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Abstract

Recently, 2 number of extensions to the traditional transaction model have been
proposed to support current and new applications such as CAD/CAM, software
development environment, distributed operating systems and semi-automated fac-
tories. However, these extended models capture only a small set of interactions that
can be found in any system, and represent points within the spectrum of interactions
possible within competitive and cooperative environments.

ACTA is a comprehensive transaction model that characterizes the spectrum
of interactions along four dimensions: completion dependencies which express the
actions’ effects on the disposition (commit or abort) of other actions, communication
obligations which express the interactions among actions due to actions’ effects on
the objects, in-progress effects which express the effects of actions on the state and
status (synchronization state) of objects during their execution, and termination
effects which express the terminating actions’ effects on the state and status of
objects. The ACTA model is not yet another transaction model, but is intended
to unify the existing models. Its ability to model previously proposed transaction-
based schemes is indicative of its generality. By capturing a broad spectrum of
interactions, the ACTA model provides the basis for the integration of existing
schemes and for modeling or developing new ones. v

This paper serves as an introduction to the ACTA model and discusses the
intuition underlying the model.

*This material is based upon work supported by the National Science Foundation under grant CCR-
8500332



1 Introduction

Systems, such as CAD/CAM, software development environments, distributed operat-
ing systems and semi-automated factories are built around an information system or
closely interact with one. Majority of these are distributed. Cooperation among specific
subsystems is an important concern in these systems. However, the model of coordi-
nation found in traditjonal database systems [Eswaran76, Gray81|, although powerful,
is not suitable for them. The reasons are related to both functionality and efficiency.
This is because transaction models used till recently were targeted for competitive en-
vironments. However, the need to capture reactive (endless activities), open-ended
(long-lived) and collaborating (interactive) activities found in complex information sys-
tems which support the new applications suggests the need for more cooperative mod-
els. Broadly speaking, whether a system is competitive or cooperative depends on how
communication among activities in the system is viewed: In competitive environments,
. communication is curtailed whereas it is promoted in cooperative ones.

Various eﬁ;tensions to the traditional model have been proposed to fill this need
for a more flexible transaction model which can support the implementation of efficient
systems. For example, Nested Transactions [Moss81] have been proposed in the con-
text of distributed languages to handle the problem of partial failures. Nested Trans-
actions support only hierarchical computétions similar to the ones that result from
procedure calls. On the other hand, Recoverable Communicating Actions [Vinter86|
which support arbitrary computation topologies, have been proposed in the context of
distributed operating systems where interactions are more complex. Cooperative Trans-
actions [Bachilon85], Split-transactions [Pu88| and Transaction Groups [Fernandez89)
have been also suggested for capturing the interactions found in the new applications.
Irrespective of how successful these extended transaction models are in supporting the
systems that they were intended for, they nevertheless represent points within the spec-
trum of interactions defined within competitive and cooperative environments. Thus

they can capture only a small set of interactions that can be found in any system.
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ACTA! is a comprehensive model which captures the semantics of interactions
within the whole spectrum of competitive and cooperative environments along four
dimensions: completion dependencies, communication obligations, in-progress effects
and termination effects.

Actions’ effects on other actions are expressed by completion dependencies which
portray the effect of the commit or abort of one action on another. Communication
obligations specify the actions’ effects on other actions due to changes to the state (i.e.
contents) of the objects, and/or on the status (i.e. synchronization state) of the objects
which they access. In-progress effects express the changes to the state and/or status
of the objects caused by actions during their execution. The effects of actions at the
time of commit or abort on the state and/or the status of the objects are described by
termination effects.

It should be noted that the ACTA model is not yet another transaction model. It
is intended to be a comprehensive model which captures all types of cooperative and
competitive interactions. In this sense, it is motivated by a need to unify the existing
models and to provide a framework in which to express new ones. The completeness
of the ACTA model is indicated by its ability to model all major previously proposed
schemes. By capturing a broad spectrum of interactions, the ACTA model provides the
basis for the-integration of existing schemes and for modeling or developing new ones.

After introducing the ACTA model in section 2, section 3 is devoted to the mod-
eling of four existing transaction models. Section 4 concludes with a summary and
discusses future steps.

This paper aims to present just the intuition underlying the ACTA model in an
informal manner. A formal model of ACTA is currently under investigation. Such a
model will allow us to characterize the correctness properties of a given transaction

model.

LACTA means action in Latin.



