variable, y, in the environment where the match takes place. For
example if y had value 7 then @y matches 7. Value patterns do not bind
values.

Patterns are very useful when asking questions about recursive structures. A state-
ment that tests if an expr, x, has the form (0 + X) would be written as follows:

pattern x
{ pair(const(0), "+ ", x) => true;
x => false }

Note the catchall pattern * as the pattern of the last pattern action pair of the
pattern statement above. Since a variable pattern matches any expression this
makes sure some value is returned for every input. Since this is also a wildcard
pattern the value it matches is thrown away, i.e. not available in the corresponding
action expression.

It might be assumed that languages that use pattern directed manipulation
of structures will need to carry the run-time overhead of unification in order to
determine whether patterns unify with the values they are matched against. For-
tunately this is not the case. Patterns built by the rules above can be completely
resolved and translated at compile time to very efficient code [3]. For example the
pattern action pair below which would appear in a pattern statement.

assign(var, pair(x, "+", @n)) => g(x,var)

translates to the clause:

IF assignp(z) and
LET 2z-3 = rightval(z)
IN
(binaryp(z-3) and
bin-op(z-3) = "+" and
right(z-3) = n)
THEN g(left(z-3),leftvar(z))
ELSE fail

Suppose we are matching some value, z, against the pattern above, then z
must be an assignp structure. Its rightval must be a binaryp structure whose bin-op
is 4+, and whose right operand must be equal to the value in the variable n (from
the value pattern). Z’s leftvar (var in the pattern), and rightval(z)’s left operand (x
in the pattern) can be any value, but they must be “bound”. If all these things are
true, the value the function g applied to the left operand and the leftvar is returned.
This value is returned due to g(x,var) being the action part of the pair. Note that

in the translation variables are not actually bound, but that the correct values are
substituted in the action. If any of the pattern tests fail the unique value fail is
returned which causes the pattern statement to move onto the next alternative.

Patterns are concise specifications for matching complex structures and have
efficient compilations. They are natural for use with recursive structures, and we
will use them in the rest of this paper to describe our computations.

4 Generalized Structure Combinators

Each recursive structure definition determines a set of generalized structure combi-
natorss. As mentioned in the introduction generalized structure combinators come
in two classes, maps and reductions. Maps take a recursive structure and return
another recursive structure. Reductions take a recursive structure and return (most
often) a single unstructured value. We have divided reductions and maps themselves
into two varieties, parameter and recursive. In a broad sense a parameter map or
reduction accesses only those subcomponents of each node of the “tree” that have
the parameter type, while a recursive map or reduction accesses all the information
at each node. For non-parameterized recursive types parameter combinators are
not possible, and are not defined.

4.1 Parameter Combinators

Suppose we have a parameterized recursive structure like linearlist(alpha), where
alpha is the type parameter. A parameter combinator on a value of this type
would act on every component having type alpha. For example mapcar(4], the LISP
map that returns a list (where every element in the input list is transformed by the
mapped function), is a parameter map because the only subcomponents transformed
are of parameter type. The recursive structure parameter map corresponding to
mapcar is the linearlist parameter map. It accepts two inputs a recursive structure
of type linearlist(alpha) and a function with type function(alpha) — beta and
returns an object of type linearlisi(beta). It is automatically defined when the
linearlist type is defined. It has the definition below.

linearlist~parameter-map(x,tf) =
PATTERN x
{ 1nil => x;
lcons(first,rest) => lcons(tf(first),
linearlist-parameter-map(rest,tf)) }

The function decomposes each linearlist node into its subnodes, transforms the
parameter component (matched by the pattern variable first), using the transform

10

function, t£. Then it transforms the recursive component (matched by the pattern
variable rest) using recursive calls, and then reconstructs a new node using the
constructor lcons. When linearlists are defined, linearlist-parameter-map is also
automatically defined. It is equivalent to the function above (though it may be
optimized). It is the linearlist equivalent to LISP’s mapcar.

The algorithm for generating the parameter map from the recursive type
equation can be stated as follows. Each alternative of the union in the type equa-
tion generates a pattern action pair. For alternatives with no recursion and no
parameter, the action is simply the unchanged object. For each recursive compo-
nent generate a recursive call, for each parameter object generate an application of
the transform function, all other components are unchanged. Note the correspon-
dence between the recursive equation and the parameter map.

linearlist(alpha) = { lnull:lnil,
lconsp:lcons[lfirst:alpha,
lrest:linearlist(alpha)] 2}

linearlist-parameter-map(x,tf) =
PATTERN x
{ 1nil => x;
lcons(first,rest) => lcons(tf(first),
linearlist-parameter-map(rest,tf)) }

Not all recursive typea are so simple. In the general case a recursive structure may
1. have more than one alternative that is recursive,
9. have alternatives containing more than one subcomponent of parameter type,
3. have alternatives containing many subcomponents of recursive type.

In the first case each alternative is reconstructed after its transformation by its own
constructor (or coercion) function. In the second case, all parameter subcomponents
are transformed by the transform function, t£, and in the third case every recursive
subcomponent is transformed by a recursive call.

4.2 Recursive Maps

While the parameter map for lists, mapcar, is well known, the more general map
which maps over the “whole node” rather than just the parameter is relatively
unknown. A recursive map transforms each “node” in the recursive structure into
another form. For each node this transformation can be done before its recursive
subcomponents are transformed, (in which case we call it a pre-map) or after its

11

recursive subcomponents are transformed, (in which case we call it a post-map).
In the parameter map for linearlists the transform function, t£, is applied to the
1lfirst component since it has parameter type.

A recursive map for linearlists would apply the transform function to the
“whole node”. The linearlist recursive pre-map has the following definition.

linearlist-rec-pre-map(x,f) =
let new = £(x) in
PATTERN new
{ lcons(first,rest) => lcons(first,
linearlist-rec-pre-map(rest,f))
1nil => new }

Here x has type linearlist(alpha) and £ has type function(linearlist(alpha)) —
linearlist(alpha). Note that the application of the transform function £, is done
before the recursive mapping, by using the let clause. The result, new, is then de-
composed into its parts, the recursive components being transformed by recursive
calls, the other parts being left alone. The whole node is then reconstructed and
returned. Note that it is possible for the transform function, £, to return an al-
ternative form with no recursive subcomponents (such as 1nil) and hence short
circuit some of the recursion.

In a post-map the transform function, f is applied after the recursive map-
ping. Thus the short circuiting is not possible.

linearlist-rec-post-map(x,f) =
f(PATTERN x
{ lcons(first,rest) => lcons(first,
linearlist-rec-post-map(rest,f));
1nil => x })

In the general case both a pre- and post-transform function should be supplied. If
only a pre-transform is needed the post-transform can be the identity function, or
vice-versa. The general recursive map function actually defined by the linearlist
recursive type definition is

linearlist-recursive-map(x,f,g) =
g(let new = £(x) in
PATTERN new
{ lcons(first,rest) => lcons(first,
linearlist-recursive-map(rest,f,g));
1nil => new })

12

Here, £ is the pre-transform, and g is the post-transform.

Recursive maps greatly simplify the implementation of functions that operate
on recursive types. Consider a function that reduces an expression to a simpler
form using the identities 0+x = x, 1*x = x, and 0*x = 0. (This might be useful in
simplifying the output of a symbolic differentiation function, for example.)

Note that in applying the identity 0+x = x, it would be necessary to recur-
sively simplify the term represented by x, since this term might be further reducible
by the identity. For example 0 + (0 + y) reduces in two steps to y. But for the
simplification of the term 0*y, simplification of y is wasted since the result of the
reduction is 0 no matter what y simplifies to. Thus a function that applied the rule
0*y = 0 is a good candidate for a pre-transform function, and the rule 0+x = x is
a good candidate for both a pre and post-transform.

zm(x) =
PATTERN x _
pair(const(0),"*",*) => const(0);
y =7y
end

The function zm (for zero multiply) checks to see if its argument, x, is a binaryp
alternative of the expr type (i.e. built with the pair constructor), if its operator is
a multiply (*), and if the left term is the constant 0. If all these conditions hold
then zm returns the constant 0 without consulting the right term (hence the use of
the wildcard pattern *), otherwise it returns x unchanged by using a variable, y, as
a pattern (which matches anything) and returning y which has been bound to x’s
value as part of the matching.