Interactions
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Figure 1: Taxonomy of Actions’ Effects
2 The ACTA Model

In the ACTA model, atomic actions, or just actions are the units of recovery and
con.sistency. An action either comfnits, making its effects on the objects permanent; or
aborts, causing its effects to be discarded. -

A self-contained task or activity is called a computation. Thus, a computation
consists of a set of interacting atomic actions executing concurrently. A computation
terminates when all of its component actions terminate, i.e. commit or ahort. When a

computation aborts, all the effects of its component actions are nullified.

A computation may dynamically expand and shrink through the addition or dele-
tion of actions that contribute to the computation. The simplest computation is one
with a single action. The interactions between actions in the same or different compu-
tations can be expressed in terms of actions’ effects on each other and on the objects

that they access. Each of them can be further refined as shown in Figure 1.



2.1 Effects of Actions on other Actions

Interacting actions are coordinated by developing completion dependencies and commu-
nication obligations among them. Completion dependencies constrain the disposition of
interacting actions. Communication obligations capture the interactions among actions

because of the changes made to the state or the status of objects accessed by the actions.

2.1.1 Completion Dependencies

The disposition of an action may depend upon the disposition of another action with
which it has interacted. Since an action has two possible dispositions, namely, commit
or abort, the action may be affected in only one of two ways by another action. Commit-
dependency and abort-dependency express these two possible ways.

Commit-dependency and abort-dependency are collectively known as completion

dependencies and are defined as:

Commit-Dependency: If an action A develops a commit-dependency on another action
B (denoted by A = B), then action A cannot commit until action B either
commits or aborts. This does not imply that if action B aborts, then action A

should abort..

Abort-Dependency: If an action A develops an abort-dependency on another action B
(denoted by A 2 B), and if action B aborts, then action A should also abort.
This neither implies that if action B commits, then action A should commit, nor

that if action A aborts, then action B shonld abort.

The purpose of commit-dependency and abort-dependency is to prevent an action
from prematurely committing, thereby preventing object inconsistencies. However, they
do not prohibit an action from attempting to commat.

Clearly, if two actions form a circular dependency involving the same type of
action dependency, then both have to commit or neither. In the case that two actions

develop a circular dependency involving dependencies of different types, i.e. one action



has a commit-dependency on another action which has an abort-dependency on the
first action, then the commitment of both actions must be synchronized. This does not
imply that both actions have to commit or neither as in first case above.

Transitive-abort-dependency (denoted by =) is defined by the transitive closure of
abort-dependencies. An action A has a transitive-abort-dependency on every member
of the set of actions formed by the transitive closure of abort-dependencies starting from
A. Transitive-commit-dependency (denoted by =) is similarly defined.

Both abort-dependency and commit-dependency can be qualified either to further
strengthen them by attaching to them more restrictions, or to restrict the scope of their
applicability by attaching to them conditions (conditional-dependency). As an example
of the former, abort-dependency can be restricted so that an action is not allowed
to develop an abort-dependency on more than one action. This stronger version of
abortf-dependency is called ezclusive-abort-dependency (denoted by 23) and is useful in
controlling the expansion of a computation.

An example of conditional—dependency is the case of a conditional-abort-
dependency where the abort-dependency of an action A on an action B holds as long as
there is 2 commit-dependency of the action A on a third action C (A —g-> B while A =
C). As soon as the condition (in this case A 2> C) becomes false, the other clause of '
the conditional-dependency also becomes inactive. Generally, a clause in a conditional-
dependency may be an expression consisting of a number of action dependencies and/or
other conditions connected by boolean operators. As will become apparent in sec-
tion 2.2.3, the importance of conditional-dependency is that it allows a computation to
expand while preventing interactions in a computation that may produce object incon-

sistencies.

2.1.2 Communication Obligations

For actions to coordinate themselves while interacting via shared objects, they should

be cognizant of any changes to the state and/or the status of these objects. The state of



an object is represented by its contents. The status of an object is represented by the
synchronization information associated with the object. The state of an object changes
when its contents changes. The status of an object changes when an action either tries
to access an object or releases the object.

Communication obligations are introduced to allow actions to make each other

aware of changes made to the state or status of objects.

Obligation with respect to State Changes: If an action A has such an obligation rela-
tive to action B over an object O; (denoted by A £ 9% B), A is obligated to inform

B about any change to the state of O; caused by A.

Obligation with respect to Status Changes: If an action A has such an obligation rel-
ative to action B over an object O; (denoted by A 22 B), A is obligated to inform

B about any change to the state of O; caused by A.