za(x) =
PATTERN =x
{ pair(const(0),"+",x) => x;
y=>y1l
The function za (for zero add), similiar to zm, applies the rule 0+X = X. Some
example applications of these functions and the result (to the right of the ==>)
are:

=>

zm(pair(const(o),"*“,pair(var("x"),“+",const(0))))
const (0)

zm(pair(const(0),"+",pair(var("x"),"*",const(1)))) ==
pair(const(0),"+",pair(var("x"),"*",const &DD))

za(pair(const(0),"+",pair(var("x"),"*",const (1)))) ==>
pair(var("x"),"*",const(1))

13

To recursively apply these two rules to all levels of an expression we can now use
the expr-recursive-map defined when the expr type is defined.

expr-recursive-map(pair(const(O),"*",pair(var("x"),"+",const(0))),
zm,
za) ==> const (0)

The expr-recursive-map maps zm (the pre-map transform) first over the input (0*
(X + 0)), returning 0, without ever looking deeper into the structure at (X + 0).
Suppose we had instead used (0 + (0 * X)) as the actual parameter.

expr-recursive-map(pair(const (0),"+",pair(const (0) ,"*",var("x"))),
zm, .
za) ==> const (0)

The pre transform, zm, does not initially apply, but on the recursive call to the
right operand of the +, (0 * X), it applies and returns 0. The post-transform then
deals with (0 + 0), and returns 0.

Finally, consider ((0 * X) * (Y + 0)). Here the pre transform for 0*X=0 is
not initially applicable. The recursive transform on (0 * X) gives us (0 * (Y + 0)).
The 0 on the left of the multiply (*) is available only for the post transformation.

Another problem manifests itself in the subterm (Y+0) because the 0+X=0
transform does not apply since the right and lefthand sides are reversed. An imple-
mentation that deals with both the commutativity and late appearance of 0 is as
follows.

simplify(x) =
PATTERN x
{ pair(const(o),"*",*) => const(0);
pair(*,"s",const(0)) => const(0);
pair(const (0),"+",x) => x;
pair(x,"+",const(0)) => x;
y=>y1}

expr-recursive-map (pair(pair(var("x"),"*",const (0)),

"*ll ,

Pair(var(nyn) , nyn , const (non))) ,
simplify,
simplify) ==> const(0)

Using the same function as both the pre- and post-transform is not uncom-
mon. This represents a rather concise, elegant solution to a rather difficult problem.
This solution is easy to modify as well. The addition of the rule (1*X) = X, can be
added by simply adding two more patterns to the simplify function.

14

4.2.1 Recursive Maps With Recursive Components

A recursive type is often defined in terms of a previously defined recursive type.
The stmt type is an example, since it has a simple alternative defined in terms of
linearlists. The parameter and recursive maps for these types have slight complica-
tions that need to be discussed. Recall the definition of the stmt type:

stmt (exp) = { compoundp: linearlist(stmt(exp)) COERCE BY begin
assignp: assign[leftvar:symbol, rightval:exp],
ifp: ifc[iftest:exp, then:stmt(exp), else:stmt(exp)],
whilep: while[wtest:exp, body:stmt(exp)] }

The parameter map for stmts is as follows:

stmt-parameter-map(x,tf) =
PATTERN x
{ begin(n) => begin(linearlist-parameter-map
(n,lambda(z)stmt-parameter-map(z,tf)));
assign(*,*) => x;
ifc(test,then,else) => ifc(tf(test),
stmt-parameter-map(then,tf),
stmt-parameter-map(else,tf));
while(test,body) => while(tf(test),stmt-parameter-map(body,tf)) }

Note that in the definition of stmt-parameter-map, the action for the pattern
with the coercion function begin includes a call to linearlist-parameter-map.
The stmt parameter map is supposed to map the transform function, t£f, over every
subcomponent of parameter type. Since the compoundp alternative is a linearlist of
stmts, each stmt in that list needs to be transformed. The control mechanism to ac-
complish that mapping is the linearlist parameter map function defined when the re-
cursive type linearlist was defined. The function that linearlist-parameter-map
will map over each of the elements in the list is stmt-parameter-map (the function
being defined). Since the transform function must be a function of one argument,
we lamdba abstract it by fixing its transform map to t£.