Communication obligations, in contrast to completion dependencies, have no direct

effect on the disposition of either the object or the actions involved.

2.2 Effects on Objects

The second dimension in the ACTA model expresses the effects of actions on the objects.
The effects on objects are further distinguished based on whether the effect is caused
by an in-progress actionAor a terminating action. These effects may reflect on the state
and/or the status of the object.

To simplify the specification of these effects on the state and the status of the
objects, we first introduce the notion of virtual databases. The sysfem database is the
repository of all objects. For changes to an object to be permanent, they should be
committed to the system database. An object that is currently accessed by an action
may also belong to a specific virtual database. It is possible for an object to belong to
a different virtual database for different actions. That is, an object in different virtual

databases may have different states. Furthermore, only a subset of operations supported



by an object may be invokable in different virtual databases. In general, it is possible
to have a many-to-many relationship between actions and virtual databases since an
action may access objects in multiple virtual databases and objects in a particular
virtual database may be accessed by multiple actions. Actions execute against the
system database as well as a set of virtual databases.

To simplify the discussion of the model in this paper, we present the model as-
suming that only one version is maintained for each object in the system database. That
is, a computation can produce only a single final version for each object which it has
accessed. However, since an object may belong to multiple virtual databases while a
computation is active, it may produce a number of versions of the objects each of which
can be accessed by different actions belonging to the computation. The model does not
become overly complicated when the system database maintains multiple versions for

the objects and supports actions’ request to access previous versions of an object.
bj PP q

- 2.2.1 In-progress Effects

Every object is associated with two operations that change its status. These opera-
tions are in addition to the ones defined by the object to manipulate its state. These
opérations, namely, acquire and rélease, control the accessibility to the object. -
Acquire (acquire(object, operation(s], condition[s])) allows an action to
gain access to an object for an operation or a set of operations. In order to control the
interaction over an object, an action may attach conditions on the object when acquiring
it. These conditions may specify, among others, which operations are prohibited from
concurrently acquiring the object and whether completion dependencies or communica-
tion obligations should be developed between actions invoking two specific operations
on the object. For example, the shared read type interaction is specified as “acquire an
object for read with the condition no-write,” i.e. no other action can acquire the object
for the write operation. The same action may subsequently acquire the object for write

as long as no other action has acquired the object and set the no-write restriction on



it. That is, the conditions set by one action are applicable only to other actions. The
conditions imposed by one action do not invalidate the conditions imposed by another
action on the same object. However, the stronger condition at any given time is the
one applicable. The conditions set by an action on an object are valid until the object
is released.

Release (release(object, where, operation(s], condition([s])) allows an
action to make some of its objects accessible to some virtual database, and/or to specific
operations. After an action releases an object, the action cannot invoke an operation
on the object unless it has re-acquired the object for that operation. An action makes
an object accessible to a specific action or to a set of actions by releasing the object
to the appropriate virtual database. The database from which an action acquires the
object is called the origin and the virtual database to which the object is released is
called the target. An action may attach conditions on a released object similar to those
attached at the time of acquiring an object in order to control the future disposition of
the object. For example, the semantics of basic two-phase locking protocol [Bernstein87]
are expressed as follows: (i) every action A that performs a read operation on an object
should release it with the condition that any action B which subsequently acquires the
object for write should develop a commit-dependency on 4; and, (ii) every A performing
a write operé,tion on an object should release it with the condition that any action B
which subsequently acquires the object for read should develop an abort-dependency
on A, and any B which subsequently acquires the ohject for write should develop a
commit-dependency on A.

Further conditions may be set by some action at either the time of acquisition
or release of the object. Such conditions may specify (i) whether the object should be
released back to the origin virtual database, (ii) whether the object should be released to
some specific virtual database and (iii) how the objects propagate. Object propagation
deals with the disposition of the objects in a virtual database when the last action

that has access to the virtual database, terminates. In particular, object propagation



conditions specify the virtual database to which such an object should be moved.

Depending on the conditions on the acquisition of an object, the release of the ob-
ject to a different virtual database has the semantics of moving or copying the (changed)
object to that virtual database. Specifically, if an action acquires that object with con-
ditions prohibiting any other action from accessing the object, the release behaves like
a move. On the other hand, if the object is still accessible by other actions in the origin
database, the release behaves like a copy.

The state of an object changes when an operation that alters the contents of the
object is invoked on the object. An action can make its changes to an object visible to
other actions by releasing the object. This may or may not lead to a non-serial behavior
depending on the specifications of the other dimensions in the ACTA model, and in
particular of completion dependencies and termination effects.

‘The set of operations that manipulate the state of an object is expanded to include
the operation restore which allows an action to restore an object to some previous state.
~ Specifically, an object can be restored to one of three possible states: last committed
state, last checked state or previous state. Committed state is the state of an object in
the system database produced by all committed action. Restoring an c;bject to the last
committed state is referred to as fully restoring the object. The state of an object in a
virtual database produced by a committed action is known as checked state. - Previous
state is the most recent state of an object generated by an action different from the
invoking action.

Restore, like release, can be invoked on an object by an action any time during the
execution of the action. Restoring an object to its previous state is useful in discarding
the most recent effects of an action to the object. On the other hand, restoring an object
to its committed or checked state is useful in discarding the changes made by one or

more in-progress actions since the time the object was last committed.
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2.2.2 Termination Effects

At commit, the state of an object produced by an action is made permanent only if
the object has already been released in the system database. However, an action may
choose to release an object in some virtual database rather than in the system database.
Clearly, these changes are not guaranteed to be permanent. The same rule is also applied
to newly created objects in a virtual database: unless a newly created object is released
in the system database, it is not made permanent. Thus, the ACTA model allows for a
larger variety of effects of a committed action on the state of the objects. This is also
true for abort.

In the case that an action attempts to commit while it has an abort-dependency
on another action in-progress, the action is conditionally committed. A conditionally
committed action may release its objects to some virtual database with the appropriate
propagation conditions but not to the system database.

All objects acquired by an action but not yet released are coi]ectively referred to as
the objects of the action. When an action aborts, all its objects are restored to their last
checked state and released to the databases from which they have been acquired. For
objects in the system database, the last checked state is the same as the last committed
object state and hence restoring an object to its last committed or checked state in the
system database has the same effects.

When an action releases an object to some virtual database, it can specify whether
the release is permanent, in which case the disposition of the action has no effect on
the state of the object, or temporary, in which case the object is restored when the
action aborts. When the last action which has access to a virtual datahase terminates,
every object in the virtual database which has not been acquired by the action and is
associated with propagation conditions, is treated according to these conditions. All

other objects are treated as if they were objects of the terminating action.
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Current Subsequent Condition
Release to & | Release to 1
OA OAorOT |B3 A or B3> Auntil release(0;,9,B)
or B 2 A until release(0;, 1, any)
ocC ‘ oT A= B or A% B until release(0;,0, B)

| or A= B until release(0;,Q, any)
B3 A or B3 Auntil release(0;,0, B) !
. or B 2 A until release(0;, 1, any) '
oT OoT and
AS B or A= B until release(0;,Q,B) i
or A3 B until release(O;, 0, any) |

Table 1: Subsequent Object Release Modes and their Conditions

2.2.3 The Importance of Conditions

An a.ctionA may attach conditions to an object while acquiring and releasing objects.
. Conditions are important because they allow finer control of the interactions among
actions over objects thus forcing interacting actions to behave correctly. As an example,
consider the three conditions that specify when an object should be released to the origin

virtual database from which it was acquired, if the acquiring action terminates:

1. On-Abort or OA: The released object is returned to the origin virtual database

when the acquiring action aborts.

2. On-Commit or OC: The released object is returned to the origin virtual database

when the acquiring action commits.

3. On-Terminate or OT: The released ohject. is returned to the origin virtual database

when the acquiring action terminates, i.e. aborts or commits.

Now, in order to guarantee proper return of the object from subsequent acquisitions,
further conditions need to be attached when the object is released. There are a number
of alternative conditions. The choice of the condition depends on the semantics of

interactions allowed in a given computation.
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Consider an object O; acquired by A from a virtual database ® to which the object
was released under the condition on-abort. A can subsequently release O; to a virtual
database {2 under either the condition on-abort or on-terminate and one of the following

provisions with respect to any action B which acquires the object (from Q):
e B already has or develops an abort-dependency on A (B = A), or

e B develops a conditional-abort-dependency on A until the object is released to {2

by B (B 2 A until release(O;,1,B))?, or

¢ B develops a conditional-abort-dependency on A until the object is released to 1

(by any action) (B & A until release(O;, f1,any)).

In all possible releases, the abort-dependency of action B on action A guarantees that
if action A aborts, the object will have the proper status (being in 1) to be returned to
®. That is, if A aborts, B also aborts and the object is returned to 1, given that the
object was conditionally released to {1 subject to on-abort or on-terminate.