For recursive maps on types defined in terms of previously defined recursive
types, a similiar strategy must be employed. The transform on each “node” must
transform the whole node rather than just the parameter components. Consider
the following definition.

stmt-recursive-map(x,f,g) =
g(PATTERN £(x)
{ ©begin(n) => begin(linearlist-parameter-map
(n,lambda(z)stmt-recursive-map(z,f,g)));

15

assign(*v,*e) => assign(*v *e);
ifc(test,th,el) => ifc(test,
stmt-recursive-map(th,f,g),
stmt-recursive-map(el,f,g));
while(test,body) => vhile(test,stmt-recursive-map(body,f,g)) }
)

In this example each stmt in the compoundp list must be transformed, so the
 linearlist parameter map is again used to map the function being defined (or at
least an appropriate lambda abstraction of it) over each stmt in that list. Note that
the recursive map uses the linearlist parameter map, not the linearlist recursive
map. Parameter maps seem to be “more basic” than recursive maps in this regard,
perhaps the reason that list parameter maps such as mapcar are well known, while
the recursive map for lists are not.

4.3 Recursive Structure Reductions

A reduction reduces a complex structured object to a simpler object, often a scalar
value. The process of reduction works by using some accumulator® function to
successively accumulate an answer. For example consider the linearlist of integers.

lcons(2,lcons(5,lcons(6,1lcons(1,1nil))))

We could reduce this using addition (+) by successively applying + to the
lfirst of the list and reducing the the Irest of the list, eventually getting the answer
(2+(5+(64(1+0)))). Note that we need some default (or bottom) value to return
when the list is the degenerate 1nil case, in this case 0. Every recursive structure
defines two types of reductions. For each node in the recursive structure the param-
eter reduction adds a value to the accumulation from the parameter substructures,
while the recursive reduction gets its values from the whole node. In both cases the
the recursive substructures need to be recursively reduced. Since the whole struc-
ture contains the parameter substructure, parameter reductions could be defined
in terms of recursive reductions. The parameter reductions are separately defined
because they are often used and simpler to apply.

4.3.1 Parameter Reductions

Consider the linearlist parameter reduction.

3Traditionally a binary accumulator has been used and we continue this trend, but with compli-
cated recursive types a n-ary accumulator might be of some utility. We have yet to work out the
details.

16

linearlist-parameter-reduce(x,acc,app,bottom) =
PATTERN x
{ lcons(first,rest) => acc(app(first),
linearlist-parameter-reduce(rest,
acc,
app,
bottom));
1nil => bottom }

Here x has type linearlist(alpha). Acc is the binary accumulator with type
function(beta, gamma) — gamma. App is a unary application function that selects
a value from each parameter substructure and feeds it to the accumulating func-
tion as its first parameter. It has type function(alpha) — beta. Finally bottom
is an object of type gamma. Parameter reduction functions work as follows. For
each alternative without a parameter substructure (the 1nil pattern above for lin-
earlists) the function returns the bottom object. For each alternative that contains
a parameter substructure, the application function computes a value for that sub-
structure (app(£first) in the linearlist example above). Finally the accumulating
binary operator acc is used to accumulate the result of the call to app and the
résult of recursively reducing the recursive subcomponents.

The use of an application function is not strictly necessary since a more
complicated binary accumulator could do the transformation on its first argument.
Since the binary accumulators are often well known operators such as addition,
it is strictly for the ease of the user that the application function is a parameter.
This frees the user from having to make complicated lambda abstractions as the
accumulating binary operator.

For recursive structures with more than one parameter subcomponent to an
alternative, several calls to the accumulating binary operator are nested one inside
the other. Structures with more than one recursive subcomponent to an alternative,
nest the recursive calls themselves, where the base object for the outermost call is
a recursive call, and the innermost call uses the actual base object. For example,
note in the definition of stmt-parameter-reduce below, how the base object for
the recursive call for the then part of an ifp clause is a recursive call for the else
part.

stmt-p-reduce(x,acc,app,bottom) =

PATTERN x
begin(n) => linearlist-parameter-reduce
(n,
lambda(x,y)stmt-p-reduce(x,acc,app,y),
identity,
bottom) ;