Now, consider an object O; acquired by A from a virtual database ® to which it
was released under the condition on-commit. A can subsequently release O; to virtual
database {1 under the condition on-terminate and the provision that action A already
has or Adeirelops a commit-dependency on the action B which acquires the object (from
) (A3 B), or it develops a conditional-commit-dependency on B until the object
is released to 0 either by B or some other action (A = B until release(0;,0,B) or
(A 5 B until release(O;,1,any)). The commit-dependency of action A on action B
prevents action A from committing bhefore B is in a positiqn to properly return the
object to the virtual database (1.

Finally, the conditions that need to be imposed while releasing an object that was
acquired under the condition on-terminate is similar to the above two cases. Table 1
summarizes the subsequent object release conditions and the provisions under which

these releases are allowed.

;“;while -A = until A.
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3 Modeling Different Transaction Schemes

In this section, five major transaction models which appeared in the literature are
modeled using the ACTA model. These are traditional transactions, Nested Transac-
tions, Recoverable Communicating Actions, Split-Transactions, and Cooperative Trans-
actions. Although Transaction Groups [Fernandez89| are not included, their character-
ization is no harder than that of Cooperative Transactions, since they have a similar
structure. The communication modes in Transaction Groups can be specified by means

of communication obligations in ACTA.

3.1 Traditional Transactions

Since the traditional transaction model was developed for reads and writes, we use reads
and writes in the description below. This holds for our description of Nested Transac-
tions and Split-Transactions as well. The characterization of shared read access, as well
. as of the basic two-phase locking behavior, in the ACTA model was presented in the pre-
vious section 2.2.1. However, the most common semantics associated with traditional
transactions aré those defined by the strict two-phase locking protocol [Bernstein87] and
commutative (e.g. shared read) access to objects. As might be expected, the ch_aracter-
ization of the strict two-phase behavior is simpler that the basic one. '

No completion dependencies or communication ol)ligations are ever developed be-
tween transactions, since it is not possible for one transaction to access in a conflicting
way any object which is accessed by another transactions, while the transactions are
in-progress. During execution time, a transaction does not release any of its obhjects
and the conditions when acquiring an object do not allow conflicting operations to be
acquired by more than transaction. All transactions execute only against the system
database.

In-progress Effects On Objects

Rule 1: Before a transaction reads an object, it must acquire the object for read and

with the condition no-write.
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Rule 2: Before a transaction writes an object, it must acquire the object for write and

with the condition no-read and no-write.

Termination effects on Objects
Rule 3: If a transaction commits: all its objects are released to the system database.

Rule 4: If a transaction aborts: all its objects are restored to thesr last committed state

and released to the system database.

The last two rules express the strictness property which requires that objects

acquired by a transaction, should be released only when the transaction terminates.

3.2 Nested Transactions

In the Nested Transaction model [Moss81], transactions are composed of subtransactions
designed to localize failures within a transaction. A subtransaction can be further
 decomposed into other subtransactions, and thus, the transaction may expand in a
hierarchical manner. Subtransactions can abort independently without causing the
abortion of the whole transaction. However, if the parent transaction aborts, all its
subtransactions have to abort. The parent transaction cannot commit until all its .
subtransactions have terminated. _

Object inheritance, i.e. the ability of one transaction to access the objects of
another transaction, is supported between subtransactions and their descendants. The
effects on the objects are made permanent only when the top-level transaction commits.

Here is the characterization of Nested Transactions in the ACTA model:

Completion Dependencies
Rule 1: Vi, Child; "% Parent

The abort-dependency of a child on its parent guarantees the abortion of the child
subtransaction in the case that its parent aborts. Furthermore, the exclusive-abort-
dependency prohibits a child subtransaction from having more than one parent; this

ensures the hierarchical structure of the Nested Transactions.
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Rule 2: Vi, Parent = Child;

The commit-dependency of the parent on its children guarantees that the parent does

not commit before all its children have terminated.

In-progress Effects On Objects

For each subtransaction S;; (the ith child of the subtransaction Sj4), there is a
virtual database ®;; which is shared by that subtransaction and its descendants, i.e.
all the subtransactions which have a transitive-abort-dependency on S;;. That is, any
subtransaction executes against the system database, the virtual database associated
with it (®;;) and the virtual databases of its ancestors (for instance from S;’s virtual

database ®;;).

Rule 3: Before a transaction reads an object, it must acquire the object for read and

-with the condition no-write.

" Rule 4: Before a transaction writes an object, it must acquire the object for write and

with the condition no-read and no-write.

~ Rule 3 and 4 specify that only reads can execute in parallel.

Rule 5: A subtransaction S;; should release all its objects to the virtual database ®;;.
The release should be temporary with the condition that the objects be restored to

their last checked state in the virtual database ®;; on-abort.

The temporary release guarantees that the changes to the object by the releasing action
continue to depend on the disposition of the action. The constraint restore on-abort
makes sure that all objects are properly restored and released to the origin virtual
database. This is assured even if the action which subsequently acquires the object,
releases the object to some other virtual database and then aborts. Thus, rule 5 ensures

the flow of both data and objects down the hierarchy as defined by object inheritance.

Termination Effects On Objects
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Rule 6: If the top-level transaction commits:

all its objects should be published and released to the system database.

Rule 7: If the top-level transaction aborts:

all its objects should be restored to their last commilted state and released to the

system database.

The two above rules specify that only the top-level transaction can release a modified

object to the system database.

Rule 8: If a subtransaction S;; commits:
all its objects should be released to the virtual database ®;, shared by its parent
subtransaction Sjy, its siblings Si; and their children. The release should be perma-
nent with the propagation condition that each object be restored to its last checked

state on-abort.

Rule 8 guarantees the proper flow of both data and objects up the hierarchy. The con-
straint restore on-abort and the default handling of objects in the case that an action
aborts ensures that all the changes so far on the objects by the conditionally committed
subtransaction are not lost if the dbjects are subsequently inherited down the hierarchy.
A couple of other things should be noted with respect to this rule: first, a subtransaction
does not actually commit when it invokes the commit operation, but it conditionally
commits and it can still be aborted; this is due to its abort-dependency on its parent
subtransaction (rule 1). Recall that the conditional commit allows for objects to be
released to a virtual databhase but not to the svstem database. Secondly, when a sub-
transaction S;; conditionally commits, it is the last subtransaction to terminate and has
access to the virtual database ®;; shared with its descendants. Since the subtransaction
never permanently releases any object when it is active, all the objects in this virtual
database are accessible to the subtransaction. Furthermore, none of the objects have

any constraint with respect to commit. Thus, the subtransaction is responsible for ap-
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propriately releasing all the objects, and it releases them to the virtual database shared

by its parent and siblings and their children according to rule 8.

Rule 9: If a subtransaction aborts:
(i.) all its objects previously acquired from virtual databases accessible to its an-
cestors are restored and released to the appropriate virtual databases.

(11.) the rest of its objects are restored to their last committed state and released

to the system database.

This last rule restates the handling of objects in a virtual database when the last
action that has access to the virtual database, aborts. Recall that all objects released
to this virtual database according to rule 5 are constrainted to be restored to their last
checked state and released to their origin virtual database. The rest of the objects are
not associated with any propagation condition since they are acquired from the system
database and then released in the virtual database either by the aborting subtransaction

or by one of its children which has already conditionally committed.

3.3 Split-Transactions

In the Split-Transaction model [Pu88|, it is possible for a transaction to split into
two transactions, the parent and child transactions where the parent transaction is
the origin transaction. Parent and child transactions may be independent in which
case they can commit or abort independently, or they may be sertal in which case the
parent must commit in order for the child to commit. Whether the parent and child
transactions are independent or serial depends on the ohjects accessible to them. Here

is the characterization of Split-Transactions in the ACTA model:

3.3.1 Independent Transactions

Completion Dependencies

Rule 1: No action-dependencies between parent and child transactions.
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Independent transactions behave like traditional transactions and as such their interac-
tions do not lead to the development of any kind of action-dependencies.

In-progress Effects On Objects

The child transaction is associated with a virtual database.

Rule 2: Before a transaction reads an object, 1t must acquire the object for read

and with the condition no-write.

Rule 3: Before a transaction writes an object, it must acquire the object for write

and with the condition no-read and no-write.

The commutative type access to objects guarantees that the parent and child
transactions operate on disjoint sets of objects after the split. Otherwise their

independence would be destroyed.

Rule 4: The parent transaction should permanently release the objects intended for the

child to the child’s virtual database.

The permanent release leaves to the child the responsibility to make all the changes
to the released object up to the split permanent to the system database. This is also
restated by the following two rules.

Termination Effects On Objects

Rule 5: If either transaction aborts:
all its objects are restored to their last committed state and released to the system

database.