17

assign(*,rv) => acc(app(zv) ,bottom);
ifc(test,th,el) => acc(app(test),
stmt-p-reduce(th,acc,app,
stmt-p-reduce(el,acc,app,bottom)));
while(test,body) => acc(app(test),stmt—p-reduce(body,acc,app,bottom))
end

The stmt parameter reduction also nicely illustrates reductions on recursive types
with subcomponents that have types that are previously defined recursive types.
The previously defined type’s parameter reduction is used to reduce those subcom-
ponents. See the action of the begin pattern in the example above. Since this is a
reduction we need to specify both an accumulator and an application function. We
use an appropriate lambda abstraction of the function being defined as the accumu-
lating binary operator, and the identity function as the application function. This
strategy will have to be slightly modified when we consider recursive reductions.

A linearlist of integers, x, can be reduced to the sum of all its elements by
the the following call.

linearlist-parameter-reduce(x, +, identity, 0)

A stmt of expressions, x, can be reduced to a linearlist of all its expressions
by the call.

stmt-p-reduce(x, lappend, identity, 1lnil)

4.8.2 Recursive Reductions

Recursive reductions are similar to parameter reductions, except that the appli-
cation function is a function from the recursive type (the whole node rather than
just the parameter subcomponents) to the accumulator’s first parameter’s type.
Consider:

linearlist-recursive-reduce(x,acc,app,bottom) =
acc(app(x) ,PATTERN x
lcons(*,rest) => linearlist-recursive-reduce
(rest,acc,app,bottom);
1nil => bottom
end)

Here x has type linearlist(alpha). Acc is the binary accumulator with type function(beta, gamma)
— gamma. App is a unary application with type function(linearlist(alpha))
— beta. Finally bottom is an object of type gamma.
Recursive reduction works as follows: the application function is applied to
the whole node to get a value (the app(x) term above). That value is then accu-
mulated with the result of recursively reducing each recursive subcomponent (the

18

pattern statement above). Alternatives with no recursive subcomponent return
the bottom object as their contribution to the reduction (the 1nil pattern action
pair).

Recursive types with previously defined recursive subcomponents or multiple
recursive subcomponents in one alternative follow the same pattern as the parameter
reduction functions, as explained above. For example consider:

stmt-recursive-reduce(x,acc,app,bottom) =
acc(app(x),PATTERN x
begin(n) => linearlist-parameter-reduce
(n,acc,
lambda(x)stmt-recursive-reduce
(x,acc,app,bottom),
bottom);
assign(*,*) => bottom;
ifc(*,th,el) => stmt-recursive-reduce
(th,acc,app,stmt-recursive-reduce
(el,acc,app,bottom));
while(*,body) => stmt-recursive-reduce(body,acc,app,bottom)
end)

Again the begin pattern’s action uses a call to the linearlist parameter reduction,
(note that we do not use the linearlist recursive reduction even though we are
defining the stmt recursive reduction). Since this is a reduction we need both an
accumulating and an application function. The accumulating function is the original
accumulating function, acc, and a lambda abstracted version of the function being
defined is used as the application function. This lambda extracted version is used
to extract a value from each stmt in the linearlist of stmts, and acc is used to
accumulate these to a single value.

Recursive reductions allow easy specification of complex computations. Re-
call the definition of expr.

expr = { variablep string COERCE BY var;

constp number COERCE BY const;
binaryp pair[left:expr, bin-op:string, right:expr];
unaryp prefix[unary-op:string, unary-operand:expr] }

It generates the recursive reduction

exprfrecursive-reduce (x,acc, app, bottom) =
acc(app(x), PATTERN x

19

var(*) => bottom;
const (*) => bottom;
pair(l,*,r) => expr-recursive-reduce
(l,acc,app,expr—recursive—reduce(r,acc,app,bottom));
prefix(*,u) => expr—recursive-reduce(u,acc,app,bottom)
end)

Suppose we wanted to compute a list of all the symbols used as variables in a
large expr. We could do this by reducing using the linearlist union function as the
accumulator, with the following as the application function.

symbols(x) =

PATTERN x
var(x) => list(x);
y => 1lnil
end

expr-recursive—reduce(x,union,symbols,lnil)

The symbols function returns a list with a single element for the var alternative and
1nil for the empty set for other alternatives. The call to expr-recursive-reduce
then unions all these singleton sets up, by recursively getting the variables from
each “nodes” subexpressions.