Rule 6: If either transaction commits:

all its objects are released to the system database.

3.3.2 Serial Transactions

Completion Dependencies
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Rule 1: Child %> Parent :

The abort-dependency guarantees that the child transaction aborts if the parent aborts
and that the child commitment is delayed until its parent commits. The exclusive-
abort-dependency prevents a child from joining (see below) a third transaction®. Note

that this does not prevent child and parent transactions from joining.

In-progress Effects On Objects

Rule 2: The parent transaction should temporarily release all objects in the sets
ParentWriteSet N ChildWriteSet (= ChildWritelLast) and ChildReadSet
N ParentWriteSet (= ShareSet) to the virtual database accessible to both par-
ent and child.

Rule 8: The parent transaction should permanently release all objects in the set

‘ChildWriteSet - ChildWriteLast to the child’s virtual database.

All the changes to the objects up to the release time become visible to the child
transaction. The temporary release ensures that the changes to the objects which are
accessed by both transactions, are not lost if the child aborts®. On the other hand,
perfna.nent release (in rule 3) leaves to the child the decision to make the changes on

the rest of the objects permanent to the system database.

Termination Effects On Objects

Rule 4: if the parent transaction aborts:

all its objects are fully restored and released to the system database.

Rule 5: If the parent transaction commits:

all its objects are released to the system database.

3This constraint can be removed if the join operation requires that the joint transaction develops the
same dependencies as the joining transaction.

4Furthermore, these two conditions allow the parent transaction to regain access to these objects after
the abortion of the child. Note that this is not supported by the original notion of Split-Transactions
[Pu88], although it might be appropriate for some applications.
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Rule 6: If the child transaction aborts:
(i) all the objects acquired from the virtual database are restored to their last

checked state and released to the virtual database.

(#i.) all the other objects are fully restored and released to the system database.

Rule 7: If the child transaction commits:

all its objects are released to the system database.

If the parent aborts then the child transaction is also aborted, given that the child
has an abort-dependency on the parent. Thus, by rules 4 and 5, all the objects acquired
by both transactions are fully restored and released to the system. When the parent
commits, all its changes are made permanent including those on the object which were
temporary released to the child. Rule 5 also guarantees that changes to the objects
up to the split survive even when the child aborts since it calls for these objects to be
restored to their last checked state discarding only the child’s changes. Rule 4 becomes
applicable after the parent transaction commits, given the abort-dependency of the child

on the parent.

3.3.3 Joint Transactions

In the Split-Transactions model, it is also possible for two transaction to join into one,
the joint transaction. The joint transaction is either of the origin ones. When the
transactions join, they release their objects to the joint transaction.

The characterization of Joint-Transactions in the ACTA model is straight forward:

Completion Dependencies

Rule 1: Joining transaction = Joint transaction

In-progress Effects On Objects

Rule 1: The joining transaction should permanently release all its objects to the virtual

database accessible to the joint transaction.



21

Termination Effects On Objects

Rule 1: If the joint transaction aborts:

all its obyects are fully restored and released to the system database.

Rule 2: If the joint transaction commits:

all its objects are released to the system database.

3.4 Recoverable Communicating Actions

In the Recoverable Communicating Actions (RCA) model [Vinter86}, an action, the
sender, is allowed to communi_ca.'te with another action, the receiver, by exchanging ob-
jects resulting in an action-dependency of the receiver on the sender. Action-dependency
in the RCA model has similar semantics to the abort-dependency in the ACTA model.
The main difference is that in the RCA model, action-dependency requires synchronized
comrﬁitment of the sender and the receiver even in the case that the sender commits
~ first and has no dependencies on the receiver; in the ACTA model, abort-dependency
does not. Hon,ever, partial failures are tolerated since an action may abort without
aborting the action on which it has developed an action-dependency. '

Because of the similarities between RCA and ACTA models, the characterization
of RCA in the ACTA model is quite simple:

Completion Dependencies
Rule 1: Sender = Receiver
Rule 2: Receiver 2 Sender

The circular dependency involving different completion-dependencies hetween sender
and receiver guarantees the requirement of synchronized commitment of the sender and

receiver actions.

In-progress Effects On Objects Each receiver is associated with a virtual database

which is accessible to both the sender and the receiver.
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Rule 3: The sender should release the communicated objects to recetver’s virtual
database. The release should be temporary with the condition the objects to be

restored tn the virtual database on-abort.