An implementation could take one final step to provide easy user access to
structure maps and reductions. It should provide a uniform method of accessing the
maps and reductions defined for each recursive structure definition. The user should
not need to remember the long names given to the functions by the implementation.
A good implementation should supply macro like statement which deduces the type
of an expression, and expands into a call to the correct function. For example the
reduction of x which has type ezpr to obtain all variables in x could be expressed
as:

R-REDUCE x, union, nil BY { var(x) ==> list(x); * => nil }

The r-reduce statement’s first argument is the object to be reduced. We deduce
its type and expand to a call of the correct recursive reduction. The second and
third parameter are the accumulator function and the bottom object respectively.
The pattern action pairs after the keyword BY specify patterns to comstruct the
application function. The above call would expand to

expr-recursive-reduce(x,union,
lambda(x)PATTERN x { var(y) => list(y); * => nil },nil)

20

Macro statements r-map (for recursive map), p-reduce (for parameter reduction),
and p-map (for parameter map), work in a similiar manner. for example

P-MAP y IN x BY (+ 1 y)
expands to
linearlist-parameter-map(x,lambda(y)(+ 1 y))

Note that parameter maps do not use patterns since the parameter type is not
always a recursive type. We specify a term, (+ 1 y), and a variable, y, to lambda
abstract from the term to create a function. lambda(y)(+ 1 y).

The calling sequence for each of our macro-like statements follow:

P-MAP lambdavar IN x BY lambdabody

P-REDUCE [lambdavar IN] x , acc , bottom [BY lambdabody]
R-REDUCE x , acc , bottom BY pattern

R-MAP2 x BEFORE pre-pattern AFTER post-f;attern

R-MAP x BY pattern

R-MAP and R-MAP2 differ in that R-map2 allows the specification of two patterns.
One for each of the pre- and post-transform functions. R-map uses only one pattern
which it uses for both transforms.

Note that parameter macro statements, like P-map and P-reduce, take a
term and a variable (to lambda abstract from it), rather than a pattern to define
the application function. In the p-reduce statement they are optional. If they
are omitted the default values for the lambda-term and the lambda-var cause the
application function to abstract to the identity function.

P-REDUCE x, +, O

expands to

linearlist-parameter-reduce(x,+, lambda(x)x,0)

5 The Part Subpart Example

We illustrate the use of our techniques by posing and solving several queries and
updates on a sample structure. The sample structure 1s the simple part subpart
structure, where some parts are made from other parts (subparts) which we first saw

21

in the introduction. The example is meant to elicit comparisons with structuresin a
system modeling the design of complex objects. Each part is typed by the recursive
structure below.

part = { basep: base[base-name:string,
base-cost:number,
base-mass:number] ;
compositep: composite[comp-name:string,
assembly-cost :number,
subparts:linearlist(part)] }

What follows is a list of examples, each comprising an English language query or
update, and a function definition. In the case of a query, the result of calling the
function is the answer to the query. In the case of an update, the result of the
function is a new value that will replace the original object being updated. We
hope to show that the expression of these queries and updates using our recursive
structure combinators are both concise (i.e. it specifies complex ideas with little
notation) and (unlike the infamous APL one-liners) easy to understand.

What is the total cost of a part?

totalcost(p) =
R-REDUCE part, +, O
BY { base(*,cost,*) => cost;
composite(*,ac,*) => ac }

This solution reduces the part structure by addition. Base parts contribute their
costs, composite parts contribute the cost of their assembly. There is no need for the
action paired with the composite pattern to attempt to deal with the cost of that
composite parts subparts since these are automatically added in by the recursion
handled by the R-reduce function.

Return a linearlist of all the names of every subpart of part p.

all-subpart-names(p) =
R-REDUCE p, lappend, 1lnil
BY { base(name,*,*) => lcons{name,lnil);
composite(name,*,*) => lcons(name,lnil) }

22

Some part, with name N, has been redesigned. It now has an additional subpart, S.
Write a function that updates every subpart of a part, P, with name N, by adding
S, to its subparts list.

add-new-subpart(p,n,s) =

R-MAP p

BY { composite(®n,ac,sub) => composite(n,ac,lcons(s,sub));
x => x }

Given a part structure, flatten it into a two dimensional (part subpart) list, that
contains all pairs (x y), where x is the name of a composite part in P, and y is the
name of a subpart in x’s subparts list. First we use patterns to define a polymorphic
name function that returns the name of a part regardless of whether it is a base or
composite part.

This is an interesting example since it uses two recursive structure combina-
tors. R-reduce is used to reduce the structure into a list of part, subpart pairs, and
P-map is used to create a list of pairs for each composite parts subparts list. In the
example below pair is a function which creates a pair?.

pname(y) =
PATTERN y base(n,*,*) => n; composite(n,*,*) => n END

flattenpart(p) =
R-REDUCE p lappend lnil
BY { composite(name,ac,sub) => P-MAP y IN sub BY
pair(name,pname(y));
* => 1nil }
END

How many pieces is a part composed of. Do not count composite parts since they
are composed of other pieces.

countpieces(p) =
R-REDUCE p, +, O
BY { composite(*,*,*) => 0; base(*,*,*) => 1 }

%A definition for pair might be pair(x,y) = lcons(x,lcons(y,1lnil))

23

All the sub parts of part P, that cost more than 1.00

expensive-subparts(p) =
R-REDUCE p, lappend, 1lnil
BY { x => IF totalcost(x) > 1.00
THEN lcons(name(x),1lnil)
ELSE 1nil }

What is the assembly cost of a part. Do not include the cost of the pieces only the
cost of assembling it.

cost-of-assembly(part) =
R-REDUCE part, +, O

BY { base(*,*cost,*) => 0; .

composite(*,ac,*) => ac }

What is the increased cost of replacing part with name N, with part Y, in part P,

extra-cost(p,n,y) =
let yc = totalcost(y) in
R-REDUCE p, +, O
BY { composite(®n,ac,s) => yc - totalcost(composite(n,ac,s));
base(®n,c,*) => yc - c;
* => 0 }

Replace all occurrences of part, old, with part, new, in part P.

nev-part(p,old,new) =
R-MAP p
BY { @old => new;
X = x }

6 Conclusion

Functional programming makes it possible to use functions that apply other func-
tions to complex structures. The classical example of this is the LISP mapcar

24

function. While complex versions of such combma.tors are expressible in any lan-
guage which allows recursive types, these functions are difficult to write and to
understand. In such languages there are natural combinators that can be defined
automatically based on the type structure, and furthermore, these combinators are
both useful and reasonably easy to understand.

In this paper we have illustrated the definiton and use of generalized recursive
combinators. Functxons comprising four different kinds of combinators based on the
recursive structures of the defined types are automatically generated as a side effect
of the type definitions. This approach could be added naturally to any language
with recursive type definition capab111t1es

These combinators provide precise specifications for complex computations
on recursive types. These specifications are surpnsmgly easy to understand because
they abstract away the details of performing the recursions in the correct manner.

The understandmg and use of these functions is greatly facilitated by the
use of pa.ttern matchmg in function definitions, such as is present in languages such
as ML. Pattern matchmg allows the comphcated case analysis necessary for robust
object manipulation to be specified in a parsimonious fashion.

The ability to traverse complex data in a structured manner has become
an issue of great importance in the efforts to design and implement sophisticated
systems such as are found in design and knowledge-based applications. Database
systems featuring complex objects can make use of generalized recursive structure
maps both in the specification of general traversal schemes and the manipulation
of complex objects as was shown by our examples.

References

[1] Hoare, C.A.R. “Recursive Data Structures”, International Journal of Computer
and Information Science, Vol. 4, No. 2, 1975, pp. 105-132.

[2] Witsrom, Ake. Functional Programming Using Standard ML, Prentice Hall
International Series in Computer Science, C.A.R. Hoare series editor, Prentice
Hall, N.Y. 1987.

(3] Peyton J ones, Simon L. The Implementation of Functional Programming Lan-
guages, Prentice Hall International Series in Computer Science, C.A.R. Hoare
series editor, Prentice Hall, N.Y. 1987.

[4] McCarthy, John. “History of Lisp”, Sigplan Notices, vol. 13, no. 8, August
1978.

25