Termination Effects On Objects

Rule 4: if an action aborts:

(i.) all its objects acquired from the system are fully restored and released to the

system database.

(11.) all its objects acquired from virtual databases are restored and released back

to the origin virtual database.

Rule 5: if an action commits: all its objects are released to the system database.

3.5 Cooperative Transactions

In the Cooperative Transaction model [Bachilon85], transactions are multi-level, decom-
posed into subtransactions each with its own serﬁantics and types. The model supports
three distinct types of subtransactions: project transactions are decomposed into co-
operative transactions; cooperative transactions are composed of a set of subcontractor
transactions; and subcontractor transactions. may either have a structure similar to co-
operative transactions in which case the client cooperative transaction acts as a local
project transaction, or hé,ve the structure of an atomic update called short transactions.

Cooperative Transactions have a hierarchical structure similar to Nested Trans-
actions. but they do not support ohject inheritance in the same manner as in Nested
Transactions [Moss81]. In cooperative transactions object flow is only supported be-
tween adjacent levels through intermediate semi-public databases. Thus a semi-public
database is similar to the virtual database in the ACTA model.

The characterization of Cooperative Transactions in the ACTA model is very close
to the one in Nested Transactions due to their similarities in their structures.

Completion Dependencies
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Rule 1: Vi, Cooperative; = Project
Rule 2: Vi, Project = Cooperative;
Rule 3: Vj, Subcontractor; = (client)Cooperative;

Rule 4: Vj, (client) Cooperative; = Subcontractor;

In-progress Effects On Objects

Rule 1: The project transaction should release all its objects to the virtual database (1
which ts accessible to its cooperative transactions. The release should be temporary

subject to the condition that the objects be restored to the virtual database on-abort.

Rule 2: A cooperative transaction may release any of its objects to the virtual database
®; which is accessible by its subcontractors, or to the virtual database ) which is
shared by the project and its cooperative transactions. However, the release should
be temporary subject to the condition that the objects be restored to the virtual

database on-abort.

Termination Effects On Objects

Rule 1: If the project transaction commits:

all its objects are published and released to the system database.

Rule 2: If the project transaction aborts:

all its ohjects are fully restored and released to the system database.

Rule 3: If a cooperative transaction commits:
all its objecis are released to the virtual database §) shared by the project and
its cooperative transactions. The release should be permanent with the condition

restored to the last checked state on-abort.
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Rule 4: If a cooperative transaction aborts:

(1.) all its objects acquired from the virtual database (1 which is accessible to the
project and tts cooperative transactions, are restored and released to the virtual

database (1.

(1#.) the rest of its objects are fully restored and released to the system database.

Rule 5: If a subcontractor commits:

all its objects should be released to the virtual database ®; shared by its client
transaction and its siblings subcontractors. The release should be permanent and

with the condition restore to the last checked state on-abort.

Rule 6: If a subcontractor aborts:
(i.) all its objects acquired from virtual databases ®; accessible to its client trans-
action are restored and released to the ®,.

(ii.) the rest of its objects are fully restored and released to the system database.

4 Conclusion

ACTA, the comprehensive transaction model proposed in thiAs paper, captures the spec-
trum of interactions among transactions defined by the competitive and cooperative
environments. Each point in the space of interactions is characterized along four di-
mensions: action dependencies, communication obligations, in-progress effects and ter-
mination effects. Its ability to model all major previously proposed transaction-based
schemes is indicative of its generality.

A formal model is currently nnder investigation. Such a model will allow us to
characterize the correctness properties of a given model. For example, to determine
if it produces onl}" serializable computations, and if not, whether the computation is
acceptable, i.e. the interactions in the computation do not conflict in such a manner
as to produce object inconsistencies. Thus, with a formal model, points within the

spectrum of interaction allowed by our model can be examined in order to understand
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the formal properties of the modeled systems.

Future steps include the development of concurrency control and recovery pro-
tocols appropriate for the ACTA model and a2 mechanism or a set of mechanisms for
implementing these protocols. Intuitively it seems that a single mechanism will be com-
plex and inefficient. However, a set of mechanisms each of which implements efficiently
some subset of these protocols while supporting all of them, is possible. Obviously, the
predominant interactions in the application will dictate the appropriate mechanism.
Such an approach is referred to as the toolboz approach and allows the building of
extensible systems.

In this way, when a facility is needed to support traditional or new applications,
such as CAD/CAM, distributed Al and Operating Systems, the appropriate mechanism .
can be selected without confining the system into a specific set of interactions as is

currently the case.
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